|   | 
Details
   web
Records
Author Verbeeck, J.; Van Aert, S.; Zhang, L.; Haiyan, T.; Schattschneider, P.; Rosenauer, A.
Title Computational aspects in quantitative EELS Type A1 Journal article
Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 16 Issue S:2 Pages 240-241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos Publication Date 2010-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2010 IF: 3.259
Call Number UA @ lucian @ c:irua:96556UA @ admin @ c:irua:96556 Serial 454
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.
Title Physical limits on atomic resolution Type A1 Journal article
Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 10 Issue Pages 153-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos 000188882100022 Publication Date 2004-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 14 Open Access
Notes Approved Most recent IF: 1.891; 2004 IF: 2.389
Call Number UA @ lucian @ c:irua:47515 Serial 2616
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.
Title Structural, chemical and electronic characterization of ceramic materials using quantitative (scanning) transmission electron microscopy Type A1 Journal article
Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 13 Issue S:3 Pages 332-333
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos Publication Date 2008-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2007 IF: 1.941
Call Number UA @ lucian @ c:irua:96553 Serial 3224
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J.
Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue S:2 Pages 934-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:96554 Serial 3792
Permanent link to this record
 

 
Author Jones, L.; Martinez, G.T.; Béché, A.; Van Aert, S.; Nellist, P.D.
Title Getting the best from an imperfect detector : an alternative normalisation procedure for quantitative HAADF STEM Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S3 Pages 126-127
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:136445 Serial 4500
Permanent link to this record
 

 
Author Schryvers, D.; Shi, H.; Martinez, G.T.; Van Aert, S.; Frenzel, J.; Van Humbeeck, J.
Title Nano- and microcrystal investigations of precipitates, interfaces and strain fields in Ni-Ti-Nb by various TEM techniques Type P1 Proceeding
Year 2013 Publication Materials science forum T2 – 9th European Symposium on Martensitic Transformations (ESOMAT 2012), SEP 09-16, 2012, St Petersburg, RUSSIA Abbreviated Journal
Volume 738/739 Issue Pages 65-71
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract In the present contribution several advanced electron microscopy techniques are employed in order to describe chemical and structural features of the nano- and microstructure of a Ni45.5Ti45.5Nb9 alloy. A line-up of Nb-rich nano-precipitates is found in the Ni-Ti-rich austenite of as-cast material. Concentration changes of the matrix after annealing are correlated with changes in the transformation temperatures. The formation of rows and plates of larger Nb-rich precipitates and particles is described. The interaction of a twinned martensite plate with a Nb-rich nano-precipitate is discussed and the substitution of Nb atoms on the Ti-sublattice in the matrix is confirmed.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Lausanne Editor
Language Wos 000316089000011 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9752; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Fwo Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104692 Serial 2247
Permanent link to this record
 

 
Author Batenburg, J.; Van Aert, S.
Title Three-dimensional reconstruction of a nanoparticle at atomic resolution Type A2 Journal article
Year 2011 Publication ERCIM news Abbreviated Journal
Volume 86 Issue Pages 52
Keywords A2 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Le Chesnay Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-4981 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94120 Serial 3655
Permanent link to this record
 

 
Author Van Aert, S.
Title Meer zien met onzichtbaar licht Type A2 Journal article
Year 2007 Publication Karakter : tijdschrift van wetenschap Abbreviated Journal
Volume 18 Issue Pages 19-21
Keywords A2 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) Leuven Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-0390 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:68658 Serial 1982
Permanent link to this record
 

 
Author Van Aert, S.; van Dyck, D.
Title Do smaller probes in a scanning transmission electron microscope result in more precise measurement of the distances between atom columns? Type A1 Journal article
Year 2001 Publication Philosophical magazine: B: physics of condensed matter: electronic, optical and magnetic properties Abbreviated Journal
Volume 81 Issue 11 Pages 1833-1846
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000172199700016 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-2812;1463-6417; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 11 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:47519 Serial 744
Permanent link to this record
 

 
Author Huijben, M.; Rijnders, G.; Blank, D.H.A.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Brinkman, A.; Hilgenkamp, H.
Title Electronically coupled complementary interfaces between perovskite band insulators Type A1 Journal article
Year 2006 Publication Nature materials Abbreviated Journal Nat Mater
Volume 5 Issue Pages 556-560
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000238708900021 Publication Date 2006-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 315 Open Access
Notes Fwo Approved Most recent IF: 39.737; 2006 IF: 19.194
Call Number UA @ lucian @ c:irua:59713UA @ admin @ c:irua:59713 Serial 1019
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.
Title High resolution electron tomography Type A1 Journal article
Year 2013 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M
Volume 17 Issue 3 Pages 107-114
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaching atomic resolution in 3D has been the ultimate goal in the field of electron tomography for many years. Significant progress, both on the theoretical as well as the experimental side has recently resulted in several exciting examples demonstrating the ability to visualise atoms in 3D. In this paper, we will review the different steps that have pushed the resolution in 3D to the atomic level. A broad range of methodologies and practical examples together with their impact on materials science will be discussed. Finally, we will provide an outlook and will describe future challenges in the field of high resolution electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000323869800003 Publication Date 2013-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-0286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.938 Times cited 24 Open Access
Notes Fwo; 312483 Esteem; Countatoms; Approved Most recent IF: 6.938; 2013 IF: 7.167
Call Number UA @ lucian @ c:irua:109454 Serial 1457
Permanent link to this record
 

 
Author Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 20 Pages 205001-205001,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000290150900001 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 99 Open Access
Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491
Permanent link to this record
 

 
Author Van Aert, S.; Batenburg, K.J.; Rossell, M.D.; Erni, R.; Van Tendeloo, G.
Title Three-dimensional atomic imaging of crystalline nanoparticles Type A1 Journal article
Year 2011 Publication Nature Abbreviated Journal Nature
Volume 470 Issue 7334 Pages 374-377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Determining the three-dimensional (3D) arrangement of atoms in crystalline nanoparticles is important for nanometre-scale device engineering and also for applications involving nanoparticles, such as optoelectronics or catalysis. A nanoparticles physical and chemical properties are controlled by its exact 3D morphology, structure and composition1. Electron tomography enables the recovery of the shape of a nanoparticle from a series of projection images2, 3, 4. Although atomic-resolution electron microscopy has been feasible for nearly four decades, neither electron tomography nor any other experimental technique has yet demonstrated atomic resolution in three dimensions. Here we report the 3D reconstruction of a complex crystalline nanoparticle at atomic resolution. To achieve this, we combined aberration-corrected scanning transmission electron microscopy5, 6, 7, statistical parameter estimation theory8, 9 and discrete tomography10, 11. Unlike conventional electron tomography, only two images of the targeta silver nanoparticle embedded in an aluminium matrixare sufficient for the reconstruction when combined with available knowledge about the particles crystallographic structure. Additional projections confirm the reliability of the result. The results we present help close the gap between the atomic resolution achievable in two-dimensional electron micrographs and the coarser resolution that has hitherto been obtained by conventional electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication (up) London Editor
Language Wos 000287409100037 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836;1476-4687; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 40.137 Times cited 341 Open Access
Notes Esteem 026019 Approved Most recent IF: 40.137; 2011 IF: 36.280
Call Number UA @ lucian @ c:irua:86745 Serial 3644
Permanent link to this record
 

 
Author Klingstedt, M.; Sundberg, M.; Eriksson, L.; Haigh, S.; Kirkland, A.; Grüner, D.; de Backer, A.; Van Aert, S.; Tarasaki, O.
Title Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on SbxWO3+y (x\sim0.11) Type A1 Journal article
Year 2012 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 227 Issue 6 Pages 341-349
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new tungsten bronze in the SbWO system has been prepared in a solid state reaction from Sb2O3, WO3 and W metal powder. The average structure was determined by single crystal X-ray diffraction. SbxWO3+y (x ∼ 0.11) crystallizes in the orthorhombic space group Pm21n (no. 31), a = 27.8135(9) Å, b = 7.3659(2) Å and c = 3.8672(1) Å. The structure belongs to the (n)-ITB class of intergrowth tungsten bronzes. It contains slabs of hexagonal channels formed by six WO6 octahedra. These slabs are separated by three layers of WO6 octahedra that are arranged in a WO3-type fashion. The WO6 octahedra share all vertices to build up a three-dimensional framework. The hexagonal channels are filled with Sb atoms to ∼80% and additional O atoms. The atoms are shifted out of the center of the channels. Exit-wave reconstruction of focal series of high resolution-transmission-electron-microscope (HRTEM) images combined with statistical paramäeter estimation techniques allowed to study local ordering in the channels. Sb atoms in neighbouring channels tend to be displaced in the same direction, which is in agreement with total energy calculations on ordered structure models, but the ratio of the occupation of the two possible Sb sites varies from channel to channel. The structure of SbxWO3+y exhibits pronounced local modulations.
Address
Corporate Author Thesis
Publisher Place of Publication (up) München Editor
Language Wos 000307314200003 Publication Date 2012-06-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 4 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 3.179; 2012 IF: NA
Call Number UA @ lucian @ c:irua:101218 Serial 1131
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H.
Title Functional twin boundaries Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 11 Pages 1052-1059
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000327475900002 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited 5 Open Access
Notes Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:107344 Serial 1304
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A.
Title High-resolution electron microscopy and electron tomography: resolution versus precision Type A1 Journal article
Year 2002 Publication Journal of structural biology Abbreviated Journal J Struct Biol
Volume 138 Issue Pages 21-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York Editor
Language Wos 000177978800003 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1047-8477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.767 Times cited 33 Open Access
Notes Approved Most recent IF: 2.767; 2002 IF: 4.194
Call Number UA @ lucian @ c:irua:47520 Serial 1446
Permanent link to this record
 

 
Author Müller-Caspary, K.; Duchamp, M.; Roesner, M.; Migunov, V.; Winkler, F.; Yang, H.; Huth, M.; Ritz, R.; Simson, M.; Ihle, S.; Soltau, H.; Wehling, T.; Dunin-Borkowski, R.E.; Van Aert, S.; Rosenauer, A.
Title Atomic-scale quantification of charge densities in two-dimensional materials Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 12 Pages 121408
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (up) New York, N.Y Editor
Language Wos 000445508200004 Publication Date 2018-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access OpenAccess
Notes ; K.M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (VH-NG-1317) within the framework of the Helmholtz Young Investigator Group moreSTEM at Forschungszentrum Julich, Germany. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153621 Serial 5078
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.
Title High-resolution electron microscopy : from imaging toward measuring Type A1 Journal article
Year 2002 Publication IEEE transactions on instrumentation and measurement Abbreviated Journal Ieee T Instrum Meas
Volume 51 Issue 4 Pages 611-615
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York, N.Y. Editor
Language Wos 000178992000010 Publication Date 2003-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9456; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.456 Times cited 13 Open Access
Notes Approved Most recent IF: 2.456; 2002 IF: 0.592
Call Number UA @ lucian @ c:irua:47521 Serial 1450
Permanent link to this record
 

 
Author Gonnissen, J.; de Backer, A.; den Dekker, A.J.; Martinez, G.T.; Rosenauer, A.; Sijbers, J.; Van Aert, S.
Title Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 105 Issue 6 Pages 063116
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication (up) New York, N.Y. Editor
Language Wos 000341188700073 Publication Date 2014-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes FWO (G.0393.11; G.0064.10; and G.0374.13); European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 312483 (ESTEEM2); esteem2_jra2 Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118333 Serial 2482
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G.; Avila-Brande, D.
Title Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range Type A1 Journal article
Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 96 Issue 9 Pages 096106,1-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The local structure of Bi4W2/3Mn1/3O8Cl is determined using quantitative transmission electron microscopy. The electron exit wave, which is closely related to the projected crystal potential, is reconstructed and used as a starting point for statistical parameter estimation. This method allows us to refine all atomic positions on a local scale, including those of the light atoms, with a precision in the picometer range. Using this method one is no longer restricted to the information limit of the electron microscope. Our results are in good agreement with x-ray powder diffraction data demonstrating the reliability of the method. Moreover, it will be shown that local effects can be interpreted using this approach.
Address
Corporate Author Thesis
Publisher Place of Publication (up) New York, N.Y. Editor
Language Wos 000235905700042 Publication Date 2006-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 69 Open Access
Notes Fwo; Iap V Approved Most recent IF: 8.462; 2006 IF: 7.072
Call Number UA @ lucian @ c:irua:56977 Serial 3154
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Oxford Editor
Language Wos 000338402500011 Publication Date 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author Van Aert, S.; van den Broek, W.; Goos, P.; van Dyck, D.
Title Model-based electron microscopy : from images toward precise numbers for unknown structure parameters Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue 4 Pages 509-515
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract Statistical parameter estimation theory is proposed as a method to quantify electron microscopy images. It aims at obtaining precise and accurate values for the unknown structure parameters including, for example, atomic column positions and types. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. The method enables us to measure positions of atomic columns with a precision of the order of a few picometers even though the resolution of the electron microscope is one or two orders of magnitude larger. Moreover, small differences in averaged atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark field scanning transmission electron microscopy images. Finally, it is shown how to optimize the experimental design so as to attain the highest precision. As an example, the optimization of the probe size for nanoparticle radius measurements is considered. It is also shown how to quantitatively balance signal-to-noise ratio and resolution by adjusting the probe size.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Oxford Editor
Language Wos 000301702400003 Publication Date 2011-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:94114 Serial 2099
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D.
Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 74 Issue Pages 85-95
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Oxford Editor
Language Wos 000338621400009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 21 Open Access
Notes Approved Most recent IF: 5.301; 2014 IF: 4.465
Call Number UA @ lucian @ c:irua:118334 Serial 3028
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G.
Title Seeing and measuring in 3D with electrons Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 140-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Paris Editor
Language Wos 000334013600005 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 15 Open Access OpenAccess
Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:113855 Serial 2960
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G.
Title Atomic resolution electron tomography Type A1 Journal article
Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume 41 Issue 41 Pages 525-530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Pittsburgh, Pa Editor
Language Wos 000382508100012 Publication Date 2016-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.199 Times cited 19 Open Access OpenAccess
Notes ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199
Call Number UA @ lucian @ c:irua:135690 Serial 4299
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D.
Title Statistical experimental design for quantitative atomic resolution transmission electron microscopy Type H1 Book chapter
Year 2004 Publication Abbreviated Journal Adv Imag Elect Phys
Volume Issue Pages 1-164
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication (up) San Diego, Calif. Editor
Language Wos 000223226700001 Publication Date 2011-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 13 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:47513 Serial 3156
Permanent link to this record
 

 
Author Schryvers, D.; Cao, S.; Tirry, W.; Idrissi, H.; Van Aert, S.
Title Advanced three-dimensional electron microscopy techniques in the quest for better structural and functional materials Type A1 Journal article
Year 2013 Publication Science and technology of advanced materials Abbreviated Journal Sci Technol Adv Mat
Volume 14 Issue 1 Pages 014206-14213
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary NiTi, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Sendai Editor
Language Wos 000316463800008 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1468-6996;1878-5514; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.798 Times cited 6 Open Access
Notes Fwo; Iap; Esteem Approved Most recent IF: 3.798; 2013 IF: 2.613
Call Number UA @ lucian @ c:irua:107343 Serial 77
Permanent link to this record
 

 
Author Goris, B.; de Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, K.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Aert, S.; Bals, S.; Sijbers, J.; Van Tendeloo, G.
Title Measuring lattice strain in three dimensions through electron microscopy Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 6996-7001
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington Editor
Language Wos 000363003100108 Publication Date 2015-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 87 Open Access OpenAccess
Notes Fwo; 335078 Colouratom; 267867 Plasmaquo; 312483 Esteem2; 262348 Esmi; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:127639 c:irua:127639 Serial 1965
Permanent link to this record