toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Mao, J.; Milovanović, S.P.; Andelkovic, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; Jiang, Y.; Andrei, E.Y.
  Title Evidence of flat bands and correlated states in buckled graphene superlattices Type A1 Journal article
  Year 2020 Publication Nature Abbreviated Journal Nature
  Volume 584 Issue 7820 Pages 215-220
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure(1-5). An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers(6). The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition(7-9), resulting in a periodically modulated pseudo-magnetic field(10-14), which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state(15-17). This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000559831500012 Publication Date 2020-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited 109 Open Access Not_Open_Access
  Notes ; ; Approved Most recent IF: 64.8; 2020 IF: 40.137
  Call Number UA @ admin @ c:irua:171150 Serial 6513
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R.
  Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 22 Issue 15 Pages 6268-6275
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000831832100001 Publication Date 2022-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 10.8 Times cited 12 Open Access OpenAccess
  Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8
  Call Number UA @ admin @ c:irua:189495 Serial 7077
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V.
  Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal
  Volume Issue Pages 1-11
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001047512300001 Publication Date 2023-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited 1 Open Access Not_Open_Access: Available from 25.01.2024
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367
  Call Number UA @ admin @ c:irua:198290 Serial 8819
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 17 Pages 7363-7370
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569375400061 Publication Date 2020-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 35 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 13 Issue 49 Pages 11454-11463
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000893147700001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.7
  Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 14 Issue 30 Pages 34946-34954
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000835946500001 Publication Date 2022-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited 9 Open Access OpenAccess
  Notes Approved Most recent IF: 9.5
  Call Number UA @ admin @ c:irua:189467 Serial 7127
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
  Title Indentation of graphene nano-bubbles Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 14 Issue 15 Pages 5876-5883
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000776763000001 Publication Date 2022-03-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess
  Notes Approved Most recent IF: 6.7
  Call Number UA @ admin @ c:irua:187924 Serial 7171
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
  Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
  Year 2014 Publication APL materials Abbreviated Journal Apl Mater
  Volume 2 Issue 9 Pages 092801
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000342568000020 Publication Date 2014-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 10 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
  Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Neek-Amal, M.; Beheshtian, J.; Sadeghi, A.; Michel, K.H.; Peeters, F.M.
  Title Boron nitride mono layer : a strain-tunable nanosensor Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 25 Pages 13261-13267
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000321236400041 Publication Date 2013-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 38 Open Access
  Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Funding of the Flemish government. AS. would like to thank the Universiteit Antwerpen for its hospitality. ; Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number UA @ lucian @ c:irua:109829 Serial 249
Permanent link to this record
 

 
Author de Oliveira, E.L.; Albuquerque, E.L.; de Sousa, J.S.; Farias, G.A.; Peeters, F.M.
  Title Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 7 Pages 4399-4407
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals (NC's) with diameters of similar to 1.9 nm are investigated using a combination density functional ab initio method to obtain the single particle wave functions and a configuration interaction method to compute the exciton fine structure and absorption coefficient. These core/shell structures exhibit type II confinement, which is more pronounced for the Si/Ge NC as a consequence of strain. The absorption coefficients of these NC's exhibit a single dominant peak, which has a much larger oscillator strength than the multipeaks found for pure Si and Ge NC's. The exciton lifetime in Si, Ge, and Ge/Si shows a small i:emperature dependence in the range 10-300 K, whereas in Si/Ge, the exciton lifetime decreases more than an order of magnitude in the same temperature range.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000301156500007 Publication Date 2012-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 44 Open Access
  Notes ; The authors acknowledge financial support from CNPq and the bilateral program between Flanders and Brazil and the Belgian Science Foundation (IAP). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number UA @ lucian @ c:irua:113045 Serial 482
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Neilson, D.; Peeters, F.M.
  Title Enhancement of electron-hole superfluidity in double few-layer graphene Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 4 Issue 4 Pages 7319
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We propose two coupled electron-hole sheets of few-layer graphene as a new nanostructure to observe superfluidity at enhanced densities and enhanced transition temperatures. For ABC stacked few-layer graphene we show that the strongly correlated electron-hole pairing regime is readily accessible experimentally using current technologies. We find for double trilayer and quadlayer graphene sheets spatially separated by a nano-thick hexagonal boron-nitride insulating barrier, that the transition temperature for electron-hole superfluidity can approach temperatures of 40 K.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos 000346272900001 Publication Date 2014-12-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 38 Open Access
  Notes ; We thank L. Benfatto, S. De Palo, and G. Senatore for helpful comments. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (POLATOM). ; Approved Most recent IF: 4.259; 2014 IF: 5.578
  Call Number UA @ lucian @ c:irua:122743 Serial 1062
Permanent link to this record
 

 
Author Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S.
  Title Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 9 Issue 9 Pages 5326-5332
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Monolayers of group VI transition metal dichalcogenides possess direct gaps in the visible spectrum with the exception of MoTe2, where its gap is suitably located in the infrared region but its stability is of particular interest, as tellurium compounds are acutely sensitive to oxygen exposure. Here, our environmental (time-dependent) measurements reveal two distinct effects on MoTe2 monolayers: For weakly luminescent monolayers, photoluminescence signal and optical contrast disappear, as if they are decomposed, but yet remain intact as evidenced by AFM and Raman measurements. In contrast, strongly luminescent monolayers retain their optical contrast for a prolonged amount of time, while their PL peak blue-shifts and PL intensity saturates to slightly lower values. Our X-ray photoelectron spectroscopy measurements and DFT calculations suggest that the presence of defects and functionalization of these defect sites with O-2 molecules strongly dictate their material properties and aging response by changing the excitonic dynamics due to deep or shallow states that are created within the optical band gap. Presented results not only shed light on environmental effects on fundamental material properties and excitonic dynamics of MoTe2 monolayers but also highlight striking material transformation for metastable 20 systems such as WTe2, silicone, and phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355383000068 Publication Date 2015-04-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 150 Open Access
  Notes ; This work was supported by the Arizona State University seeding program. The authors thank Hui Cai and Kedi Wu for useful discussions. We gratefully acknowledge the use of facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:126441 Serial 1068
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Adamowski, J.
  Title Exact broken-symmetry states and Hartree-Fock solutions for quantum dots at high magnetic fields Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E
  Volume 26 Issue 1-4 Pages 252-256
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Wigner molecules formed at high magnetic fields in circular and elliptic quantum dots are studied by exact diagonalization (ED) and unrestricted Hartree-Fock (UHF) methods with multicenter basis of displaced lowest Landau level wave functions. The broken symmetry states with semi-classical charge density constructed from superpositions of the ED solutions are compared to the UHF results. UHF overlooks the dependence of the few-electron wave functions on the actual relative positions of electrons localized in different charge puddles and partially compensates for this neglect by an exaggerated separation of charge islands which are more strongly localized than in the exact broken-symmetry states. (C) 2004 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000227249000053 Publication Date 2004-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
  Call Number UA @ lucian @ c:irua:103181 Serial 1105
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title First-principles investigation of bilayer fluorographene Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 36 Pages 19240-19245
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000308631300022 Publication Date 2012-08-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 39 Open Access
  Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number UA @ lucian @ c:irua:101842 Serial 1211
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M.; Albino Aguiar, J.
  Title Giant paramagnetic Meissner effect in multiband superconductors Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 5 Issue 5 Pages 12695
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate – even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos 000359143700001 Publication Date 2015-08-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 25 Open Access
  Notes ; This work was supported by the Brazilian science agencies CAPES (PNPD 223038.003145/2011-00), CNPq (307552/2012-8, 141911/2012-3, and APV-4 02937/ 2013-9), and FACEPE (APQ-0202-1.05/10 and BCT-0278-1.05/11), the Flemish Science Foundation (FWO-Vl), and by the CNPq-FWO cooperation programme (CNPq 490297/2009-9). R.M.S. acknowledges support from the SRS PhD+ program of the University Cooperation for Development of the Flemish Interuniversity Council (VLIR-UOS). M.V.M. acknowledges support from CNPq (APV-4 02937/2013-9), FACEPE (APV-0034-1.05/14), and CAPES (BEX1392/11-5). ; Approved Most recent IF: 4.259; 2015 IF: 5.578
  Call Number c:irua:127212 Serial 1339
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 8 Issue 8 Pages 7801-7808
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000340992300025 Publication Date 2014-08-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 23 Open Access
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881
  Call Number UA @ lucian @ c:irua:119263 Serial 1857
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
  Title Magneto conductance for tunnelling through double magnetic barriers Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 25 Issue 4 Pages 339-346
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The temperature-dependent magnetoresistance effect is investigated in a magnetically modulated two-dimensional (21)) electron gas (2DEG) which can be realized by depositing two parallel ferromagnets on top of a 2DEG electron gas. In the resonant tunnelling regime the transmission for the parallel and antiparallel magnetization configurations shows a quite distinct dependence on the longitudinal wave vector of the incident electrons. This leads to a very large magneto resistance ratio with a strong temperature dependence. (C) 2004 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000226187900002 Publication Date 2004-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 25 Open Access
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
  Call Number UA @ lucian @ c:irua:99308 Serial 1898
Permanent link to this record
 

 
Author Vasilopoulos, P.; Wang, X.F.; Peeters, F.M.; Chowdhury, S.; Long, A.R.; Davies, J.H.
  Title Magneto resistance oscillations in a modulated 2DEG periodic in the ratio h/e to flux per unit cell Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E
  Volume 22 Issue 1-3 Pages 389-393
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Transport properties of the 2DEG are studied in the presence of a normal magnetic field B and of a weak, two-dimensional periodic potential modulation. A tight-binding treatment has shown that each Landau level splits into several subbands with exponentially small gaps between them. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies the evaluation of the magnetoresistance tensor p(muv) The relative phase of the oscillations in p(xx) and p(yy) depends on the modulation strengths and periods. For short periods less than or equal to 100 nm, in addition to the Weiss oscillations, the collisional contribution to the conductivity and the corresponding resistivity contribution show prominent peaks when one flux quantum h/e passes through an integral number of unit cells in good agreement with experiments. For periods 300-400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved. (C) 2003 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000221140800094 Publication Date 2004-02-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.221 Times cited Open Access
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898
  Call Number UA @ lucian @ c:irua:104107 Serial 1911
Permanent link to this record
 

 
Author Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.S.; Ho, C.H.; Yan, J.; Ogletree, D.F.; Aloni, S.; Ji, J.; Li, S.; Li, J.; Peeters, F.M.; Wu, J.;
  Title Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 5 Issue Pages 3252
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Semiconducting transition metal dichalcogenides consist of monolayers held together by weak forces where the layers are electronically and vibrationally coupled. Isolated monolayers show changes in electronic structure and lattice vibration energies, including a transition from indirect to direct bandgap. Here we present a new member of the family, rhenium disulphide (ReS2), where such variation is absent and bulk behaves as electronically and vibrationally decoupled monolayers stacked together. From bulk to monolayers, ReS2 remains direct bandgap and its Raman spectrum shows no dependence on the number of layers. Interlayer decoupling is further demonstrated by the insensitivity of the optical absorption and Raman spectrum to interlayer distance modulated by hydrostatic pressure. Theoretical calculations attribute the decoupling to Peierls distortion of the 1T structure of ReS2, which prevents ordered stacking and minimizes the interlayer overlap of wavefunctions. Such vanishing interlayer coupling enables probing of two-dimensional-like systems without the need for monolayers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000332666700010 Publication Date 2014-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 806 Open Access
  Notes ; This work was supported by the United States Department of Energy Early Career Award DE-FG02-11ER46796. The high pressure part of this work was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under National Science Foundation Cooperative Agreement EAR 11-577758. The electron microscopy and nano-Auger measurements were supported by the user programme at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under contract no. DE-AC02-05CH11231. S. A. gratefully acknowledges Dr Virginia Altoe of the Molecular Foundry for help with the TEM data acquisition and analysis. J.L. acknowledges support from the Natural Science Foundation of China for Distinguished Young Scholar (grant nos. 60925016 and 91233120). Y.-S.H. and C.-H. H. acknowledge support from the National Science Council of Taiwan under project nos. NSC 100-2112-M-011-001-MY3 and NSC 101-2221-E-011-052-MY3. H. S. was supported by the FWO Pegasus Marie Curie Long Fellowship programme. The DFT work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Centre. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
  Call Number UA @ lucian @ c:irua:119247 Serial 2192
Permanent link to this record
 

 
Author Tadić, M.; Mlinar, V.; Peeters, F.M.
  Title Multiband k\cdot p calculation of exciton diamagnetic shift in InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E
  Volume 26 Issue 1-4 Pages 212-216
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Exciton states in self-assembled InP/In0.49Ga0.51P quantum dots subject to magnetic fields up to 50T are calculated. Strain and band mixing are explicitly taken into account in the single-particle models of the electronic structure, while an exact diagonalization approach is adopted to compute the exciton states. Reasonably good agreement with magneto-photoluminescence measurements on InP self-assembled quantum dots is found. As a result of the polarization and angular momentum sensitive selection rules, the exciton ground state is dark. For in-plane polarized light, the magnetic field barely affects the exciton spatial localization, and consequently the exciton oscillator strength for recombination increases only slightly with increasing field. For z polarized light, a sharp increase of the oscillator strength beyond 30 T is found which is attributed to the enhanced s character of the relevant portion of the exciton wave function. (C) 2004 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000227249000045 Publication Date 2004-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 4 Open Access
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
  Call Number UA @ lucian @ c:irua:103180 Serial 2215
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
  Title Negative trions in coupled quantum dots Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 15th International Conference on Electronic Properties of, Two-Dimensional Systems (EP2DS-15), JUL 14-18, 2003, Nara, JAPAN Abbreviated Journal Physica E
  Volume 22 Issue 1-3 Pages 566-569
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We present an exact diagonalization study of negatively charged excitonic trions in two vertically coupled parabolic quantum dots. The electrons and the hole are confined to different dots. We obtain the energy spectra as a function of inter-dot separation and external magnetic field strength and identify different ground-state angular momentum transitions which are accompanied by abrupt charge redistributions in the dots. (C) 2003 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000221140800137 Publication Date 2004-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898
  Call Number UA @ lucian @ c:irua:102771 Serial 2292
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Benedict, M.G.; Peeters, F.M.
  Title Networks of quantum nanorings : programmable spintronic devices Type A1 Journal article
  Year 2008 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 8 Issue 8 Pages 2556-2558
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract An array of quantum rings with local (ring by ring) modulation of the spin orbit interaction (SOI) can lead to novel effects in spin state transformation of electrons. It is shown that already small (3 x 3, 5 x 5) networks are remarkably versatile from this point of view: Working in a given network geometry, the input current can be directed to any of the output ports, simply by changing the SOI strengths by external gate voltages. Additionally, the same network with different SOI strengths can be completely analogous to the Stern-Gerlach device, exhibiting spatial-spin entanglement.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000258440700077 Publication Date 2008-07-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 76 Open Access
  Notes Approved Most recent IF: 12.712; 2008 IF: 10.371
  Call Number UA @ lucian @ c:irua:102609 Serial 2294
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zhang, J.; Peeters, F.M.; Vasilopoulos, P.
  Title Photo-excited carriers and optical conductance and transmission in graphene in the presence of phonon scattering Type A1 Journal article
  Year 2010 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 42 Issue 4 Pages 748-750
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study of the optoelectronic properties of monolayer graphene. Including the effect of the electron-photon-phonon scattering, we employ the mass- and energy-balance equations derived from the Boltzmann equation to evaluate self-consistently the carrier densities, optical conductance and transmission coefficient in graphene in the presence of linearly polarized radiation field. We find that the photo-excited carrier density can be increased under infrared radiation and depend strongly on radiation intensity and frequency. For short wavelengths (lambda <3 mu m), the universal optical conductance sigma(0) = e(2)/4h is obtained and the light transmittance is about 0.97-0.98. Interestingly, there is an optical absorption window in the range 4-100 mu m which is induced by different transition energies required for inter- and intra-band optical absorption. The position and width of this absorption window depend sensitively on temperature and carrier density of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000276541200022 Publication Date 2009-11-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 7 Open Access
  Notes ; ; Approved Most recent IF: 2.221; 2010 IF: 1.304
  Call Number UA @ lucian @ c:irua:99216 Serial 2607
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
  Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 10 Issue 10 Pages 3685-3692
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.
  Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000372855400073 Publication Date 2016-02-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 160 Open Access
  Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942
  Call Number c:irua:133237 Serial 4012
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M.
  Title Quantum rotor in nanostructured superconductors Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 4 Issue Pages 4542-4546
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos 000333555300007 Publication Date 2014-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 4 Open Access
  Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578
  Call Number UA @ lucian @ c:irua:116848 Serial 2785
Permanent link to this record
 

 
Author Xu, P.; Dong, L.; Neek-Amal, M.; Ackerman, M.L.; Yu, J.; Barber, S.D.; Schoelz, J.K.; Qi, D.; Xu, F.; Thibado, P.M.; Peeters, F.M.;
  Title Self-organized platinum nanoparticles on freestanding graphene Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 8 Issue 3 Pages 2697-2703
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). High-resolution transmission electron microscopy revealed a homogeneous distribution of single-crystal Pt NPs that tend to exhibit a preferred orientation. Unexpectedly, the NPs were also found to be partially exposed to the vacuum with the top Pt surface raised above the graphene substrate, as deduced from atomic-scale scanning tunneling microscopy images and detailed molecular dynamics simulations. Local strain accumulation during the growth process is thought to be the origin of the NP self-organization. These findings are expected to shape future approaches in developing Pt NP catalysts for fuel cells as well as NP-functionalized graphene-based high-performance electronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000333539400085 Publication Date 2014-02-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 38 Open Access
  Notes ; M.N.A. acknowledges financial support by the EU-Marie Curie IIF postdoc Fellowship/299855. F.M.P. acknowledges financial support by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-VI), and the Methusalem Foundation of the Flemish Government. L.D. acknowledges financial support by the Taishan Overseas Scholar program (tshw20091005), the International Science & Technology Cooperation Program of China (2014DFA60150), the National Natural Science Foundation of China (51172113), the Shandong Natural Science Foundation (JQ201118), the Qingdao Municipal Science and Technology Commission (12-1-4-136-hz), and the National Science Foundation (DMR-0821159). P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. ; Approved Most recent IF: 13.942; 2014 IF: 12.881
  Call Number UA @ lucian @ c:irua:116881 Serial 2978
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G.
  Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
  Year 2011 Publication Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe
  Volume 6 Issue 1 Pages 51-57
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000290692200005 Publication Date 2011-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.497 Times cited 3 Open Access
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556
  Call Number UA @ lucian @ c:irua:90187 Serial 3025
Permanent link to this record
 

 
Author Fleurov, V.; Ivanov, V.A.; Peeters, F.M.; Vagner, I.D.
  Title Spin-engineered quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 14 Issue 4 Pages 361-365
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Spatially nonhomogeneously spin polarized nuclei are proposed as a new mechanism to monitor electron states in a nanostructure, or as a means to create and, if necessary, reshape such nanostructures in the course of the experiment. We found that a polarization of nuclear spins may lift the spin polarization of the electron states in a nanostructure and, if sufficiently strong, leads to a polarization of the electron spins. Polarized nuclear spins may form an energy landscape capable of binding electrons with energy up to several meV and the localization radius > 100 Angstrom. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000177511900003 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 12 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:104150 Serial 3088
Permanent link to this record
 

 
Author Esfahani; Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
  Title Structural transitions in monolayer MOS2 by lithium adsorption Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 119 Issue 119 Pages 10602-10609
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Based on first-principles calculations, we study the structural stability of the H and T phases of monolayer MoS2 upon Li doping. Our calculations demonstrate that it is possible to stabilize a distorted T phase of MoS2 over the H phase through adsorption of Li atoms on the MoS2 surface. Through molecular dynamics and phonon calculations, we show that the T phase of MoS2 is dynamically unstable and undergoes considerable distortions. The type of distortion depends on the concentration of adsorbed Li atoms and changes from zigzag-like to diamond-like when increasing the Li doping. There exists a substantial energy barrier to transform the stable H phase to the distorted T phases, which is considerably reduced by increasing the concentration of Li atoms. We show that it is necessary that the Li atoms adsorb on both sides of the MoS2 monolayer to reduce the barrier sufficiently. Two processes are examined that allow for such two-sided adsorption, namely, penetration through the MoS2 layer and diffusion over the MoS2 surface. We show that while there is only a small barrier of 0.24 eV for surface diffusion, the amount of energy needed to pass through a pure MoS2 layer is of the order of similar or equal to 2 eV. However, when the MoS2 layer is covered with Li atoms the amount of energy that Li atoms should gain to penetrate the layer is drastically reduced and penetration becomes feasible.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000354912200051 Publication Date 2015-04-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 96 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem program of the Flemish government. H. S is supported by an FWO Pegasus-Long Marie Curie fellowship. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government department EWI. ; Approved Most recent IF: 4.536; 2015 IF: 4.772
  Call Number c:irua:126409 Serial 3270
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
  Title Theory of trions in quantum wells Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E
  Volume 12 Issue 1-4 Pages 543-545
  Keywords (down) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300134 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:103903 Serial 3624
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: