toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Introduction Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 1-28  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes (down) ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177525 Serial 6784  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 145-175  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes (down) ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177530 Serial 6785  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages 29-72  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes (down) ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177527 Serial 6788  
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D. pdf  url
doi  openurl
  Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 14 Issue 1 Pages 4462  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001037058500022 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes (down) D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:198158 Serial 8808  
Permanent link to this record
 

 
Author Kirkwood, N.; De Backer, A.; Altantzis, T.; Winckelmans, N.; Longo, A.; Antolinez, F.V.; Rabouw, F.T.; De Trizio, L.; Geuchies, J.J.; Mulder, J.T.; Renaud, N.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Locating and controlling the Zn content in In(Zn)P quantum dots Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 32 Pages 557-565  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zinc is routinely employed in the synthesis of InP quantum dots (QDs) to improve the photoluminescence efficiency and carrier mobility of the resulting In(Zn)P alloy nanostructures. The exact location of Zn in the final structures and the mechanism by which it enhances the optoelectronic properties of the QDs is debated. We use synchrotron X-ray absorbance spectroscopy to show that the majority of Zn in In(Zn)P QDs is located at their surface as Zn-carboxylates. However, a small amount of Zn is present inside the bulk of the QDs with the consequent contraction of their lattice, as confirmed by combining high resolution high-angle annular dark-field imaging scanning transmission electron microscopy (HAADF-STEM) with statistical parameter estimation theory. We further demonstrate that the Zn content and its incorporation into the QDs can be tuned by the ligation of commonly employed Zn carboxylate precursors: the use of highly reactive Zn-acetate leads to the formation of undesired Zn3P2 and the final nanostructures being characterized by broad optical features, whereas Zn-carboxylates with longer carbon chains lead to InP crystals with much lower zinc content and narrow optical features. These results can explain the differences between structural and optical properties of In(Zn)P samples reported across the literature, and provide a rational method to tune the amount of Zn in InP nanocrystals and to drive the incorporation of Zn either as surface Zn-carboxylate, as a substitutional dopant inside the InP crystal lattice, or even predominantly as Zn3P2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507721600056 Publication Date 2019-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes (down) A.J.H. acknowledges support from the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand). This research is supported by the Dutch Technology Foundation TTW, which is part of The Netherlands Organization for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs. SB acknowledges funding from the European Research Council (grant 815128 REALNANO). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and a postdoctoral grant to A.D.B. AJH, LM and JM acknowledge support from the H2020 Collaborative Project TEQ (Grant No. 766900).; sygma Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:165234 Serial 5438  
Permanent link to this record
 

 
Author van Holsbeke, C.; de Backer, J.; Vos, W.; Verdonck, P.; van Ransbeeck, P.; Claessens, T.; Braem, M.; Vanderveken, O.; de Backer, W. pdf  doi
openurl 
  Title Anatomical and functional changes in the upper airways of sleep apnea patients due to mandibular repositioning: a large scale study Type A1 Journal article
  Year 2011 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 44 Issue 3 Pages 442-449  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract The obstructive sleep apnea-hypopnea syndrome (OSAHS) is a sleep related breathing disorder. A popular treatment is the use of a mandibular repositioning appliance (MRA) which advances the mandibula during the sleep and decreases the collapsibility of the upper airway. The success rate of such a device is, however, limited and very variable within a population of patients. Previous studies using computational fluid dynamics have shown that there is a decrease in upper airway resistance in patients who improve clinically due to an MRA. In this article, correlations between patient-specific anatomical and functional parameters are studied to examine how MRA induced biomechanical changes will have an impact on the upper airway resistance. Low-dose computed tomography (CT) scans are made from 143 patients suffering from OSAHS. A baseline scan and a scan after mandibular repositioning (MR) are performed in order to study variations in parameters. It is found that MR using a simulation bite is able to induce resistance changes by changing the pharyngeal lumen. The change in minimal cross-sectional area is the best parameter to predict the change in upper airway resistance. Looking at baseline values, the ideal patients for MR induced resistance decrease seem to be women with short airways, high initial resistance and no baseline occlusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000287551000014 Publication Date 2010-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 23 Open Access  
  Notes (down) ; ; Approved Most recent IF: 2.664; 2011 IF: 2.434  
  Call Number UA @ lucian @ c:irua:85305 Serial 112  
Permanent link to this record
 

 
Author Vinchurkar, S.; De Backer, L.; Vos, W.; Van Holsbeke, C.; de Backer, J.; de Backer, W. doi  openurl
  Title A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients : effect of upper airway morphology and comparison with in vivo data Type A1 Journal article
  Year 2012 Publication Inhalation Toxicology Abbreviated Journal Inhal Toxicol  
  Volume 24 Issue 2 Pages 81-88  
  Keywords A1 Journal article; Pharmacology. Therapy; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Context: Asthma affects 20 million Americans resulting in an economic burden of approximately $18 billion in the US alone (Allergies and Asthma Foundation 2000; National Center for Environmental Health (NCEH) 1999). Research studies based on differences in patient-specific airway morphology for asthma and the associated effect on deposition of inhaled aerosols are currently not available in the literature. Therefore, the role of morphological variations such as upper airway (extrathoracic) occlusion is not well documented. Objective: Functional imaging based computational fluid dynamics (CFD) of the respiratory airways for five asthmatic subjects is performed in this study using computed tomography (CT) based patient-specific airway models and boundary conditions. Methods: CT scans for 5 asthma patients were used to reconstruct 3D lung models using segmentation software. An averaged inhalation profile and patient-specific lobar flow distribution were used to perform the simulation. The simulations were used to obtain deposition for BDP/Formoterol (R) HFA pMDI in the patient-specific airway models. Results: The lung deposition obtained using CFD was in excellent agreement with available in vivo data using the same product. Specifically, CFD resulted in 30% lung deposition, whereas in vivo lung deposition was reported to be approximately 31%. Conclusion: It was concluded that a combination of patient-specific airway models and lobar boundary conditions can be used to obtain accurate lung deposition estimates. Lower lung deposition can be expected for patients with higher extrathoracic resistance. Novel respiratory drug delivery devices need to accommodate population subgroups based on these morphological and anatomical differences in addition to subject age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000299744800001 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-8378;1091-7691; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 36 Open Access  
  Notes (down) ; ; Approved Most recent IF: 1.751; 2012 IF: 1.894  
  Call Number UA @ lucian @ c:irua:96238 Serial 286  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Verhulst, S.L.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Verdonck, P.R.; van Doorn, J.W.D.; Nadjmi, N.; de Backer, W.A. doi  openurl
  Title Change in upper airway geometry between upright and supine position during tidal nasal breathing Type A1 Journal article
  Year 2014 Publication Journal Of Aerosol Medicine And Pulmonary Drug Delivery Abbreviated Journal J Aerosol Med Pulm D  
  Volume 27 Issue 1 Pages 51-57  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000331144500007 Publication Date 2013-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-2711;1941-2703; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.528 Times cited 16 Open Access  
  Notes (down) ; ; Approved Most recent IF: 2.528; 2014 IF: 2.798  
  Call Number UA @ lucian @ c:irua:115759 Serial 308  
Permanent link to this record
 

 
Author de Backer, W.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Hufkens, A.; Parizel, P.M.; Bedert, L.; de Backer, J. pdf  doi
openurl 
  Title The effect of roflumilast in addition to LABA/LAMA/ICS treatment in COPD patients Type L1 Letter to the editor
  Year 2014 Publication European Respiratory Journal Abbreviated Journal Eur Respir J  
  Volume 44 Issue 2 Pages 527-529  
  Keywords L1 Letter to the editor; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000340017300029 Publication Date 2014-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.569 Times cited 26 Open Access  
  Notes (down) ; ; Approved Most recent IF: 10.569; 2014 IF: 7.636  
  Call Number UA @ lucian @ c:irua:117335 Serial 832  
Permanent link to this record
 

 
Author De Backer, L.; Vos, W.; Dieriks, B.; Daems, D.; Verhulst, S.; Vinchurkar, S.; Ides, K.; de Backer, J.; Germonpré, P.; de Backer, W. url  doi
openurl 
  Title The effects of long-term noninvasive ventilation in hypercapnic COPD patients : a randomized controlled pilot study Type A1 Journal article
  Year 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr  
  Volume 6 Issue Pages 615-624  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Introduction: Noninvasive ventilation (NIV) is a well-established treatment for acute-on-chronic respiratory failure in hypercapnic COPD patients. Less is known about the effects of a long-term treatment with NIV in hypercapnic COPD patients and about the factors that may predict response in terms of improved oxygenation and lowered CO2 retention.Methods: In this study, we randomized 15 patients to a routine pharmacological treatment (n = 5, age 66 [standard deviation ± 6] years, FEV1 30.5 [±5.1] %pred, PaO2 65 [±6] mmHg, PaCO2 52.4 [±6.0] mmHg) or to a routine treatment and NIV (using the Synchrony BiPAP device [Respironics, Inc, Murrsville, PA]) (n = 10, age 65 [±7] years, FEV1 29.5 [±9.0] %pred, PaO2 59 [±13] mmHg, PaCO2 55.4 [±7.7] mmHg) for 6 months. We looked at arterial blood gasses, lung function parameters and performed a low-dose computed tomography of the thorax, which was later used for segmentation (providing lobe and airway volumes, iVlobe and iVaw) and post-processing with computer methods (providing airway resistance, iRaw) giving overall a functional image of the separate airways and lobes.Results: In both groups there was a nonsignificant change in FEV1 (NIV group 29.5 [9.0] to 38.5 [14.6] %pred, control group 30.5 [5.1] to 36.8 [8.7] mmHg). PaCO2 dropped significantly only in the NIV group (NIV: 55.4 [7.7] → 44.5 [4.70], P = 0.0076; control: 52.4 [6.0] → 47.6 [8.2], NS). Patients actively treated with NIV developed a more inhomogeneous redistribution of mass flow than control patients. Subsequent analysis indicated that in NIV-treated patients that improve their blood gases, mass flow was also redistributed towards areas with higher vessel density and less emphysema, indicating that flow was redistributed towards areas with better perfusion. There was a highly significant correlation between the % increase in mass flow towards lobes with a blood vessel density of >9% and the increase in PaO2. Improved ventilation–perfusion match and recruitment of previously occluded small airways can explain the improvement in blood gases.Conclusion: We can conclude that in hypercapnic COPD patients treated with long-term NIV over 6 months, a mass flow redistribution occurs, providing a better ventilation–perfusion match and hence better blood gases and lung function. Control patients improve homogeneously in iVaw and iRaw, without improvement in gas exchange since there is no improved ventilation/perfusion ratio or increased alveolar ventilation. These differences in response can be detected through functional imaging, which gives a more detailed report on regional lung volumes and resistances than classical lung function tests do. Possibly only patients with localized small airway disease are good candidates for long-term NIV treatment. To confirm this and to see if better arterial blood gases also lead to better health related quality of life and longer survival, we have to study a larger population.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000208709800066 Publication Date 2011-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 28 Open Access  
  Notes (down) ; ; Approved Most recent IF: 3.157; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:93164 Serial 866  
Permanent link to this record
 

 
Author De Backer, L.A.; Vos, W.G.; Salgado, R.; de Backer, J.W.; Devolder, A.; Verhulst, S.L.; Claes, R.; Germonpré, P.R.; de Backer, W.A. url  doi
openurl 
  Title Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD Type A1 Journal article
  Year 2011 Publication International journal of chronic obstructive pulmonary disease Abbreviated Journal Int J Chronic Obstr  
  Volume 6 Issue Pages 637-646  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Salbutamol and ipratropium bromide improve lung function in patients with chronic obstructive pulmonary disease (COPD). However, their bronchodilating effect has not yet been compared in the central and distal airways. Functional imaging using computational fluid dynamics offers the possibility of making such a comparison. The objective of this study was to assess the effects of salbutamol and ipratropium bromide on the geometry and computational fluid dynamics-based resistance of the central and distal airways.Methods: Five patients with Global Initiative for Chronic Obstructive Lung Disease Stage III COPD were randomized to a single dose of salbutamol or ipratropium bromide in a crossover manner with a 1-week interval between treatments. Patients underwent lung function testing and a multislice computed tomography scan of the thorax that was used for functional imaging. Two hours after dosing, the patients again underwent lung function tests and repeat computed tomography.Results: Lung function parameters, including forced expiratory volume in 1 second, vital capacity, overall airway resistance, and specific airway resistance, changed significantly after administration of each product. On functional imaging, the bronchodilating effect was greater in the distal airways, with a corresponding drop in airway resistance, compared with the central airways. Salbutamol and ipratropium bromide were equally effective at first glance when looking at lung function tests, but when viewed in more detail with functional imaging, hyporesponsiveness could be shown for salbutamol in one patient. Salbutamol was more effective in the other patients.Conclusion: This pilot study gives an innovative insight into the modes of action of salbutamol and ipratropium bromide in patients with COPD, using the new techniques of functional imaging and computational fluid dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000208709800068 Publication Date 2011-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 25 Open Access  
  Notes (down) ; ; Approved Most recent IF: 3.157; 2011 IF: NA  
  Call Number UA @ lucian @ c:irua:93165 Serial 1300  
Permanent link to this record
 

 
Author Van Holsbeke, C.; Vos, W.; van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; de Backer, J.; De Backer, W.; Verhulst, S.L. pdf  doi
openurl 
  Title Functional respiratory imaging as a tool to assess upper airway patency in children with obstructive sleep apnea Type A1 Journal article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 14 Issue 5 Pages 433-439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Objective: We aim to investigate if anatomical and functional properties of the upper airway using computerized 3D models derived from computed tomography (CT) scans better predict obstructive sleep apnea (OSA) severity than standard clinical markers. Methods: Consecutive children with suspected OSA underwent polysomnography, clinical assessment of upper airway patency, and a CT scan while awake. A three-dimensional (3D) reconstruction of the pharyngeal airway was built from these images, and computational fluid dynamics modeling of low inspiratory flow was performed using open-source software. Results: Thirty-three children were included (23 boys; mean age, was 6.0 +/- 3.2 y). OSA was diagnosed in 23 patients. Children with OSA had a significantly lower volume of the overlap region between tonsils and the adenoids (median volume, 1408 mm compared to 2173 mm; p = 0.04), a lower mean cross-sectional area at this location (median volume, 69.3 mm(2) compared to 114.3 mm(2); p = 0.04), and a lower minimal cross-sectional area (median volume, 17.9 mm(2) compared to 25.9 mm(2); p = 0.05). Various significant correlations were found between several imaging parameters and the severity of OSA, most pronounced for upper airway conductance (r = -0.46) (p < 0.01) for correlation between upper airway conductance and the apnea-hypopnea index. No differences or significant correlations were observed with clinical parameters of upper airway patency. Preliminary data after treatment showed that none of the patients with residual OSA had their smallest cross-sectional area located in segment 3, and this frequency was significantly lower than in their peers whose sleep study normalized (64%; p = 0.05). Conclusion: Functional imaging parameters are highly correlated with OSA severity and are a more powerful correlate than clinical scores of upper airway patency. Preliminary data also showed that we could identify differences in the upper airway of those subjects who did not benefit from a local upper airway treatment. (c) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000318612100009 Publication Date 2013-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.391 Times cited 18 Open Access  
  Notes (down) ; ; Approved Most recent IF: 3.391; 2013 IF: 3.100  
  Call Number UA @ lucian @ c:irua:109015 Serial 1302  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A. pdf  doi
openurl 
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year 2013 Publication Respiratory care Abbreviated Journal Resp Care  
  Volume Issue Pages 1-20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Dallas, Tex. Editor  
  Language Wos 000349200100024 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.733 Times cited 5 Open Access  
  Notes (down) ; ; Approved Most recent IF: 1.733; 2013 IF: 1.840  
  Call Number UA @ lucian @ c:irua:112982 Serial 1303  
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Poli, G.; De Volder, A.; Ghys, L.; Van Holsbeke, C.; Vinchurkar, S.; De Backer, L.; de Backer, W. pdf  doi
openurl 
  Title Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol Type A1 Journal article
  Year 2013 Publication Respiration Abbreviated Journal Respiration  
  Volume 86 Issue 5 Pages 393-401  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Inhaled formulations using extrafine particles of long-acting beta(2)-agonists and corticosteroids were developed to optimize asthma treatment. Findings that these combinations reach and treat smaller airways more effectively are predominantly based on general non-specific outcomes with little information on regional characteristics. Objectives: This study aims to assess long-term effects of extrafine beclomethasone/formoterol on small airways of asthmatic patients using novel functional imaging methods. Methods: Twenty-four stable asthma patients were subdivided into three groups (steroid naive, n = 7; partially controlled, n = 6; well controlled, n = 11). Current treatment was switched to a fixed combination of extrafine beclomethasone/formoterol (Foster (R); Chiesi Pharmaceuticals, Parma, Italy). Patients underwent lung function evaluation and thorax high-resolution computerized tomography (HRCT) scan. Local airway resistance was obtained from computational fluid dynamics (CFD). Results: After 6 months, the entire population showed improvement in pre-bronchodilation imaging parameters, including small airway volume (p = 0.0007), resistance (p = 0.011), and asthma control score (p = 0.016). Changes in small airway volume correlated with changes in asthma control score (p = 0.004). Forced expiratory volume in 1 s (p = 0.044) and exhaled nitric oxide (p = 0.040) also improved. Functional imaging provided more detail and clinical relevance compared to lung function tests, especially in the well-controlled group where only functional imaging parameters showed significant improvement, while the correlation with asthma control score remained. Conclusions: Extrafine beclomethasone/formoterol results in a significant reduction of small airway obstruction, detectable by functional imaging (HRCT/CFD). Changes in imaging parameters correlated significantly with clinically relevant improvements. This indicates that functional imaging is a useful tool for sensitive assessment of changes in the respiratory system after asthma treatment. Copyright (C) 2013 S. Karger AG, Basel  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Basel Editor  
  Language Wos 000329046200006 Publication Date 2013-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1423-0356;0025-7931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.772 Times cited 30 Open Access  
  Notes (down) ; ; Approved Most recent IF: 2.772; 2013 IF: 2.924  
  Call Number UA @ lucian @ c:irua:113762 Serial 2376  
Permanent link to this record
 

 
Author De Backer, L.A.; Vos, W.; de Backer, J.; Van Holsbeke, C.; Vinchurkar, S.; de Backer, W. pdf  doi
openurl 
  Title The acute effect of budesonide/formoterol in COPD : a multi-slice computed tomography and lung function study Type A1 Journal article
  Year 2012 Publication European Respiratory Journal Abbreviated Journal Eur Respir J  
  Volume 40 Issue 2 Pages 298-305  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification of chronic obstructive pulmonary disease (COPD) does not always match with other clinical disease descriptors such as exacerbation frequency and quality of life, indicating that forced expiratory volume in 1 s (FEV1) is not a perfect descriptor of the disease. The aim of this study was to find out whether changes in airway geometry after inhalation of the most commonly used inhalation therapy in severe COPD can more adequately be described with an image-based approach than with spirometry. 10 COPD GOLD stage III patients were assessed in a double-blind crossover study. Airway volumes were analysed using segmentation of multi-slice computed tomography (MSCT) images; airway resistance was determined using computational fluid dynamics (CFD). Distal airway volume significantly increased (p=0.011) in patients 4 h after receiving a budesonide/formoterol combination from 9.6+/-4.67 cm(3) to 10.14+/-4.81 cm(3). Also CFD-determined airway resistance significantly decreased (p=0.047) from 0.051+/-0.021 kPa.s.L-1 to 0.043+/- 0.019 kPa.s.L-1. None of the lung function parameters showed a significant change. Only functional residual capacity (FRC) showed a trend to decline (p=0.056). Only the image-based parameters were able to predict the visit at which the combination product was administered. This study showed that imaging is a sensitive, complementary tool to describe changes in airway structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000307291700006 Publication Date 2011-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.569 Times cited 37 Open Access  
  Notes (down) ; ; Approved Most recent IF: 10.569; 2012 IF: 6.355  
  Call Number UA @ lucian @ c:irua:101113 Serial 3568  
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K. doi  openurl
  Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
  Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 46 Issue 21 Pages 12162-12169  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000310665000082 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 5 Open Access  
  Notes (down) ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257  
  Call Number UA @ lucian @ c:irua:101411 Serial 2557  
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; de Backer, A.; Van Aert, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Atomic resolution electron tomography Type A1 Journal article
  Year 2016 Publication MRS bulletin Abbreviated Journal Mrs Bull  
  Volume 41 Issue 41 Pages 525-530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Over the last two decades, three-dimensional (3D) imaging by transmission electron microscopy or “electron tomography” has evolved into a powerful tool to investigate a variety of nanomaterials in different fields, such as life sciences, chemistry, solid-state physics, and materials science. Most of these results were obtained with nanometer-scale resolution, but different approaches have recently pushed the resolution to the atomic level. Such information is a prerequisite to understand the specific relationship between the atomic structure and the physicochemical properties of (nano) materials. We provide an overview of the latest progress in the field of atomic-resolution electron tomography. Different imaging and reconstruction approaches are presented, and state-of-the-art results are discussed. This article demonstrates the power and importance of electron tomography with atomic-scale resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pittsburgh, Pa Editor  
  Language Wos 000382508100012 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.199 Times cited 19 Open Access OpenAccess  
  Notes (down) ; The authors gratefully acknowledge funding from the Research Foundation Flanders (G.0381.16N, G.036915, G.0374.13, and funding of postdoctoral grants to B.G. and A.D.B.). S.B. acknowledges the European Research Council, ERC Grant Number 335078-Colouratom. The research leading to these results received funding from the European Union Seventh Framework Program under Grant Agreements 312483 (ESTEEM2). The authors would like to thank the colleagues who have contributed to this work, including K.J. Batenburg, J. De Beenhouwer, R. Erni, M.D. Rossell, W. Van den Broek, L. Liz-Marzan, E. Carbo-Argibay, S. Gomez-Grana, P. Lievens, M. Van Bael, B. Partoens, B. Schoeters, and J. Sijbers. ; ecas_sara Approved Most recent IF: 5.199  
  Call Number UA @ lucian @ c:irua:135690 Serial 4299  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Vinchurkar, S.C.; Claes, R.; Drollmann, A.; Wulfrank, D.; Parizel, P.M.; Germonpré, P.; de Backer, W. pdf  doi
openurl 
  Title Validation of computational fluid dynamics in CT-based airway models with SPECT/CT1 Type A1 Journal article
  Year 2010 Publication Radiology Abbreviated Journal Radiology  
  Volume 257 Issue 3 Pages 854-862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Vision lab; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Purpose: To compare the results obtained by using numerical flow simulations with the results of combined single photon emission computed tomography (SPECT) and computed tomography (CT) and to demonstrate the importance of correct boundary conditions for the numerical methods to account for the large amount of interpatient variability in airway geometry. Materials and Methods: This study was approved by all relevant institutional review boards. All patients gave their signed informed consent. In this study, six patients with mild asthma (three men; three women; overall mean age, 46 years ± 17 [standard deviation]) underwent CT at functional residual capacity and total lung capacity, as well as SPECT/CT. CT data were used for segmentation and computational fluid dynamics (CFD) simulations. A comparison was made between airflow distribution, as derived with (a) SPECT/CT through tracer concentration analysis, (b) CT through lobar expansion measurement, and (c) CFD through flow computer simulation. Also, the heterogeneity of the ventilation was examined. Results: Good agreement was found between SPECT/CT, CT, and CFD in terms of airflow distribution and hot spot detection. The average difference for the internal airflow distribution was less than 3% for CFD and CT versus SPECT/CT. Heterogeneity in ventilation patterns could be detected with SPECT/CT and CFD. Conclusion: This results of this study show that patient-specific computer simulations with appropriate boundary conditions yield information that is similar to that obtained with functional imaging tools, such as SPECT/CT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000284469300031 Publication Date 2010-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8419;1527-1315; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.296 Times cited 100 Open Access  
  Notes (down) ; Supported by Novartis. ; Approved Most recent IF: 7.296; 2010 IF: 6.069  
  Call Number UA @ lucian @ c:irua:85379 Serial 3831  
Permanent link to this record
 

 
Author de Backer, J.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Parizel, P.M.; de Backer, W. url  doi
openurl 
  Title Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients Type A1 Journal article
  Year 2013 Publication International Journal Of Chronic Obstructive Pulmonary Disease Abbreviated Journal Int J Chronic Obstr  
  Volume 8 Issue Pages 569-579  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Previous studies have demonstrated the potential beneficial effect of N-acetylcysteine (NAC) in chronic obstructive pulmonary disease (COPD). However, the required dose and responder phenotype remain unclear. The current study investigated the effect of high-dose NAC on airway geometry, inflammation, and oxidative stress in COPD patients. Novel functional respiratory imaging methods combining multislice computed tomography images and computer-based flow simulations were used with high sensitivity for detecting changes induced by the therapy. Methods: Twelve patients with Global Initiative for Chronic Obstructive Lung Disease stage II COPD were randomized to receive NAC 1800 mg or placebo daily for 3 months and were then crossed over to the alternative treatment for a further 3 months. Results: Significant correlations were found between image-based resistance values and glutathione levels after treatment with NAC (P = 0.011) and glutathione peroxidase at baseline (P = 0.036). Image-based resistance values appeared to be a good predictor for glutathione peroxidase levels after NAC (P = 0.02), changes in glutathione peroxidase levels (P = 0.035), and reduction in lobar functional residual capacity levels (P = 0.00084). In the limited set of responders to NAC therapy, the changes in airway resistance were in the same order as changes induced by budesonide/formoterol. Conclusion: A combination of glutathione, glutathione peroxidase, and imaging parameters could potentially be used to phenotype COPD patients who would benefit from addition of NAC to their current therapy. The findings of this small pilot study need to be confirmed in a larger pivotal trial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327537300001 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1178-2005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.157 Times cited 21 Open Access  
  Notes (down) ; JDB is a founder/shareholder of FluidDA NV, Kontich, Belgium. WV, SV, and CVH are employed by FluidDA NV, and WDB is the director of FluidDA NV. PMP and RC have no conflicts of interest to report. The study was supported by Zambon SpA, Bresso, Italy. ; Approved Most recent IF: 3.157; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:112799 Serial 813  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experimental design for nano-particle atom-counting from high-resolution STEM images Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 46-55  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800007 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 24 Open Access  
  Notes (down) 312483 Esteem2; Fwo G039311; G037413; esteem2_jra2 Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123926 c:irua:123926 Serial 2481  
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; MacArthur, K.E.; Jones, L.; Béché, A.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 56-61  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800008 Publication Date 2014-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 29 Open Access  
  Notes (down) 312483 Esteem2; 278510 Vortex; Fwo G039311; G006410; G037413; esteem2ta; ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123927 c:irua:123927 Serial 753  
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D. pdf  url
doi  openurl
  Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 159 Issue 159 Pages 46-58  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000366220000006 Publication Date 2015-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 27 Open Access  
  Notes (down) 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762  
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D. pdf  doi
openurl 
  Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 4/5 Pages 269-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236042300003 Publication Date 2005-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes (down) Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55  
Permanent link to this record
 

 
Author De Backer, J.; Maric, D.; Zuhra, K.; Bogaerts, A.; Szabo, C.; Vanden Berghe, W.; Hoogewijs, D. url  doi
openurl 
  Title Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response Type A1 Journal article
  Year 2022 Publication Antioxidants Abbreviated Journal Antioxidants  
  Volume 11 Issue 8 Pages 1548  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000846411000001 Publication Date 2022-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited Open Access OpenAccess  
  Notes (down) Approved Most recent IF: 7  
  Call Number PLASMANT @ plasmant @c:irua:190686 Serial 7102  
Permanent link to this record
 

 
Author Verhulst, S.L.; de Backer, J.; Van Gaal, L.; de Backer, W.; Desager, K. openurl 
  Title Adenotonsillectomy as first-line treatment for sleep-disordered breathing in obese children Type L1 Letter to the editor
  Year 2008 Publication American journal of respiratory and critical care medicine Abbreviated Journal Am J Resp Crit Care  
  Volume 177 Issue 12 Pages 1399  
  Keywords L1 Letter to the editor; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-449x; 1535-4970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.204 Times cited Open Access  
  Notes (down) Approved Most recent IF: 13.204; 2008 IF: 9.792  
  Call Number UA @ lucian @ c:irua:68864 Serial 59  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Germonpré, P.; Salgado, R.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Clinical applications of image-based airway computational fluid dynamics: assessment of inhalation medication and endobronchial devices Type A3 Journal article
  Year 2009 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers Abbreviated Journal  
  Volume 7262 Issue Pages 72621p,1-72621p,9  
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is a technique that is used increasingly in the biomedical field. Solving the flow equations numerically provides a convenient way to assess the efficiency of therapies and devices, ranging from cardiovascular stents and heart valves to hemodialysis workflows. Also in the respiratory field CFD has gained increasing interest, especially through the combination of three dimensional image reconstruction which results in highend patient-specific models. This paper provides an overview of clinical applications of CFD through image based modeling, resulting from recent studies performed in our center. We focused on two applications: assessment of the efficiency of inhalation medication and analysis of endobronchial valve placement. In the first application we assessed the mode of action of a novel bronchodilator in 10 treated patients and 4 controls. We assessed the local volume increase and resistance change based on the combination of imaging and CFD. We found a good correlation between the changes in volume and resistance coming from the CFD results and the clinical tests. In the second application we assessed the placement and effect of one way endobronchial valves on respiratory function in 6 patients. We found a strong patientspecific result of the therapy where in some patients the therapy resulted in complete atelectasis of the target lobe while in others the lobe remained inflated. We concluded from these applications that CFD can provide a better insight into clinically relevant therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2009-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:79497 Serial 374  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Devolder, A.; Verhulst, S.L.; Germonpré, P.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Computational fluid dynamics can detect changes in airway resistance in asthmatics after acute bronchodilation Type A1 Journal article
  Year 2008 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 41 Issue 1 Pages 106-113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000253062100014 Publication Date 2007-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 53 Open Access  
  Notes (down) Approved Most recent IF: 2.664; 2008 IF: 2.784  
  Call Number UA @ lucian @ c:irua:64859 Serial 456  
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Devolder, A.; Vanderveken, O.; Verhulst, S.; Salgado, R.; Germonpré, P.; Partoens, B.; Wuyts, F.; Parizel, P.; de Backer, W. doi  openurl
  Title Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging Type A1 Journal article
  Year 2007 Publication Journal of biomechanics Abbreviated Journal J Biomech  
  Volume 40 Issue 10 Pages 2207-2213  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000248468000011 Publication Date 2006-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.664 Times cited 86 Open Access  
  Notes (down) Approved Most recent IF: 2.664; 2007 IF: 2.897  
  Call Number UA @ lucian @ c:irua:62425 Serial 523  
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Gorlé, C.D.; Germonpré, P.; Partoens, B.; Wuyts, F.L.; Parizel, P.M.; de Backer, W. doi  openurl
  Title Flow analyses in the lower airways: patient-specific model and boundary conditions Type A1 Journal article
  Year 2008 Publication Medical engineering and physics Abbreviated Journal Med Eng Phys  
  Volume 30 Issue 7 Pages 872-879  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Computational fluid dynamics (CFD) is increasingly applied in the respiratory domain. The ability to simulate the flow through a bifurcating tubular system has increased the insight into the internal flow dynamics and the particular characteristics of respiratory flows such as secondary motions and inertial effects. The next step in the evolution is to apply the technique to patient-specific cases, in order to provide more information about pathological airways. This study presents a patient-specific approach where both the geometry and the boundary conditions (BC) are based on individual imaging methods using computed tomography (CT). The internal flow distribution of a 73-year-old female suffering from chronic obstructive pulmonary disease (COPD) is assessed. The validation is performed through the comparison of lung ventilation with gamma scintigraphy. The results show that in order to obtain agreement within the accuracy limits of the gamma scintigraphy scan, both the patient-specific geometry and the BC (driving pressure) play a crucial role. A minimal invasive test (CT scan) supplied enough information to perform an accurate CFD analysis. In the end it was possible to capture the pathological features of the respiratory system using the imaging and computational fluid dynamics techniques. This brings the introduction of this new technique in the clinical practice one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259768300009 Publication Date 2007-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.819 Times cited 82 Open Access  
  Notes (down) Approved Most recent IF: 1.819; 2008 IF: 2.216  
  Call Number UA @ lucian @ c:irua:71693 Serial 1224  
Permanent link to this record
 

 
Author de Backer, J.; Vanderveken, O.; Vos, W.; Devolder, A.; Verhulst, S.; Verbraecken, J. openurl 
  Title Functional imaging to predict treatment success of mandibular advancement devices in sleep-disordered breathing Type H3 Book chapter
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 141-155  
  Keywords H3 Book chapter; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes (down) Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:72885 Serial 1298  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: