toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Rizzo, F.; Augieri, A.; Kursumovic, A.; Bianchetti, M.; Opherden, L.; Sieger, M.; Huehne, R.; Haenisch, J.; Meledin, A.; Van Tendeloo, G.; MacManus-Driscoll, J.L.; Celentano, G.
  Title Pushing the limits of applicability of REBCO coated conductor films through fine chemical tuning and nanoengineering of inclusions Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 10 Issue 17 Pages 8187-8195
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract An outstanding current carrying performance (namely critical current density, J(c)) over a broad temperature range of 10-77 K for magnetic fields up to 12 T is reported for films of YBa2Cu3O7-x with Ba2Y(Nb,Ta)O-6 inclusion pinning centres (YBCO-BYNTO) and thicknesses in the range of 220-500 nm. J(c) values of 10 MA cm(-2) were measured at 30 K – 5 T and 10 K – 9 T with a corresponding maximum of the pinning force density at 10 K close to 1 TN m(-3). The system is very flexible regarding properties and microstructure tuning, and the growth window for achieving a particular microstructure is wide, which is very important for industrial processing. Hence, the dependence of J(c) on the magnetic field angle was readily controlled by fine tuning the pinning microstructure. Transmission electron microscopy (TEM) analysis highlighted that higher growth rates induce more splayed and denser BYNTO nanocolumns with a matching field as high as 5.2 T. Correspondingly, a strong peak at the B||c-axis is noticed when the density of vortices is lower than the nanocolumn density. YBCO-BYNTO is a very robust and reproducible composite system for high-current coated conductors over an extended range of magnetic fields and temperatures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000432261400037 Publication Date 2018-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 9 Open Access OpenAccess
  Notes (down) ; This work was partially financially supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/ 2007-2013) under Grant Agreement No. 280432. This work has been partially carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement no. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. ; Approved Most recent IF: 7.367
  Call Number UA @ lucian @ c:irua:151520 Serial 5038
Permanent link to this record
 

 
Author Pei, Z.-G.; Shan, X.-Q.; Zhang, S.-Z.; Kong, J.-J.; Wen, B.; Zhang, J.; Zheng, L.-R.; Xie, Y.-N.; Janssens, K.
  Title Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS Type A1 Journal article
  Year 2011 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
  Volume 186 Issue 1 Pages 842-848
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Co-adsorption of norfloxacin (Nor) and Cu(II) on montmorillonite at pH 4.5, 7.0 and 9.0 was studied by integrated batch adsorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. Under such pH conditions the dominant species of Nor are cation (Nor+), zwitterion (Nor±), and anion (Nor−), respectively. Results indicated that Nor sorption decreased with an increase of solution pH. The presence of Cu(II) slightly suppressed the Nor+ sorption at pH 4.5, while increased Nor± and Nor−sorption on montmorillonite at pH 7.0 and 9.0, respectively. In contrast, Nor increased Cu(II) adsorption at pH 4.5, but had little effect on the adsorption of Cu(II) on montmorillonite at pH 7.0 and 9.0. Spectroscopic results showed that, at pH 4.5, Nor+ was sorbed on montmorillonite by the formation of outer-sphere montmorilloniteNorCu(II) ternary surface complex. At pH 7.0, montmorilloniteNorCu(II) and montmorilloniteCu(II)Nor ternary surface complexes co-exist. At pH 9.0, montmorilloniteCu(II)Nor ternary surface complex was likely formed, which was different to Cu(II)(Nor)2 precipitate of the solution.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000288102400107 Publication Date 2010-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.065 Times cited 25 Open Access
  Notes (down) ; This work was funded by the National Natural Science Foundation of China (grant numbers: 41071308, 20707037, 20737003 and 20877087) and the Youth Fund of State Key Laboratory of Environmental Chemistry and Ecotoxicology QN2009-07. ; Approved Most recent IF: 6.065; 2011 IF: 4.173
  Call Number UA @ admin @ c:irua:88786 Serial 5664
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.
  Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
  Volume 20 Issue 2 Pages 979
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000514255400021 Publication Date 2020-01-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited 48 Open Access OpenAccess
  Notes (down) ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
  Call Number UA @ admin @ c:irua:168685 Serial 6490
Permanent link to this record
 

 
Author Lane, T.L.M.; Andelkovic, M.; Wallbank, J.R.; Covaci, L.; Peeters, F.M.; Fal'ko, V.I.
  Title Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 4 Pages 045301
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('We show that delaminations in bilayer graphene (BLG) with electrostatically induced interlayer symmetry can provide one with ballistic channels for electrons with energies inside the electrostatically induced BLG gap. These channels are formed by a combination of valley-polarized evanescent states propagating along the delamination edges (which persist in the presence of a strong magnetic field) and standing waves bouncing between them inside the delaminated region (in a strong magnetic field, these transform into Landau levels in the monolayers). For inverted stackings in BLGs on the left and right of the delamination (AB-2ML-BA or BA-2ML-AB, where 2ML indicates two decoupled monolayers of graphene), the lowest-energy ballistic channels are gapless, have linear dispersion, and appear to be weakly topologically protected. When BLG stackings on both sides of the delamination are the same (AB-2ML-AB or BA-2ML-BA), the lowest-energy ballistic channels are gapped, with a gap epsilon(g) scaling as epsilon(g) alpha W-1 with delamination width and epsilon(g) alpha delta(-1) with the on-layer energy difference in the delaminated part of the structure. Depending on the width, delaminations may also support several \u0022higher-energy\u0022 waveguide modes. Our results are based on both the analytical study of the wave matching of Dirac states and tight-binding model calculations, and we analyze in detail the dependence of the delamination spectrum on the electrostatic conditions in the structure, such as the vertical displacement field.'));
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000419772200005 Publication Date 2018-01-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 11 Open Access
  Notes (down) ; This work was funded by EPSRC via EPSRC Grand Engineering Chellenges Grant No. EP/N010345, the Manchester NOWNANO CDT EP/L-1548X, the Flemish Science Foundation (FWO-VI), the European Graphene Flagship project, ERC Synergy grant Hetero2D, and FLAG-ERA project TRANS2DTMD. The authors would like to acknowledge useful discussions with M. Zarenia, S. Slizovskiy, E. McCann, and K. Novesolov. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:148441UA @ admin @ c:irua:148441 Serial 4868
Permanent link to this record
 

 
Author Xu, P.; Neek-Amal, M.; Barber, S.D.; Schoelz, J.K.; Ackerman, M.L.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M.
  Title Unusual ultra-low-frequency fluctuations in freestanding graphene Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 5 Issue Pages 3720
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Intrinsic ripples in freestanding graphene have been exceedingly difficult to study. Individual ripple geometry was recently imaged using scanning tunnelling microscopy, but these measurements are limited to static configurations. Thermally-activated flexural phonon modes should generate dynamic changes in curvature. Here we show how to track the vertical movement of a one-square-angstrom region of freestanding graphene using scanning tunnelling microscopy, thereby allowing measurement of the out-of-plane time trajectory and fluctuations over long time periods. We also present a model from elasticity theory to explain the very-low-frequency oscillations. Unexpectedly, we sometimes detect a sudden colossal jump, which we interpret as due to mirror buckling. This innovative technique provides a much needed atomic-scale probe for the time-dependent behaviours of intrinsic ripples. The discovery of this novel progenitor represents a fundamental advance in the use of scanning tunnelling microscopy, which together with the application of a thermal load provides a low-frequency nano-resonator.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000335223200007 Publication Date 2014-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 62 Open Access
  Notes (down) ; This work was financially supported, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Euro-GRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
  Call Number UA @ lucian @ c:irua:117201 Serial 3819
Permanent link to this record
 

 
Author Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K.
  Title A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin Type A1 Journal article
  Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
  Volume 240 Issue Pages 1024-1035
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract A joint action of ssDNA aptamers and electrochemistry is a key element in developing successful biosensing platforms, since aptamers are capable of binding various targets with high specificity, and electrochemistry is one of the most sensitive techniques for on-site detections. A continuous search for improved immobilization and sensing strategies of aptamers on transducer surfaces resulted in the strategy presented in this article. The strategy is based on the covalent attachment of gold nanoparticles on the surface of glassy carbon electrodes through sulfhydryl-terminated monolayer, acting as a glue to connect AuNPs on the electrode. The covalently attached gold nanoparticles modified glassy carbon electrodes have been applied for the efficient immobilization of thiolated ssDNA probes, with a surface coverage of about 8.54 × 1013 molecules cm−2 which was 7-fold higher than that on the electrochemically deposited gold nanoparticles. Consequently, improved sensitivity, good reproducibility and stability are achieved for electrochemical aptasensor. Combined with the high affinity and specificity of an aptamer, a simple, novel, rapid, sensitive and label-free electrochemical aptasensor was successfully fabricated for ofloxacin (OFL) detection. The linear dynamic range of the sensor varies between 5 × 10−8 to 2 × 10−5 M OFL with a detection limit of 1 × 10−9 M OFL. A potential application in environmental monitoring was demonstrated by using this sensing strategy for the determination of OFL in (experimentally spiked) real samples such as tap water and effluent of sewage treatment plant. The proposed nanoaptasensor combines the advantages of the covalent attachment of neatly arranged AuNPs (enlarged active surface area and strengthened electrochemical signal) and the elimination of labels for the amplified detection of OFL, with the covalent attachment of highly specific aptamers to the surface of the modified electrode.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000390622300123 Publication Date 2016-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.401 Times cited 21 Open Access
  Notes (down) ; This work was financially supported by the University of Antwerp (BOF), The Research Foundation – Flanders (FWO) and The Hercules Foundation. S. P. is thankful to UA for DOCPRO financial support. C.R. and B.S. acknowledge funding by the Federal Ministry of Education and Research (BMBF) under contract no. 03X0094B. ; Approved Most recent IF: 5.401
  Call Number UA @ admin @ c:irua:135410 Serial 5682
Permanent link to this record
 

 
Author Lybaert, J.; Trashin, S.; Maes, B.U.W.; De Wael, K.; Abbaspour Tehrani, K.
  Title Cooperative electrocatalytic and chemoselective alcohol oxidation by Shvo's catalyst Type A1 Journal article
  Year 2017 Publication Advanced synthesis and catalysis Abbreviated Journal Adv Synth Catal
  Volume 359 Issue 6 Pages 919-925
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
  Abstract A new electrocatalytic conversion of alcohols to ketones and aldehydes was developed based on an electrochemical study of Shvos complex. The oxidation of secondary alcohols was efficiently performed under mild conditions using a catalytic amount of Shvos catalyst, in combination with a sub-stoichiometric amount of 2,6-dimethoxy-1,4- benzoquinone in N,N-dimethylformamide at 80 8C. The hydroquinone thus formed is continuously reoxidized with the aid of an electrochemical device. Excellent yields for different ketones, aromatic as well as aliphatic and a,b-unsaturated ketones, are obtained. In addition, chemoselectivity towards oxidation of the secondary alcohol is achieved when converting vicinal diols such as 1,2-octanediol and 1,2-decanediol.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397584000003 Publication Date 2017-01-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1615-4150; 1615-4169 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.646 Times cited 4 Open Access
  Notes (down) ; This work was financially supported by the University of Antwerp (BOF), the Research Foundation – Flanders (FWO) and the Hercules Foundation. ; Approved Most recent IF: 5.646
  Call Number UA @ admin @ c:irua:139795 Serial 5559
Permanent link to this record
 

 
Author Bottari, F.; De Wael, K.
  Title Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules Type A1 Journal article
  Year 2017 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
  Volume 801 Issue Pages 521-526
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The performance of gold nanoparticles electrodeposited on boron doped diamond (BDD) electrodes was investigated in respect to the reduction of chloramphenicol (CAP), an antibiotic of the phenicols family. The chosen deposition protocol, three nucleation-growing pulses, shows a remarkable surface coverage, with an even distribution of average-sized gold particles (~ 50 nm), and it was proven capable of generating a three-fold increase in the CAP reduction current. A calibration plot for CAP detection was obtained in the micromolar range (535 μM) with good correlation coefficient (0.9959) and an improved sensitivity of 0.053 μA μM− 1 mm− 2 compared to the electrochemistry of CAP at a bare BDD electrode.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000411847500065 Publication Date 2017-08-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1572-6657 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.012 Times cited 4 Open Access
  Notes (down) ; This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO) (project G037415N). ; Approved Most recent IF: 3.012
  Call Number UA @ admin @ c:irua:146372 Serial 5600
Permanent link to this record
 

 
Author Bottari, F.; Blust, R.; De Wael, K.
  Title Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics Type A1 Journal article
  Year 2018 Publication Current opinion in electrochemistry Abbreviated Journal
  Volume 10 Issue 10 Pages 143-148
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The dire previsions of the WHO on the so-called “post-antibiotic era” and the continuous and global rise of anti-microbial resistance, spurs our research community to find better ways to fight these threats. In light of this severe threat to human health many attempts have been made to develop efficient methods to detect antibiotic residues in different streams. The use of electrochemistry seems an inviting approach for on-site and fast monitoring. In this critical review, recent developments in the field of (bio) electro-sensing of 19-lactam antibiotics will be presented, with a focus on aptamers and molecularly imprinted polymers, the two main promises of a new generation of biosensors, yet to be fulfilled.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000442800000022 Publication Date 2018-05-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
  Impact Factor Times cited 15 Open Access
  Notes (down) ; This work was financially supported by the University of Antwerp (BOF) and the Research Foundation – Flanders (FWO). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:153744 Serial 5488
Permanent link to this record
 

 
Author Tarakina, N.V.; Verberck, B.
  Title Tubular fullerenes in carbon nanotubes Type A1 Journal article
  Year 2012 Publication Fullerenes, nanotubes, and carbon nanostructures Abbreviated Journal Fuller Nanotub Car N
  Volume 20 Issue 4-7 Pages 538-542
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigate the optimal orientations and positions of tubular fullerene molecules C-70, C-80 and C-90 encapsulated in single-walled carbon nanotubes (SWCNTs). We find that increasing the tube radius leads to the following succession of energetically stable regimes: 1) lying molecules positioned on the tube's long axis, 2) tilted molecules on the tube's long axis and 3) lying molecules shifted away from the tube's long axis. In the case of C-70 and C-80 molecules, standing on-axis configurations also occur. Our findings are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000304297500045 Publication Date 2012-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.35 Times cited Open Access
  Notes (down) ; This work was financially supported by the Research Foundation – Flanders (FWO-Vl). B. V. is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO-Vl). ; Approved Most recent IF: 1.35; 2012 IF: 0.764
  Call Number UA @ lucian @ c:irua:99004 Serial 3737
Permanent link to this record
 

 
Author Verberck, B.; Tarakina, N.V.
  Title Tubular fullerenes inside carbon nanotubes : optimal molecular orientation versus tube radius Type A1 Journal article
  Year 2011 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
  Volume 80 Issue 3 Pages 355-362
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000289576200010 Publication Date 2011-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.461 Times cited 10 Open Access
  Notes (down) ; This work was financially supported by the Research Foundation – Flanders (FWO-VI). B.V. is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-VI). ; Approved Most recent IF: 1.461; 2011 IF: 1.534
  Call Number UA @ lucian @ c:irua:89286 Serial 3738
Permanent link to this record
 

 
Author Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N.
  Title Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 127 Issue 13 Pages 133301
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000524256700001 Publication Date 2020-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited Open Access
  Notes (down) ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved Most recent IF: 3.2; 2020 IF: 2.068
  Call Number UA @ admin @ c:irua:168558 Serial 6555
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Peeters, F.M.
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 15 Pages 155424
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000430459400005 Publication Date 2018-04-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 26 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
  Title Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 96 Issue 15 Pages 155425
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs, such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a bias potential only edge states are layer polarized while the bulk states are not, and the layer-polarization degree (LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias potential both the edge and bulk states are layer polarized, and the LPD of the bulk (edge) states depends strongly (weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer, resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e., the zeroth LLs exhibit a linearlike dependence on the magnetic field while the other LLs exhibit a square-root-like dependence.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000412699800005 Publication Date 2017-10-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 28 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant No. 11574319), and the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:146686 Serial 4782
Permanent link to this record
 

 
Author Matulis, A.; Zarenia, M.; Peeters, F.M.
  Title Wave fronts and packets in 1D models of different meta-materials : graphene, left-handed media and transmission line Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
  Volume 252 Issue 252 Pages 2330-2338
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A comparative study is made of the propagation of wave packets and fronts in three different meta-media, i.e. graphene, left-handed media (LHM) and transmission lines, using one-dimensional models. It is shown that a potential step in graphene influences only the frequency of the electronic wave, i.e., the particular spectrum branch (electron or hole) to which the wave belongs to, while the envelop function (the wave front or packet form) remains unchanged. Although the model for a vacuum and LHM interface is similar to that of the potential step in graphene, the solutions are quite different due to differences in the chirality of the waves. Comparing the propagation of wave fronts and packets in a standard transmission line and its meta-analog we demonstrate that the propagating packets in the meta-line are much more deformed as compared to the standard one, including broadening, asymmetry and even the appearance of fast moving precursors. This influence is seen not only in the case of packets with steep fronts but in soft Gaussian packets as well.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000362722300025 Publication Date 2015-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 1 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government, and the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-046). ; Approved Most recent IF: 1.674; 2015 IF: 1.489
  Call Number UA @ lucian @ c:irua:128776 Serial 4277
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
  Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 7 Pages 075414
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000424901800006 Publication Date 2018-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 30 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M.
  Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 6 Issue 1 Pages 015032
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000454321100002 Publication Date 2018-11-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 23 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937
  Call Number UA @ admin @ c:irua:156776 Serial 5207
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 24 Pages 243102
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472599100029 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes (down) ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:161327 Serial 5428
Permanent link to this record
 

 
Author Richardson, C.L.; Edkins, S.D.; Berdiyorov, G.R.; Chua, C.J.; Griffiths, J.P.; Jones, G.A.C.; Buitelaar, M.R.; Narayan, V.; Sfigakis, F.; Smith, C.G.; Covaci, L.; Connolly, M.R.;
  Title Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 245418
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000356129800012 Publication Date 2015-06-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 2 Open Access
  Notes (down) ; This work was financially supported by the Engineering and Physical Sciences Research Council, and an NPL/EPSRC Joint Postdoctoral Partnership. Supporting data for this paper is available at the DSpace@Cambridge data repository (https://www.repository.cam.ac.uk/handle/1810/248242). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126982 Serial 3865
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M.
  Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 20 Pages 205426
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000402003700010 Publication Date 2017-05-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 16 Open Access
  Notes (down) ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:144267 Serial 4638
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M.
  Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 045409
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000391856000006 Publication Date 2017-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes (down) ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:141444 Serial 4555
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
  Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 28 Issue 8 Pages 085702
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000403100700001 Publication Date 2017-01-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 32 Open Access
  Notes (down) ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44
  Call Number UA @ lucian @ c:irua:144325 Serial 4648
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Farias, G.A.; Macedo, R.; Peeters, F.M.
  Title Magnetic field induced vortices in graphene quantum dots Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
  Volume 32 Issue 15 Pages 155501
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The energy spectrum and local current patterns in graphene quantum dots (QD) are investigated for different geometries in the presence of an external perpendicular magnetic field. Our results demonstrate that, for specific geometries and edge configurations, the QD exhibits vortex and anti-vortex patterns in the local current density, in close analogy to the vortex patterns observed in the probability density current of semiconductor QD, as well as in the order parameter of mesoscopic superconductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000520149200001 Publication Date 2019-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.7 Times cited 5 Open Access
  Notes (down) ; This work was financially supported by the CAPES foundation and CNPq (Science Without Borders, PQ and FUNCAP/PRONEX programs). ; Approved Most recent IF: 2.7; 2020 IF: 2.649
  Call Number UA @ admin @ c:irua:167670 Serial 6558
Permanent link to this record
 

 
Author de Sousa, J.S.; Covaci, L.; Peeters, F.M.; Farias, G.A.
  Title Time-dependent investigation of charge injection in a quantum dot containing one electron Type A1 Journal article
  Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 112 Issue 9 Pages 093705-93709
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The interaction of an injected electron towards a quantum dot (QD) containing a single confined electron is investigated using a flexible time-dependent quantum mechanics formalism, which allows both electrons to move and undergo quantum transitions. Different scenarios combining quantum dot dimensions, dielectric constant, injected wave packet energy, and width were explored, and our main results are: (i) due to the large characteristic transitions times between the confined state in the quantum dot and the delocalized state in the continuum, it is relatively difficult to ionize the occupied QD by Coulomb interaction solely and (ii) the charging state of the quantum dot can be sensed by direct injection of charges. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759292]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000311968400052 Publication Date 2012-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 1 Open Access
  Notes (down) ; This work was financially supported by the Brazilian National Research Council (CNPq), under Contract No. NanoBioEstruturas 555183/2005-0, Fundao Cearense de Apoio ao Desenvolvimento Cientfico e Tecnolgico (Funcap), CAPES, Pronex/CNPq/ Funcap, the Bilateral program between Flanders and Brazil, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068; 2012 IF: 2.210
  Call Number UA @ lucian @ c:irua:106014 Serial 3664
Permanent link to this record
 

 
Author Lavor, I.R.; Cavalcante, L.S.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
  Title Probing the structure and composition of van der Waals heterostructures using the nonlocality of Dirac plasmons in the terahertz regime Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
  Volume 8 Issue 1 Pages 015014
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment. We show that this can be used to probe the structure and composition of van der Waals heterostructures (vdWh) put underneath a single graphene layer. In order to do so, we assess vdWh composed of hexagonal boron nitride and different types of transition metal dichalcogenides (TMDs). By performing realistic simulations that account for the contribution of each layer of the vdWh separately and including the importance of the substrate phonons, we show that one can achieve single-layer resolution by investigating the nonlocal nature of the Dirac plasmon-polaritons. The composition of the vdWh stack can be inferred from the plasmon-phonon coupling once it is composed by more than two TMD layers. Furthermore, we show that the bulk character of TMD stacks for plasmonic screening properties in the terahertz regime is reached only beyond 100 layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000582820500001 Publication Date 2020-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 4 Open Access OpenAccess
  Notes (down) ; This work was financially supported by the Brazilian Council for Research (CNPq), Brazilian National Council for the Improvement of Higher Education (CAPES) and by the Research Foundation Flanders (FWO) through a postdoctoral fellowship to B.V.D. ; Approved Most recent IF: 6.937
  Call Number UA @ admin @ c:irua:173507 Serial 6696
Permanent link to this record
 

 
Author Fret, J.; Roef, L.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M.
  Title Combining medium recirculation with alternating the microalga production strain : a laboratory and pilot scale cultivation test Type A1 Journal article
  Year 2020 Publication Algal Research-Biomass Biofuels And Bioproducts Abbreviated Journal Algal Res
  Volume 46 Issue Pages 101763
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Reuse of growth medium after biomass harvesting is a cost-saving approach to improve the economic feasibility of algae mass cultivation. Algal exudates, cell debris and varying amounts of residual nutrients, impose challenges to the recycling of spent medium. In this study, the potential of combining reused medium from different algae species for growing monocultures of other algal strains was evaluated by making use of three successive cultivation setups with increasing volume; 400 mL in turbidostat mode, 2.6 L and 220 L in semi-continuous mode. Cultivation on replenished medium derived from Nannochloropsis sp. and Tisochrysis lutea, had no adverse effect on the productivity of either of the strains, regardless of whether they were grown in their own recycled medium or that of the other alga. Microfiltration of the reused medium proved to be sufficient to avoid cross-contamination. Moreover, a substantial average reduction in water footprint (77%) and nutrient cost (68% or 9 (sic).kg(-1) dry biomass) was achieved. Extension and validation of the medium recycling approach to other economically interesting algae species can contribute to improving the economic feasibility of large scale microalgae production systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000512364900013 Publication Date 2020-01-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-9264 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.1 Times cited 4 Open Access
  Notes (down) ; This work was financially supported by the Agency for Innovation by Science and Technology, Flanders (IWT Baekeland mandatory Jorien Fret, project no. 100678). We thank Kayawe Valentine Mubiana from the Systemic Physiological and Ecotoxicological Research group, University of Antwerp, for the assistance in the analysis of the trace elements. ; Approved Most recent IF: 5.1; 2020 IF: 3.994
  Call Number UA @ admin @ c:irua:167742 Serial 6471
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V.
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 258 Issue 258 Pages 1-10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000423650400001 Publication Date 2017-10-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access
  Notes (down) ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299
  Call Number UA @ lucian @ c:irua:149283 Serial 4936
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A.
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal
  Volume 6 Issue 6 Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000487641600002 Publication Date 2019-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access
  Notes (down) ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:163776 Serial 5390
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Pereira, T.A.S.; de Farias, G.A.; Peeters, F.M.
  Title Wave packet propagation through branched quantum rings under applied magnetic fields Type A1 Journal article
  Year 2019 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 114 Issue 114 Pages 113598
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigate the effect of opening and closing pathways on the dynamics of electron wave packets in semiconductor quantum rings with different geometries. Our analysis is based on the time evolution of an electron wave packet, within the effective-mass approximation. We demonstrate that opening an extra channel in the quantum ring does not necessarily improve the electron transmission and, depending on the extra channel width, may even reduce it, either due to enhancement of quantum scattering or due to interference. In the latter case, transmission reduction can be controlled through the Aharonov-Bohm phase of the wave function, via an applied magnetic field. It is also shown that, closing one of the channels of the quantum ring, system improves the transmission probability under specific conditions, an effect which is a quantum analog of the Braess paradox.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000482637000039 Publication Date 2019-06-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited Open Access
  Notes (down) ; This work was financially supported by PRONEX/CNPq/FUNCAP, Science Without Boards (Ciencias Sem Fronteiras) and the bilateral project CNPq-FWO. A. A. Sousa was financially supported by CAPES, under the PDSE contract BEX 7177/ 13-5. T. A. S. Pereira was financially supported by PRONEX/CNPq/FAPEMAT 850109/ 2009 and by CAPES under process BEX 3299/13-9. ; Approved Most recent IF: 2.221
  Call Number UA @ admin @ c:irua:162777 Serial 5432
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
  Title Braess paradox at the mesoscopic scale Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 88 Issue 24 Pages 245417-6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000328680500011 Publication Date 2013-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 17 Open Access
  Notes (down) ; This work was financially supported by PRONEX/CNPq/FUNCAP and the bilateral project CNPq-FWO. Discussions with J. S. Andrade, Jr. are gratefully acknowledged. A. A. S. has been financially supported by CAPES, under PDSE Contract No. BEX 7177/13-5. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:113705 Serial 253
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: