|   | 
Details
   web
Records
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M.
Title Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages 205441-205441,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400011 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 78 Open Access
Notes (up) ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94025 Serial 997
Permanent link to this record
 

 
Author Grujić, M.; Tadić, M.; Peeters, F.M.
Title Antiferromagnetism in hexagonal graphene structures : rings versus dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 8 Pages 085434-85436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Themean-field Hubbard model is used to investigate the formation of the antiferromagnetic phase in hexagonal graphene rings with inner zigzag edges. The outer edge of the ring was taken to be either zigzag or armchair, and we found that both types of structures can have a larger antiferromagnetic interaction as compared with hexagonal dots. This difference could be partially ascribed to the larger number of zigzag edges per unit area in rings than in dots. Furthermore, edge states localized on the inner ring edge are found to hybridize differently than the edge states of dots, which results in important differences in the magnetism of graphene rings and dots. The largest staggered magnetization is found when the outer edge has a zigzag shape. However, narrow rings with armchair outer edge are found to have larger staggered magnetization than zigzag hexagons. The edge defects are shown to have the least effect on magnetization when the outer ring edge is armchair shaped. DOI: 10.1103/PhysRevB.87.085434
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315146600005 Publication Date 2013-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes (up) ; This work was supported by the EuroGRAPHENE programme of the ESF (project CONGRAN), the Serbian Ministry of Education, Science, and Technological Development, and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107661 Serial 137
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.; Axt, V.M.
Title Parity-fluctuation induced enlargement of the ratio \DeltaE/kBTc in metallic grains Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214518-214518,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and particle number-parity fluctuations affects superconducting correlations in ultra-small metallic grains. Using the number-parity projected BCS formalism we calculate the critical temperature and the excitation gap as a function of the grain size for grains with even and odd number of confined carriers. We show that the experimentally observed anomalous increase of the coupling ratio ΔE/kBTc with decreasing superconducting grain size can be attributed to an enhancement of the number-parity fluctuations in ultra-small grains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298114100003 Publication Date 2011-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes (up) ; This work was supported by the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flamish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). M. D. C. thanks A. S. Mel'nikov and N. B. Kopnin for fruitful discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94373 Serial 2555
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M.
Title Ultra-small metallic grains : effect of statistical fluctuations of the chemical potential on superconducting correlations and vice versa Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 27 Pages 275701
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconducting correlations in an isolated metallic grain are governed by the interplay between two energy scales: the mean level spacing delta and the bulk pairing gap Delta(0), which are strongly influenced by the position of the chemical potential with respect to the closest single-electron level. In turn superconducting correlations affect the position of the chemical potential. Within the parity projected BCS model we investigate the probability distribution of the chemical potential in a superconducting grain with randomly distributed single-electron levels. Taking into account statistical fluctuations of the chemical potential due to the pairing interaction, we find that such fluctuations have a significant impact on the critical level spacing delta(c) at which the superconducting correlations cease: the critical ratio delta(c)/Delta(0) at which superconductivity disappears is found to be increased.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000305653100012 Publication Date 2012-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 9 Open Access
Notes (up) ; This work was supported by the European Community under the Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF network INSTANS. MDC and AAS are grateful to A Vagov for stimulating discussions. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100280 Serial 3793
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.; van Duin, A.T.
Title Stability of CH3 molecules trapped on hydrogenated sites of graphene Type A1 Journal article
Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 455 Issue Pages 60-65
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the effect of a hydrogen atom on the thermal stability of a trapped CH3 molecule on graphene using ReaxFF molecular dynamics simulations. Due to the hydrogen-molecule interaction, enhanced pinning of the CH3 molecule is observed when it is positioned adjacent to the graphene site with the hydrogen atom. We discuss the formation process of such a stable configuration, which originates from different adhesion and migration energies of the hydrogen atom and the CH3 molecule. We also studied the effect of the CH3-H configuration on the electronic transport properties of graphene nanoribbons using first principles density-functional calculations. We found that the formation of the CH3-H structure results in extra features in the transmission spectrum due to the formation of strongly localized states, which are absent when the CH3 molecule is trapped on pristine graphene. Our findings will be useful in exploiting gas sensing properties of graphene, especially for selective detection of individual molecules. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000344239200016 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 5 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-VI). A. van Duin acknowledges funding from the Air Force Office of Scientific Research (AFOSR) under Grant no. FA9550-10-1-0563 G. R. Berdiyorov acknowledges support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR projects. ; Approved Most recent IF: 1.386; 2014 IF: 1.319
Call Number UA @ lucian @ c:irua:121193 Serial 3124
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M.
Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 12 Issue 2 Pages 115-122
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000320044900007 Publication Date 2013-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved Most recent IF: 1.526; 2013 IF: 1.372
Call Number UA @ lucian @ c:irua:109615 Serial 2950
Permanent link to this record
 

 
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339974700001 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118776 Serial 3080
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M.
Title Four-band tunneling in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 20 Pages 205427-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The conductance, the transmission, and the reflection probabilities through rectangular potential barriers and p-n junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We have evaluated the importance of the skew hopping parameters gamma(3) and gamma(4) to these properties and show that for energies E > gamma(1)/100 their effect is negligible. For high energies two modes of propagation exist and we investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled, and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two-band approximation to a four-band model and corresponds to the (anti) symmetry of the wave functions under in-plane mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent in the two-band approximation. The application of an interlayer bias to the system (1) breaks the pseudospin structure, (2) opens a band gap that results in a distinct feature of suppressed transmission in the conductance, and (3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319282000002 Publication Date 2013-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109001 Serial 1269
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Peeters, F.M.
Title Electronic states in a graphene flake strained by a Gaussian bump Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035446-35447
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of strain in graphene is usually modeled by a pseudomagnetic vector potential which is, however, derived in the limit of small strain. In realistic cases deviations are expected in view of graphene's very high strain tolerance, which can be up to 25%. Here we investigate the pseudomagnetic field generated by a Gaussian bump and we show that it exhibits significant differences with numerical tight-binding results. Furthermore, we calculate the electronic states in the strained region for a hexagon shaped flake with armchair edges. We find that the sixfold symmetry of the wave functions inside the Gaussian bump is directly related to the different effects of strain along the fundamental directions of graphene: zigzag and armchair. Low energy electrons are strongly confined in the armchair directions and are localized on the carbon atoms of a single sublattice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322587500003 Publication Date 2013-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109800 Serial 1007
Permanent link to this record
 

 
Author Masir, M.R.; Matulis, A.; Peeters, F.M.
Title Scattering of Dirac electrons by circular mass barriers : valley filter and resonant scattering Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 24 Pages 245413-245413,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The scattering of two-dimensional (2D) massless Dirac electrons is investigated in the presence of a random array of circular mass barriers. The inverse momentum relaxation time and the Hall factor are calculated and used to obtain parallel and perpendicular resistivity components within linear transport theory. We found a nonzero perpendicular resistivity component which has opposite sign for electrons in the different K and K′ valleys. This property can be used for valley filter purposes. The total cross section for scattering on penetrable barriers exhibits resonances due to the presence of quasibound states in the barriers that show up as sharp gaps in the cross section while for Schrödinger electrons they appear as peaks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297934500008 Publication Date 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94383 Serial 2951
Permanent link to this record
 

 
Author Van Duppen, B.; Sena, S.H.R.; Peeters, F.M.
Title Multiband tunneling in trilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195439-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic tunneling properties of the two stable forms of trilayer graphene (TLG), rhombohedral ABC and Bernal ABA, are examined for p-n and p-n-p junctions as realized by using a single gate (SG) or a double gate (DG). For the rhombohedral form, due to the chirality of the electrons, the Klein paradox is found at normal incidence for SG devices, while at high-energy interband scattering between additional propagation modes can occur. The electrons in Bernal ABA TLG can have a monolayer- or bilayer-like character when incident on a SG device. Using a DG, however, both propagation modes will couple by breaking the mirror symmetry of the system, which induces intermode scattering and resonances that depend on the width of the DG p-n-p junction. For ABC TLG the DG opens up a band gap which suppresses Klein tunneling. The DG induces also an unexpected asymmetry in the tunneling angle for single-valley electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319281700004 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-VI) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108998 Serial 2216
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Graphene in inhomogeneous magnetic fields : bound, quasi-bound and scattering states Type A1 Journal article
Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 23 Issue 31 Pages 315301,1-315301,14
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electron states in graphene-based magnetic dot and magnetic ring structures and combinations of both are investigated. The corresponding spectra are studied as a function of the radii, the strengths of the inhomogeneous magnetic field and of a uniform background field, the strength of an electrostatic barrier and the angular momentum quantum number. In the absence of an external magnetic field we have only long-lived quasi-bound and scattering states and we assess their influence on the density of states. In addition, we consider elastic electron scattering by a magnetic dot, whose average B vanishes, and show that the Hall and longitudinal resistivities, as a function of the Fermi energy, exhibit a pronounced oscillatory structure due to the presence of quasi-bound states. Depending on the dot parameters this oscillatory structure differs substantially for energies below and above the first Landau level.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000293008900002 Publication Date 2011-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 38 Open Access
Notes (up) ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE, the Canadian NSERC grant no. OGP0121756 and the Belgian Science Policy (IAP). We acknowledge discussions and correspondence with Professor A Matulis. ; Approved Most recent IF: 2.649; 2011 IF: 2.546
Call Number UA @ lucian @ c:irua:91176 Serial 1372
Permanent link to this record
 

 
Author Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N.
Title Nonlinear light mixing by graphene plasmons Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 1 Pages 282-287
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.'));
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000420000000039 Publication Date 2017-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes (up) ; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 Serial 4887
Permanent link to this record
 

 
Author Cordoba, R.; Orus, P.; Jelić, Ž.L.; Sese, J.; Ricardo Ibarra, M.; Guillamon, I.; Vieira, S.; Jose Palacios, J.; Suderow, H.; Milošević, M.V.; Maria De Teresa, J.
Title Long-range vortex transfer in superconducting nanowires Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue 9 Pages 12386
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Under high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50 nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition. A giant non-local electrical resistance of 36 Omega has been measured at 2 K in 3 mu m-long nanowires, which is 40 times higher than signals reported for wider wires of other superconductors. This giant effect is accounted for by the existence of a strong edge confinement potential that hampers transversal vortex displacements, allowing the long-range coherent displacement of a single vortex row along the superconducting channel. Experimental results are in good agreement with numerical simulations of vortex dynamics based on the time-dependent Ginzburg-Landau equations. Our results pave the way for future developments on information technologies built upon single vortex manipulation in nano-superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000482708800004 Publication Date 2019-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 13 Open Access
Notes (up) ; This work was supported by the financial support from Spanish Ministry of Economy and Competitiveness through the projects MAT2015-69725-REDT, MAT2017-82970-C2-1-R and MAT2017-82970-C2-2-R, PIE201760E027, including FEDER funding, FIS2017-84330-R, MDM-2014-0377, FIS2016-80434-P and the Fundacion Ramon Areces, EU ERC (Grant Agreement No. 679080), COST Grant No. CA16128 and STSM Grant from COST Action CA16218, and from regional Gobierno de Aragon (grants E1317R and E2817R) with European Social Fund (Construyendo Europa desde Aragon) and Comunidad de Madrid through project Nanofrontmag-CM (Grant No. S2013/MIT-2850). R.C. acknowledges Juan de la Cierva-Incorporacion 2014 program. Authors strongly acknowledge Laura Casado and Isabel Rivas for TEM sample preparation, Rodrigo Fernandez-Pacheco for TEM experiments and Ruben Valero for the UV lithography process. The microscopy works have been conducted in the “Laboratorio de Microscopias Avanzadas” at “Instituto de Nanociencia de Aragon – Universidad de Zaragoza”. Authors acknowledge the LMA-INA for offering access to their instruments and expertise. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigacion-SAI, Universidad de Zaragoza, particularly the Servicio de Medidas Fisicas. We also acknowledge the computer resources and assistance provided by the Centro de Computacion Cientifica of the Universidad Autonoma de Madrid. ; Approved Most recent IF: 4.259
Call Number UA @ admin @ c:irua:162868 Serial 5420
Permanent link to this record
 

 
Author Kuopanportti, P.; Orlova, N.V.; Milošević, M.V.
Title Ground-state multiquantum vortices in rotating two-species superfluids Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 043605
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show numerically that a rotating, harmonically trapped mixture of two Bose-Einstein-condensed superfluids cancontrary to its single-species counterpartcontain a multiply quantized vortex in the ground state of the system. This giant vortex can occur without any accompanying single-quantum vortices, may either be coreless or have an empty core, and can be realized in a Rb87−K41 Bose-Einstein condensate. Our results not only provide a rare example of a stable, solitary multiquantum vortex but also reveal exotic physics stemming from the coexistence of multiple, compositionally distinct condensates in one system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000352255200005 Publication Date 2015-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 25 Open Access
Notes (up) ; This work was supported by the Finnish Cultural Foundation, the Research Foundation – Flanders (FWO), and the Magnus Ehrnrooth Foundation. We thank E. Ruokokoski and T. P. Simula for valuable comments and discussions. ; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:124906 Serial 1388
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.; Peeters, F.M.
Title Exploiting the novel electronic and magnetic structure of C3Nvia functionalization and conformation Type A1 Journal article
Year 2019 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater
Volume 5 Issue 5 Pages 1900459
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract 2D polyaniline, C3N, is of recent high interest due to its unusual properties and potential use in various technological applications. In this work, through systematic first-principles calculations, the atomic, electronic, and magnetic structure of C3N and the changes induced due to functionalization by the adsorption of hydrogen, oxygen, and fluorine, for different coverages and sites, as well as on formation of nanoribbons including the effect of adsorbed hydrogen and oxygen, and the effect of strain, are investigated. Among other interesting phenomena, for hydrogen adsorption, a semiconductor-to-topological insulator transition, where two Dirac-points appear around the Fermi level, as well as ferromagnetic ordering for both hydrogen and oxygen functionalization, is identified. Considering C3N nanoribbons, adsorption of H leads to significant changes in the electronic properties, such as transforming the structures from semiconductor to metallic. Furthermore, investigating the effect of strain on the physical properties, it is found that the band gap can be significantly altered and controlled. The present findings predict that a wide variation in the magnetic and electronic structure of C3N can be achieved by adatom functionalization and conformation indicating its high potential for use in various technological applications, ranging from catalysis, energy storage, and nanoelectronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486528200001 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.193 Times cited 35 Open Access
Notes (up) ; This work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). In addition, we acknowledge the OpenMX team for OpenMX code. ; Approved Most recent IF: 4.193
Call Number UA @ admin @ c:irua:162790 Serial 5414
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461958900006 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes (up) ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Nonlinear response to electric field in extended Hubbard models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205121
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good measure of the short-time response. Even completely different interacting regimes behave in a similar manner at short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime, or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345423300002 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek – FWO) and the Methusalem program of the Flemish government. One of us (L. C.) receives support as a postdoctoral fellow of the FWO. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122204 Serial 2355
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 5 Pages 052139
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013)]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self-and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self-and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1/L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000345251500004 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek), Project No. G.0388.11. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, Department EWI. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:122134 Serial 700
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Peeters, F.M.
Title C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 19 Pages 12485-12499
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional polyaniline with structural unit C3N is an indirect semiconductor with 0.4 eV band gap, which has attracted a lot of interest because of its unusual electronic, optoelectronic, thermal, and mechanical properties useful for various applications. Adsorption of adatoms is an effective method to improve and tune the properties of C3N. Using first-principles calculations, we investigated the adsorption of adatoms, including H, O, S, F, Cl, B, C, Si, N, P, Al, Li, Na, K, Be, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn, on C3N. Depending on the adatom size and the number of valence electrons, they may induce metallic, half-metallic, semiconducting, and ferromagnetic-metallic behavior. In addition, we investigate the effects of an electrical field, charging, and strain on C3N and found how the electronic and magnetic properties are modified. Semi- and full hydrogenation are studied. From the mechanical and thermal stability of C3N monolayer, we found it to be a hard material that can withstand large strain. From our calculations, we gained novel insights into the properties of C3N demonstrating its unique electronic and magnetic properties that can be useful for semiconducting, nanosensor, and catalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468368800053 Publication Date 2019-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 67 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FW0-V1). The authors thank Keyvan Nazifi from the Cluster Center of Faculty of Science, Guilan University, for his help. They acknowledge OpenMX team for OpenMX code. ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:160323 Serial 5196
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title High-capacity hydrogen storage in Al-adsorbed graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 20 Pages 205406,1-205406,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A high-capacity hydrogen storage mediumAl-adsorbed grapheneis proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79 wt % with average adsorption energy −0.193 eV/H2. Its hydrogen storage capacity is in excess of 6 wt %, surpassing U. S. Department of Energy (DOEs) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278144500082 Publication Date 2010-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 219 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83386 Serial 1422
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Peeters, F.M.
Title Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 123 Issue 20 Pages 204301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000433977200017 Publication Date 2018-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO), the BOF-UA (Bijzonder Onderzoeks Fonds), the Methusalem program of the Flemish Government, and Iran Nanotechnology Initiative Council (INIC). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:152044UA @ admin @ c:irua:152044 Serial 5020
Permanent link to this record
 

 
Author Gillis, S.; Jaykka, J.; Milošević, M.V.
Title Vortex states in mesoscopic three-band superconductors Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages 024512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using multicomponent Ginzburg-Landau simulations, we show a plethora of vortex states possible in mesoscopic three-band superconductors. We find that mesoscopic confinement stabilizes chiral states, with nontrivial phase differences between the band condensates, as the ground state of the system. As a consequence, we report the broken-symmetry vortex states, the chiral states where vortex cores in different band condensates do not coincide (split-core vortices), as well as fractional-flux vortex states with broken time-reversal symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333653800001 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO). Critical remarks of Lucia Komendova are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:128885 Serial 4611
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Peeters, F.M.
Title Nanoengineered nonuniform strain in graphene using nanopillars Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 4 Pages 041405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments showed that nonuniform strain can be produced by depositing graphene over pillars. We employed atomistic calculations to study the nonuniform strain and the induced pseudomagnetic field in graphene on top of nanopillars. By decreasing the distance between the nanopillars a complex distribution for the pseudomagnetic field can be generated. Furthermore, we performed tight-binding calculations of the local density of states (LDOS) by using the relaxed graphene configuration obtained from atomistic calculations. We find that the quasiparticle LDOS are strongly modified near the pillars, both at low energies showing sublattice polarization and at high energies showing shifts of the van Hove singularity. Our study shows that changing the specific pattern of the nanopillars allows us to create a desired shape of the pseudomagnetic field profile while the LDOS maps provide an input for experimental verification by scanning tunneling microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000306313900001 Publication Date 2012-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-V1) and the EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100765 Serial 2255
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Cahangirov, S.; Rubio, A.; Peeters, F.M.
Title Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 7 Pages 074307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we investigate the electronic, mechanical, and optical properties of monolayer WTe2. Atomic structure and ground state properties of monolayer WTe2 (T-d phase) are anisotropic which are in contrast to similar monolayer crystals of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, WSe2, and MoTe2, which crystallize in the H-phase. We find that the Poisson ratio and the in-plane stiffness is direction dependent due to the symmetry breaking induced by the dimerization of the W atoms along one of the lattice directions of the compound. Since the semimetallic behavior of the T-d phase originates from this W-W interaction (along the a crystallographic direction), tensile strain along the dimer direction leads to a semimetal to semiconductor transition after 1% strain. By solving the Bethe-Salpeter equation on top of single shot G(0)W(0) calculations, we predict that the absorption spectrum of T-d-WTe2 monolayer is strongly direction dependent and tunable by tensile strain. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375158000022 Publication Date 2016-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 62 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-V1) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. was supported by a FWO Pegasus Long Marie Curie Fellowship. S.C. and A.R. acknowledge the financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, European Research Council (ERC-2010-AdG-267374), Spanish grant (FIS2013-46159-C3-1-P), Grupos Consolidados (IT578-13), and AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, H2020-NMP-2014 project MOSTOPHOS, GA No. SEP-210187476, and COST Action MP1306 (EUSpec). S.C. acknowledges the support from The Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:144747 Serial 4640
Permanent link to this record
 

 
Author Peelaers, H.; Hernández-Nieves, A.D.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Vibrational properties of graphene fluoride and graphane Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 5 Pages 051914
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp(3) bonded derivatives of graphene have different phonon dispersion relations and phonon densities of states as expected from the different masses associated with the attached atoms of fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds. (C) 2011 American Institute of Physics. [doi:10.1063/1.3551712]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000286988400027 Publication Date 2011-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 66 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Contract No. FW /08/01). A.D.H.-N. is also supported by ANPCyT (under Grant No. PICT2008-2236) ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:105604 Serial 3844
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Second-order multiple-quanta flux entry into a perforated spherical mesoscopic superconductor Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 21 Pages 214501-214501,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Flux entry in type-II superconductors without prominent symmetry is a first-order phase transition, where flux enters conventionally gradual in units of a flux quantum. Here we show that neither is necessarily the case in a mesoscopic superconducting sphere with a perforation. In axially applied magnetic field, vortices initially occupy the hole, and can oppose further flux entry in the sample. As a result, multiple-quanta flux entry is found at significantly higher field, and it can manifest as a second-order transition due to suppressed geometric barrier at the equatorial belt of the sample. At high fields a new state is found, with gradually destroyed condensate from the equator inwards, the exact opposite of surface superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286737800007 Publication Date 2010-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-V1), the Belgian Science Policy (IAP), and the ESF “Nanoscience and Engineering in Superconductivity” program. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:88039 Serial 2957
Permanent link to this record
 

 
Author Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of graphene fluoride and graphane Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195436,1-195436,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different stoichiometric configurations of graphane and graphene fluoride are investigated within density-functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000284399200004 Publication Date 2010-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 367 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-V1), the NOI-BOF of the University of Antwerp, the Belgian Science Policy (IAP), and the collaborative project FWO-MINCyT (Grant No. FW/08/01). A.D.H. also acknowledges support from ANPCyT (Grant No. PICT 2008-2236). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86916 Serial 1212
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
Title Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 114 Issue 34 Pages 14503-14509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000281129100027 Publication Date 2010-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 110 Open Access
Notes (up) ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
Call Number UA @ lucian @ c:irua:84588 Serial 882
Permanent link to this record