|   | 
Details
   web
Records
Author Abdullah, H.M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Confined states in graphene quantum blisters Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue 38 Pages 385301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer graphene samples may exhibit regions where the two layers are locally delaminated forming a so-called quanttun blister in the graphene sheet. Electron and hole states can be confined in this graphene quantum blisters (GQB) by applying a global electrostatic bias. We scrutinize the electronic properties of these confined states under the variation of interlayer bias, coupling, and blister's size. The spectra display strong anti-crossings due to the coupling of the confined states on upper and lower layers inside the blister. These spectra are layer localized where the respective confined states reside on either layer or equally distributed. For finite angular momentum, this layer localization can be at the edge of the blister and corresponds to degenerate modes of opposite momenta. Furthermore, the energy levels in GQB exhibit electron-hole symmetry that is sensitive to the electrostatic bias. Finally, we demonstrate that confinement in GQB persists even in the presence of a variation in the interlayer coupling.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000443135000001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes (down) ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:153620UA @ admin @ c:irua:153620 Serial 5086
Permanent link to this record
 

 
Author Abdullah, H.M.; Van der Donck, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B.
Title Graphene quantum blisters : a tunable system to confine charge carriers Type A1 Journal article
Year 2018 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue 21 Pages 213101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Due to Klein tunneling, electrostatic confinement of electrons in graphene is not possible. This hinders the use of graphene for quantum dot applications. Only through quasi-bound states with finite lifetime has one achieved to confine charge carriers. Here, we propose that bilayer graphene with a local region of decoupled graphene layers is able to generate bound states under the application of an electrostatic gate. The discrete energy levels in such a quantum blister correspond to localized electron and hole states in the top and bottom layers. We find that this layer localization and the energy spectrum itself are tunable by a global electrostatic gate and that the latter also coincides with the electronic modes in a graphene disk. Curiously, states with energy close to the continuum exist primarily in the classically forbidden region outside the domain defining the blister. The results are robust against variations in size and shape of the blister which shows that it is a versatile system to achieve tunable electrostatic confinement in graphene. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000433140900025 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes (down) ; H.M.A. and H.B. acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group Project Nos. RG1502-1 and RG1502-2. This work was supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (B.V.D.) and a doctoral fellowship (M.V.d.D.). ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:151505UA @ admin @ c:irua:151505 Serial 5027
Permanent link to this record
 

 
Author Mayer, J.A.; Offermans, T.; Chrapa, M.; Pfannmöller, M.; Bals, S.; Ferrini, R.; Nisato, G.
Title Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures Type A1 Journal article
Year 2018 Publication Optics express Abbreviated Journal Opt Express
Volume 26 Issue 26 Pages A240
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427900400003 Publication Date 2018-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 9 Open Access OpenAccess
Notes (down) ; FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7, grant number 287594); German Federal Ministry of Education and Research (BMBF) (03xEK3504, project TAURUS); FP7 European project ESTEEM2 (grant number 312483); HEiKA centre FunTECH-3D. ; Approved Most recent IF: 3.307
Call Number UA @ lucian @ c:irua:150839UA @ admin @ c:irua:150839 Serial 4975
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 23129-23142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000447471700038 Publication Date 2018-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access OpenAccess
Notes (down) ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M.
Title Tight-binding model for borophene and borophane Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 12 Pages 125424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000427983700004 Publication Date 2018-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 45 Open Access
Notes (down) ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987
Permanent link to this record
 

 
Author Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H.
Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
Year 2018 Publication Materials Research Express Abbreviated Journal Mater Res Express
Volume 5 Issue 3 Pages 036415
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000428781400003 Publication Date 2018-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.068 Times cited 2 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068
Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 49 Pages 28302-28309
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453488300053 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:156229 Serial 5210
Permanent link to this record
 

 
Author Kandemir, A.; Peeters, F.M.; Sahin, H.
Title Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via spectrum Type A1 Journal article
Year 2018 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 149 Issue 8 Pages 084707
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants). Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000444035800044 Publication Date 2018-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 11 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from TUBITAK under Project No. 117F095. F.M.P. was supported by the FLAG-ERA-TRANS<INF>2D</INF>TMD. ; Approved Most recent IF: 2.965
Call Number UA @ lucian @ c:irua:153711UA @ admin @ c:irua:153711 Serial 5115
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 8 Pages 085431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000442667200008 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Senger, R.T.; Sahin, H.
Title Strain mapping in single-layer two-dimensional crystals via Raman activity Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 11 Pages 115427
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By performing density functional theory-based ab initio calculations, Raman-active phonon modes of single-layer two-dimensional (2D) materials and the effect of in-plane biaxial strain on the peak frequencies and corresponding activities of the Raman-active modes are calculated. Our findings confirm the Raman spectrum of the unstrained 2D crystals and provide expected variations in the Raman-active modes of the crystals under in-plane biaxial strain. The results are summarized as follows: (i) frequencies of the phonon modes soften (harden) under applied tensile (compressive) strains; (ii) the response of the Raman activities to applied strain for the in-plane and out-of-plane vibrational modes have opposite trends, thus, the built-in strains in the materials can be monitored by tracking the relative activities of those modes; (iii) in particular, the A peak in single-layer Si and Ge disappears under a critical tensile strain; (iv) especially in mono-and diatomic single layers, the shift of the peak frequencies is a stronger indication of the strain rather than the change in Raman activities; (v) Raman-active modes of single-layer ReX2 (X = S, Se) are almost irresponsive to the applied strain. Strain-induced modifications in the Raman spectrum of 2D materials in terms of the peak positions and the relative Raman activities of the modes could be a convenient tool for characterization.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000427799300006 Publication Date 2018-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 116C073. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150840UA @ admin @ c:irua:150840 Serial 4979
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H.
Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue 8 Pages 2019-2025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426483800015 Publication Date 2018-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 16 Open Access
Notes (down) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952
Permanent link to this record
 

 
Author Van Goethem, C.; Verbeke, R.; Pfanmoeller, M.; Koschine, T.; Dickmann, M.; Timpel-Lindner, T.; Egger, W.; Bals, S.; Vankelecom, I.F.J.
Title The role of MOFs in Thin-Film Nanocomposite (TFN) membranes Type A1 Journal article
Year 2018 Publication Journal of membrane science Abbreviated Journal J Membrane Sci
Volume 563 Issue 563 Pages 938-948
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Incorporation of MOFs in interfacially polymerized Thin-Film Nanocomposite (TFN) membranes has widely been shown to result in increased membrane performance. However, the exact functioning of these membranes is poorly understood as large variability in permeance increase, filler incorporation and rejection changes can be observed in literature. The synthesis and functioning of TFN membranes (herein exemplified by ZIF-8 filled polyamide (PA) membranes prepared via the EFP method) was investigated via targeted membrane synthesis and thorough characterization via STEM-EDX, XRD and PALS. It is hypothesized that the acid generated during the interfacial polymerization (IP) at least partially degrades the crystalline, acid-sensitive ZIF-8 and that this influences the membrane formation (through so-called secondary effects, i.e. not strictly linked to the pore morphology of the MOF). Nanoscale HAADF-STEM imaging and STEM-EDX Zn-mapping revealed no ZIF-8 particles but rather the presence of randomly shaped regions with elevated Zn-content. Also XRD failed to show the presence of crystalline areas in the composite PA films. As the addition of the acid-quenching TEA led to an increase in the diffraction signal observed in XRD, the role of the acid was confirmed. The separate addition of dissolved Zn2+ to the synthesis of regular TFC membranes showed an increase in permeance while losing some salt retention, similar to observations regularly made for TFN membranes. While the addition of a porous material to a TFC membrane is a straightforward concept, all obtained results indicate that the synthesis and performance of such composite membranes is often more complex than commonly accepted.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000441897200099 Publication Date 2018-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-7388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.035 Times cited 84 Open Access OpenAccess
Notes (down) ; C.V.G. and R.V. kindly acknowledge respectively the Flemish Agency for Innovation through Science and Technology (IWT) (IWT, 141697) and the Flemish Fund for Scientific Research (FWO, 1500917N) for a PhD scholarship. The authors kindly acknowledge funding from KU Leuven through C16/17/005 and from the Belgian Federal Government through IAP 6/27 Functional Supramolecular systems. S.B. and M.P. acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOM). M.P. acknowledges funding from the European Union (ESTEEM2, No. 312483) and the HEiKA centre FunTECH-3D (Ministry of Science, Research and Art Baden-Wurttemberg, AZ: 33-753-30-20/3/3). The MLZ-Garching is kindly acknowledged for providing access to the NEPOMUC facilities (project no 11541). ; ecas_sara Approved Most recent IF: 6.035
Call Number UA @ lucian @ c:irua:153618UA @ admin @ c:irua:153618 Serial 5132
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Van Durme, F.; Samyn, N.; De Wael, K.; Dardenne, P.
Title Practical tool for sampling and fast analysis of large cocaine seizures Type A1 Journal article
Year 2018 Publication Drug testing and analysis Abbreviated Journal Drug Test Anal
Volume 10 Issue 6 Pages 1039-1042
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Large quantities of illicit drugs are frequently seized by law enforcement. In such cases, a representative number of samples needs to be quickly examined prior to destruction. No procedure has yet been set up which rapidly provides information regarding the homogeneity of the samples, the presence of controlled substances and the degree of purity. This study establishes a protocol for fast analysis of cocaine and its most common cutting agent, levamisole, in large seizures. The protocol is based on a hypergeometric sampling approach combined with FTIR spectrometry and Support Vector Machines (SVM) algorithms as analysis methods. To demonstrate the practical use of this approach, five large cocaine seizures (consisting between 45 and 85 units) were analysed simultaneously with GC-MS, GC-FID and a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling combined with SVM models. According to the hypergeometric sampling plan of the Drugs Working Group ENFSI guidelines, the required number of subsamples ranged between 19 and 23. Considering the identification analyses, the SVM models detected cocaine and levamisole in all subsamples of cases 1 to 5 (100% correct classification), which was confirmed by GC-MS analysis. Considering the quantification analyses, the SVM models were able to estimate the cocaine and levamisole content in each subsample, compared to GC-FID data. The developed strategy is easy, cost effective and provides immediate information about both the presence and concentration of cocaine and levamisole. By using this new strategy, the number of confirmation analyses with laborious and expensive chromatographic techniques could be significantly reduced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000435270300016 Publication Date 2018-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.469 Times cited 1 Open Access
Notes (down) ; Belgian Science Policy Office (BELSPO), Grant/Award Number: WE/49/N14-O14 ; Approved Most recent IF: 3.469
Call Number UA @ admin @ c:irua:148760 Serial 5781
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M.
Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue 30 Pages 2400-2413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000430023700027 Publication Date 2018-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 85 Open Access OpenAccess
Notes (down) ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972
Permanent link to this record
 

 
Author Schattschneider, P.; Schachinger, T.; Verbeeck, J.
Title Ein Whirlpool aus Elektronen: Transmissions-Elektronenmikroskopie mit Elektronenwirbeln Type A1 Journal article
Year 2018 Publication Physik in unserer Zeit Abbreviated Journal Phys. Unserer Zeit
Volume 49 Issue 1 Pages 22-28
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Elektronen bewegen sich im feldfreien Raum immer gleichförmig geradlinig, so steht es in den Lehrbüchern. Falsch, sagen wir. Elektronen lassen sich zu Tornados formen, die theoretisch Nanopartikel zerreißen können. In der Elektronenmikroskopie eingesetzt, versprechen sie neue Erkenntnisse in der Festkörperphysik.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9252 ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @c:irua:148159 Serial 4806
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B.
Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
Year 2018 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 139 Issue Pages 411-420
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000431469300044 Publication Date 2018-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 2.714
Call Number UA @ lucian @ c:irua:151554 Serial 5033
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W.
Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
Year 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal
Volume Issue Pages
Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.
Address
Corporate Author Thesis
Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.
Language Wos Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes (down) Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142
Permanent link to this record
 

 
Author Yue-Feng, Z.; Chao, W.; Wang, W.-Z.; Li, L.; Hao, S.; Tao, S.; Jie, P.
Title Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure Type A1 Journal article
Year 2018 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed
Volume 67 Issue 8 Pages 085202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H-2 respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443194600017 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.624 Times cited Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 0.624
Call Number UA @ lucian @ c:irua:153771 Serial 5120
Permanent link to this record
 

 
Author Şentosun, K.
Title 2D and 3D characterization of plasmonic and porous nanoparticles using transmission electron microscopy Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerp Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149802 Serial 4926
Permanent link to this record
 

 
Author Neyts, E.C.
Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 12 Issue 1 Pages 145-154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425156500017 Publication Date 2017-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 1.712
Call Number UA @ lucian @ c:irua:149233 Serial 4927
Permanent link to this record
 

 
Author Jelić, Ž.
Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Liège Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149394 Serial 4932
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N.
Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 7 Issue 2 Pages P66-P72
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000425215200010 Publication Date 2018-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 5 Open Access OpenAccess
Notes (down) Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:149326 Serial 4933
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B.
Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
Year 2018 Publication Materials & design Abbreviated Journal Mater Design
Volume 262 Issue 262 Pages 74-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 4.364 Times cited Open Access OpenAccess
Notes (down) Approved Most recent IF: 4.364
Call Number UA @ lucian @ c:irua:149854 Serial 4938
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p-type amorphous oxide semiconductors Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 4 Pages 045208
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p-type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013)]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3, is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000423427600005 Publication Date 2018-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access OpenAccess
Notes (down) Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:149318 Serial 4943
Permanent link to this record
 

 
Author Berthelot, A.
Title Modeling of microwave plasmas for carbon dioxide conversion Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher University of Antwerp Place of Publication Antwerp Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150338 Serial 4944
Permanent link to this record
 

 
Author Sun, S.
Title Study of carbon dioxide dissociation mechanisms in a gliding arc discharge Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Beihang University, School of Astronautics Place of Publication Beijing Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record;
Impact Factor Times cited Open Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149824 Serial 4950
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Type A1 Journal article
Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 439 Issue 439 Pages 934-945
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G* computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O-2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O-2 molecule: O-2(g) + CO(g) -> O-2(ads) + CO(ads) -> CO2(g) + O-(ads) and O-(ads) + CO(g) -> CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O-2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000427457100112 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 8 Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 3.387
Call Number UA @ lucian @ c:irua:150745 Serial 4960
Permanent link to this record
 

 
Author Bekaert, J.
Title Ab initio description of multicomponent superconductivity in bulk to atomically thin materials Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes (down) Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:151304 Serial 4961
Permanent link to this record
 

 
Author Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun
Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 8 Issue 3 Pages 2093-2110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.
Address
Corporate Author Thesis
Publisher Amer chemical soc Place of Publication Washington Editor
Language Wos 000426804100055 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 81 Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:150880 Serial 4963
Permanent link to this record
 

 
Author Yadav, D.K.; Kumar, S.; Saloni; Misra, S.; Yadav, L.; Teli, M.; Sharma, P.; Chaudhary, S.; Kumar, N.; Choi, E.H.; Kim, H.S.; Kim, M.-hyun
Title Molecular Insights into the Interaction of RONS and Thieno[3,2-c]pyran Analogs with SIRT6/COX-2: A Molecular Dynamics Study Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 8 Pages 4777
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract SIRT6 and COX-2 are oncogenes target that promote the expression of proinflammatory and pro-survival proteins through a signaling pathway, which leads to increased survival and proliferation of tumor cells. However, COX-2 also suppresses skin tumorigenesis and their relationship with SIRT6, making it an interesting target for the discovery of drugs with anti-inflammatory and anti-cancer properties. Herein, we studied the interaction of thieno[3,2-c] pyran analogs and RONS species with SIRT6 and COX-2 through the use of molecular docking and molecular dynamic simulations. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability. The molecular dynamics study examined conformational changes in the enzymes caused by the binding of the substrates and how those changes affected the stability of the protein-drug complex. The average RMSD values of the backbone atoms in compounds 6 and 10 were calculated from 1000 ps to 10000 ps and were found to be 0.13 nm for both compounds. Similarly, the radius of gyration values for compounds 6 and 10 were found to be 1.87 +/- 0.03 nm and 1.86 +/- 0.02 nm, respectively. The work presented here, will be of great help in lead identification and optimization for early drug discovery.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000427685200002 Publication Date 2018-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 10 Open Access OpenAccess
Notes (down) Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:150841 Serial 4974
Permanent link to this record