|   | 
Details
   web
Records
Author Papp, G.; Peeters, F.M.
Title Strong wave-vector filtering and nearly 100% spin polarization through resonant tunneling antisymmetrical magnetic structure (vol 81, pg 691, 2002) Type L1 Letter to the editor
Year 2003 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 82 Issue 20 Pages 3570-3570
Keywords L1 Letter to the editor; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000182823300065 Publication Date 2003-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 21 Open Access
Notes (down) Approved Most recent IF: 3.411; 2003 IF: 4.049
Call Number UA @ lucian @ c:irua:103295 Serial 3185
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Structural and vibrational properties of amorphous GeO2 from first-principles Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 20 Pages 202110,1-202110,3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The structural and vibrational properties of amorphous germanium oxide (a-GeO<sub>2</sub>) are investigated using first-principles calculations based on density functional theory. We first generate an a-GeO<sub>2</sub> structure by first-principles molecular dynamics and analyze its structural properties. The vibrational spectra is then calculated within a density-functional approach. Both static and dynamic properties are in good agreement with experimental data. We next generate defects in our structure (oxygen vacancies with several density and charge states) and consider the most stable atomic configurations, focusing on the vibrational features of threefold coordinated O and divalent Ge centers.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000290812100038 Publication Date 2011-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 226 Open Access
Notes (down) Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:90222 Serial 3202
Permanent link to this record
 

 
Author Verbist, K.; Vasiliev, A.L.; Van Tendeloo, G.
Title Y2O3 inclusions in YBa2Cu3O7-\delta thin films Type A1 Journal article
Year 1995 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 66 Issue 11 Pages 1424-1426
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanoprecipitates in YBa2Cu3O7‐δ(YBCO) thin films have been identified by high resolution electron microscopy (HREM) as Y2O3 inclusions; they correspond to two different types of epitaxial relationships namely [001] or [110] parallel to the YBCOc‐axis. The [001] precipitates are situated near the YBCO surface, in the bulk and on the YBCO film/substrate interface. The [110] precipitates have only been observed at the surface. Literature data have been reinterpreted.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos A1995QL57700042 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 28 Open Access
Notes (down) Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #
Call Number UA @ lucian @ c:irua:13324 Serial 3564
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures Type A1 Journal article
Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 93 Issue 24 Pages 242103,1-242103,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structures efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000261896400032 Publication Date 2008-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 91 Open Access
Notes (down) Approved Most recent IF: 3.411; 2008 IF: 3.726
Call Number UA @ lucian @ c:irua:75931 Serial 3910
Permanent link to this record
 

 
Author Dhayalan, S.K.; Kujala, J.; Slotte, J.; Pourtois, G.; Simoen, E.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Iacovo, S.; Stesmans, A.; Loo, R.; Vandervorst, W.;
Title On the manifestation of phosphorus-vacancy complexes in epitaxial Si:P films Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 108 Pages 082106
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In situ doped epitaxial Si: P films with P concentrations > 1 x 10(21) at./cm(3) are suitable for source-drain stressors of n-FinFETs. These films combine the advantages of high conductivity derived from the high P doping with the creation of tensile strain in the Si channel. It has been suggested that the tensile strain developed in the Si: P films is due to the presence of local Si3P4 clusters, which however do not contribute to the electrical conductivity. During laser annealing, the Si3P4 clusters are expected to disperse resulting in an increased conductivity while the strain reduces slightly. However, the existence of Si3P4 is not proven. Based on first-principles simulations, we demonstrate that the formation of vacancy centered Si3P4 clusters, in the form of four P atoms bonded to a Si vacancy, is thermodynamically favorable at such high P concentrations. We suggest that during post epi-growth annealing, a fraction of the P atoms from these clusters are activated, while the remaining part goes into interstitial sites, thereby reducing strain. We corroborate our conjecture experimentally using positron annihilation spectroscopy, electron spin resonance, and Rutherford backscattering ion channeling studies. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000373057000023 Publication Date 2016-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes (down) Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:133245 Serial 4217
Permanent link to this record
 

 
Author Lu, A.K.A.; Pourtois, G.; Agarwal, T.; Afzalian, A.; Radu, I.P.; Houssa, M.
Title Origin of the performances degradation of two-dimensional-based metal-oxide-semiconductor field effect transistors in the sub-10 nm regime: A first-principles study Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 4 Pages 043504
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, and sets the limit of the scaling in future transistor designs. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000375217200061 Publication Date 2016-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 4 Open Access
Notes (down) Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:144750 Serial 4677
Permanent link to this record
 

 
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S.
Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue Pages 231904
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328634900025 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 6 Open Access
Notes (down) Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:136443 Serial 4513
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R.
Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue Pages 261911-261913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000298638500027 Publication Date 2012-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 26 Open Access
Notes (down) Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:136428 Serial 4507
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L.
Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue Pages 233121
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos Publication Date 2012-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access
Notes (down) Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:136432 Serial 4509
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L.
Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 112 Issue Pages 124505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000312829400128 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 14 Open Access
Notes (down) Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:136433 Serial 4510
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D.
Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue Pages 241913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328706500031 Publication Date 2013-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 53 Open Access
Notes (down) Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:136442 Serial 4502
Permanent link to this record
 

 
Author Zarenia, M.; Conti, S.; Peeters, F.M.; Neilson, D.
Title Coulomb drag in strongly coupled quantum wells : temperature dependence of the many-body correlations Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 115 Issue 20 Pages 202105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of the temperature dependence of many-body correlations on hole-hole Coulomb drag in strongly coupled GaAs/GaAlAs double quantum wells. For arbitrary temperatures, we obtained the correlations using the classical-map hypernetted-chain approach. We compare the temperature dependence of the resulting drag resistivities rho D(T) at different densities with rho D(T) calculated assuming correlations fixed at zero temperature. Comparing the results with those when correlations are completely neglected, we confirm that correlations significantly increase the drag. We find that the drag becomes sensitive to the temperature dependence of T greater than or similar to 2TF, twice the Fermi temperature. Our results show excellent agreement with available experimental data. Published under license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498619400007 Publication Date 2019-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 2 Open Access
Notes (down) Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:165135 Serial 6291
Permanent link to this record
 

 
Author Guo, J.; Clima, S.; Pourtois, G.; Van Houdt, J.
Title Identifying alternative ferroelectric materials beyond Hf(Zr)O-₂ Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 117 Issue 26 Pages 262903
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A database-driven approach combined with ab initio density functional theory (DFT) simulations is used to identify and simulate alternative ferroelectric materials beyond Hf(Zr)O-2. The database-driven screening method identifies a class of wurtzite ferroelectric materials. DFT simulations of wurtzite magnesium chalcogenides, including MgS, MgSe, and MgTe, show their potential to achieve improved ferroelectric (FE) stability, simple atomistic unit cell structure, and large FE polarization. Strain engineering can effectively modulate the FE switching barrier height for facilitating FE switching. The effect of the piezoelectric property on the FE switching barrier heights is also examined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000608049700003 Publication Date 2020-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access
Notes (down) Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:176053 Serial 6766
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Faraji, M.; Yagmurcukardes, M.; Fadlallah, M.M.; Jappor, H.R.; Ghergherehchi, M.; Feghhi, S.A.H.
Title A Dirac-semimetal two-dimensional BeN4 : thickness-dependent electronic and optical properties Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 118 Issue 20 Pages 203103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent experimental realization of a two-dimensional (2D) BeN4 monolayer, in this study we investigate the structural, dynamical, electronic, and optical properties of a monolayer and few-layer BeN4 using first-principles calculations. The calculated phonon band dispersion reveals the dynamical stability of a free-standing BeN4 layer, while the cohesive energy indicates the energetic feasibility of the material. Electronic band dispersions show that monolayer BeN4 is a semi-metal whose conduction and valence bands touch each other at the Sigma point. Our results reveal that increasing the layer number from single to six-layers tunes the electronic nature of BeN4. While monolayer and bilayer structures display a semi-metallic behavior, structures thicker than that of three-layers exhibit a metallic nature. Moreover, the optical parameters calculated for monolayer and bilayer structures reveal that the bilayer can absorb visible light in the ultraviolet and visible regions better than the monolayer structure. Our study investigates the electronic properties of Dirac-semimetal BeN4 that can be an important candidate for applications in nanoelectronic and optoelectronic. Published under an exclusive license by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000691329900002 Publication Date 2021-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access Not_Open_Access
Notes (down) Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:181725 Serial 6980
Permanent link to this record
 

 
Author Bafekry, A.; Sarsari, I.A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Karbasizadeh, S.; Nguyen, V.; Ghergherehchi, M.
Title Electronic and magnetic properties of two-dimensional of FeX (X = S, Se, Te) monolayers crystallize in the orthorhombic structures Type A1 Journal article
Year 2021 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 118 Issue 14 Pages 143102
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this Letter, we explore the lattice, dynamical stability, and electronic and magnetic properties of FeTe bulk and FeX (X=S, Se, Te) monolayers using the density functional calculations. The phonon dispersion relation, elastic stability criteria, and cohesive energy results show the stability of studied FeX monolayers. The mechanical properties reveal that all FeX monolayers have a brittle nature. Furthermore, these structures are stable as we move down the 6A group in the periodic table, i.e., from S, Se, and Te. The stability and work function decrease as the electronegativity decreases. The spin-polarized electronic structures demonstrate that the FeTe monolayer has a total magnetization of 3.8 mu (B), which is smaller than the magnetization of FeTe bulk (4.7 mu (B)). However, FeSe and FeS are nonmagnetic monolayers. The FeTe monolayer can be a good candidate material for spin filter applications due to its electronic and magnetic properties. This study highlights the bright prospect for the application of FeX monolayers in electronic structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000637703700001 Publication Date 2021-04-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited Open Access OpenAccess
Notes (down) Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:177731 Serial 6985
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L.
Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 121 Issue 11 Pages 112405-112407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000863219400003 Publication Date 2022-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited 4 Open Access OpenAccess
Notes (down) Approved Most recent IF: 4
Call Number UA @ admin @ c:irua:191541 Serial 7223
Permanent link to this record