|   | 
Details
   web
Records
Author Tirry, W.; Schryvers, D.
Title Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi Type A1 Journal article
Year 2005 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 53 Issue 4 Pages 1041-1049
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000226774500014 Publication Date 2004-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 97 Open Access
Notes Approved Most recent IF: 5.301; 2005 IF: 3.430
Call Number UA @ lucian @ c:irua:55686 Serial 2750
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.; Jorissen, K.; Lamoen, D.
Title Quantitative determination of the crystal structure of Ni4Ti3 precipitates Type A1 Journal article
Year 2006 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 438 Issue Pages 517-520
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000242900900112 Publication Date 2006-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 7 Open Access
Notes Mrtn-Ct-2004-505226 Approved Most recent IF: 3.094; 2006 IF: 1.490
Call Number UA @ lucian @ c:irua:61577 Serial 2752
Permanent link to this record
 

 
Author Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C.
Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 2 Pages 431-436
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000227510200030 Publication Date 2005-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 1 Open Access
Notes Approved Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754
Permanent link to this record
 

 
Author Heidari, H.; van den Broek, W.; Bals, S.
Title Quantitative electron tomography : the effect of the three-dimensional point spread function Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 135 Issue Pages 1-5
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The intensity levels in a three-dimensional (3D) reconstruction, obtained by electron tomography, can be influenced by several experimental imperfections. Such artifacts will hamper a quantitative interpretation of the results. In this paper, we will correct for artificial intensity variations by determining the 3D point spread function (PSF) of a tomographic reconstruction based on high angle annular dark field scanning transmission electron microscopy. The large tails of the PSF cause an underestimation of the intensity of smaller particles, which in turn hampers an accurate radius estimate. Here, the error introduced by the PSF is quantified and corrected a posteriori.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000326941500001 Publication Date 2013-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes Esteem2; Sunflower; esteem2_jra4 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:111397 Serial 2756
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Schryvers, D.; Bartova, B.
Title Quantitative Landau potentials for the martensitic transformation in Ni-Al Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 22 Pages 221903,1-3
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000246909900020 Publication Date 2007-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:64777 Serial 2757
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J.
Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 5 Pages 053818
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000335826300012 Publication Date 2014-05-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 23 Open Access
Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D.
Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 159 Issue 159 Pages 46-58
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000366220000006 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 27 Open Access
Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762
Permanent link to this record
 

 
Author Altantzis, T.; Goris, B.; Sánchez-Iglesias, A.; Grzelczak, M.; Liz-Marzán, L.M.; Bals, S.
Title Quantitative structure determination of large three-dimensional nanoparticle assemblies Type A1 Journal article
Year 2013 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 30 Issue 1 Pages 84-88
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract To investigate nanoassemblies in three dimensions, electron tomography is an important tool. For large nanoassemblies, it is not straightforward to obtain quantitative results in three dimensions. An optimized acquisition technique, incoherent bright field scanning transmission electron microscopy, is combined with an advanced 3D reconstruction algorithm. The approach is applied to quantitatively analyze large nanoassemblies in three dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000310806000008 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 23 Open Access
Notes Goa; Fwo; 267867 Plasmaquo; 262348 Esmi Approved Most recent IF: 4.474; 2013 IF: 0.537
Call Number UA @ lucian @ c:irua:101776 Serial 2763
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1780-1789
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100045 Publication Date 2010-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:85533 Serial 2766
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
Year 2011 Publication Optics express Abbreviated Journal Opt Express
Volume 19 Issue 17 Pages 15955-15964
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293894900033 Publication Date 2011-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 19 Open Access
Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587
Call Number UA @ lucian @ c:irua:92428 Serial 2776
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.L.
Title R-phase structure refinement using electron diffraction data Type A1 Journal article
Year 2002 Publication Materials transactions Abbreviated Journal Mater Trans
Volume 43 Issue 5 Pages 774-779
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176212100002 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.713 Times cited 25 Open Access
Notes Approved Most recent IF: 0.713; 2002 IF: 0.841
Call Number UA @ lucian @ c:irua:48772 Serial 2805
Permanent link to this record
 

 
Author De Meulenaere, P.; Van Tendeloo, G.; van Landuyt, J.; Mommaert, C.; Severne, G.
Title Radiation defects and ordered radiation patterns in Ni and Ni4Mo: a study by electron microscopy Type A1 Journal article
Year 1993 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal
Volume 67 Issue 3 Pages 745-756
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1993; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6783 Serial 2808
Permanent link to this record
 

 
Author Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Maccato, C.; Tondello, E.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Štangar, U.L.
Title Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach Type A1 Journal article
Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 10 Issue 18 Pages 3249-3259
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present work is devoted to the preparation of Ag/TiO2 nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the systems chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 °C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000273410600015 Publication Date 2009-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 56 Open Access
Notes Esteem 026019 Approved Most recent IF: 3.075; 2009 IF: 3.453
Call Number UA @ lucian @ c:irua:80561 Serial 2811
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F.
Title Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater
Volume 29 Issue 7 Pages 2124-2132
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000270159200008 Publication Date 2009-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 18 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.164; 2009 IF: NA
Call Number UA @ lucian @ c:irua:79312 Serial 2812
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 94 Pages 52140-52146
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:121239 Serial 2813
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume Issue 94 Pages 52140-52146
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344389000041 Publication Date 2014-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 4 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:119529 Serial 2814
Permanent link to this record
 

 
Author Norén, L.; Van Tendeloo, G.; Withers, R.L.
Title The real (incommensurate interface modulated) structure of Ni6\pm xSe5 Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 162 Issue 1 Pages 122-127
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172586400016 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 4 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54709 Serial 2826
Permanent link to this record
 

 
Author Rodewald, M.; Rodewald, K.; De Meulenaere, P.; Van Tendeloo, G.
Title Real-space characterization of short-range order in Cu-Pd alloys Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 55 Issue 21 Pages 14173-14181
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Cu-Pd alloys containing 10, 20, 30, 40, and 50 at. % Pd and quenched from a temperature just above the ordering temperature T-c are investigated by electron diffraction and high-resolution electron microscopy (HREM). The results show diffuse electron diffraction intensities at {100} and {110} positions for the alloy with 10 at. % Pd, but with a characteristic twofold and fourfold splitting for the alloys with more than 10 at. % Pd. High-resolution images show the formation of microdomains best developed between 20 and 30 at. % Pd. A real-space characterization has been performed by applying videographic real-structure simulations revealing that the splitting of the diffuse maxima depends on the average distance between microdomains of Cu3Au type in antiphase with each other. By applying image processing routines on the HREM images, correlation vectors are identified which correspond to correlations between microdomains.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1997XE37100036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:21439 Serial 2828
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J.; Hamon, A.L.
Title Real space maps of atomic transitions Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 7 Pages 781-787
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Considering the rapid technical development of transmission electron microscopes, we investigate the possibility to map electronic transitions in real space on the atomic scale. To this purpose, we analyse the information carried by the scatterer's initial and final state wave functions and the role of the different atomic transition channels for the inelastic scattering cross section. It is shown that the change in the magnetic quantum number in the transition can be mapped. Two experimental set-ups are proposed, one blocking half the diffraction plane, the other one using a cylinder lens for imaging. Both methods break the conventional circular symmetry in the electron microscope making it possible to detect the handedness of electronic transitions as an asymmetry in the image intensity. This finding is of important for atomic resolution energy-loss magnetic chiral dichroism (EMCD), allowing to obtain the magnetic moments of single atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000266787900002 Publication Date 2009-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes J.V. acknowledges the FWO-Vlaanderen for support (contract no. G.0147.06) and the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77360UA @ admin @ c:irua:77360 Serial 2829
Permanent link to this record
 

 
Author Schattschneider, P.; Ennen, I.; Stoger-Pollach, M.; Verbeeck, J.; Mauchamp, V.; Jaouen, M.
Title Real space maps of magnetic moments on the atomic scale: theory and feasibility Type A1 Journal article
Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 110 Issue 8 Pages 1038-1041
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recently discovered EMCD technique (energy loss magnetic chiral dichroism) can detect atom specific magnetic moments with nanometer resolution, exploiting the spin selectivity of electronic transitions in energy loss spectroscopy. Yet, direct imaging of magnetic moments on the atomic scale is not possible. In this paper we present an extension of EMCD that can overcome this limit. As a model system we chose bcc Fe. We present image simulations of the L3 white line signal, based on the kinetic equation for the density matrix of the 200 kV probe electron. With actual progress in instrumentation (high brightness sources, aberration corrected lenses) this technique should allow direct imaging of spin moments on the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000281216600016 Publication Date 2009-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes --- Approved Most recent IF: 2.843; 2010 IF: 2.063
Call Number UA @ lucian @ c:irua:84439UA @ admin @ c:irua:84439 Serial 2830
Permanent link to this record
 

 
Author Krüger, P.; da Pieve, F.; Osterwalder, J.
Title Real-space multiple scattering method for angle-resolved photoemission and valence-band photoelectron diffraction and its application to Cu(111) Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 11 Pages 115437,1-115437,8
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A computational method is presented for angle-resolved photoemission spectra (ARPES) and photoelectron diffraction (PED) in the ultraviolet regime. The one-step model is employed and both initial valence and final continuum states are calculated using the finite-cluster, real-space multiple scattering method. Thereby the approach is versatile and provides a natural link to core-level PED. The method is applied to the Cu(111) valence band and good agreement with experiment is found for both ARPES spectra and PED patterns. When the PED patterns are integrated over a filled band of a single-orbital symmetry, such as Cu-3d, we show, both numerically and analytically, that the exact theory with delocalized initial states can be replaced by the much simpler, core-level-type theory where the initial states are taken as localized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288594500005 Publication Date 2011-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:89599 Serial 2831
Permanent link to this record
 

 
Author Schattschneider, P.; Verbeeck, J.; Mauchamp, V.; Jaouen, M.; Hamon, A.-L.
Title Real-space simulations of spin-polarized electronic transitions in iron Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 14 Pages 144418-144418,11
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract After the advent of energy-loss magnetic chiral dichroism (EMCD) in 2006, rapid progress in theoretical understanding and in experimental performance was achieved, recently demonstrating a spatial resolution of better than 2 nm. Similar to the x-ray magnetic circular dichroism technique, EMCD is used to study atom specific magnetic moments. The latest generation of electron microscopes opens the road to the mapping of spin moments on the atomic scale with this method. Here the theoretical background to reach this challenging aim is elaborated. Numerical simulations of the L3 transition in an Fe specimen, based on a combination of the density-matrix approach for inelastic electron scattering with the propagation of the probe electron in the lattice potential indicate the feasibility of single spin mapping in the electron microscope.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282678900006 Publication Date 2010-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes P.S. acknowledges the support of the Austrian Science Fund, Project No. I543-N20. Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85029UA @ admin @ c:irua:85029 Serial 2832
Permanent link to this record
 

 
Author Zhang, X.B.; Zhang, X.F.; Amelinckx, S.; Van Tendeloo, G.; van Landuyt, J.
Title The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects Type A1 Journal article
Year 1994 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 54 Issue Pages 237-249
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1994PA59800016 Publication Date 2002-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.436 Times cited 59 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:10006 Serial 2844
Permanent link to this record
 

 
Author Geuens, P.; Lebedev, O.I.; Van Tendeloo, G.
Title Reconstruction of the La0.9Sr0.1MnO3-SrTiO3 interface by quantitative high-resolution electron microscopy Type A1 Journal article
Year 2000 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 116 Issue 12 Pages 643-648
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000165546500001 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 2 Open Access
Notes Approved Most recent IF: 1.554; 2000 IF: 1.271
Call Number UA @ lucian @ c:irua:54749 Serial 2845
Permanent link to this record
 

 
Author Samajdar, I.; Ratchev, P.; Verlinden, B.; Schryvers, D.
Title Recrystallization and grain growth in a B2 iron aluminide alloy Type A1 Journal article
Year 1998 Publication Intermetallics Abbreviated Journal Intermetallics
Volume 6 Issue Pages 419-425
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Chicago, Ill. Editor
Language Wos 000074235500009 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.14 Times cited 17 Open Access
Notes Approved Most recent IF: 3.14; 1998 IF: 1.785
Call Number UA @ lucian @ c:irua:48366 Serial 2846
Permanent link to this record
 

 
Author Montoya, E.; Bals, S.; Van Tendeloo, G.
Title Redeposition and differential sputtering of La in transmission electron microscopy samples of LaAIO3/SrTiO3 multilayers prepared by focused ion beam Type A1 Journal article
Year 2008 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
Volume 231 Issue 3 Pages 359-363
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000259611000001 Publication Date 2008-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720;1365-2818; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.692 Times cited Open Access
Notes The authors are grateful to M. Huijben and G. Rijnders of the MESA+ group at the University of Twente (NI) for the growth of the multilayers. This work has been performed under the Interuniversity Attraction Poles programme – Belgian State Belgian Science Policy. The authors acknowledge financial support from the European Union under the framework 6 program under a contract for an Integrated Infrastructure initiative. Part of this work was performed with financial support from the European Union under the framework 6 programme, under a contract for an Integrated Infrastructure Initiative (Reference No. 02601.9 ESTEEM). Approved Most recent IF: 1.692; 2008 IF: 1.409
Call Number UA @ lucian @ c:irua:76522 Serial 2849
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bernaerts, D.; Amelinckx, S.
Title Reduced dimensionality in different forms of carbon Type A1 Journal article
Year 1998 Publication Carbon Abbreviated Journal Carbon
Volume 36 Issue 5/6 Pages 487-493
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000074824600003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 4 Open Access
Notes Approved Most recent IF: 6.337; 1998 IF: 1.293
Call Number UA @ lucian @ c:irua:25662 Serial 2851
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D.
Title Reducing the formation of FIB-induced FCC layers on Cu-Zn-Al austenite Type A1 Journal article
Year 2011 Publication Microscopy research and technique Abbreviated Journal Microsc Res Techniq
Volume 74 Issue 1 Pages 84-91
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The irradiation effects of thinning a sample of a Cu-Zn-Al shape memory alloy to electron transparency by a Ga+ focused ion beam were investigated. This thinning method was compared with conventional electropolishing and Ar+ ion milling. No implanted Ga was detected but surface FCC precipitation was found as a result of the focused ion beam sample preparation. Decreasing the irradiation dose by lowering the energy and current of the Ga+ ions did not lead to a complete disappearance of the FCC structure. The latter could only be removed after gentle Ar+ ion milling of the sample. It was further concluded that the precipitation of the FCC is independent of the crystallographic orientation of the surface.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000285976000012 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1059-910X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.147 Times cited 2 Open Access
Notes Approved Most recent IF: 1.147; 2011 IF: 1.792
Call Number UA @ lucian @ c:irua:85994 Serial 2852
Permanent link to this record
 

 
Author Müller, K.; Schowalter, M.; Rosenauer, A.; Jansen, J.; Tsuda, K.; Titantah, J.T.; Lamoen, D.
Title Refinement of chemically sensitive structure factors using parallel and convergent beam electron nanodiffraction Type A1 Journal article
Year 2010 Publication Journal of physics : conference series Abbreviated Journal
Volume 209 Issue 1 Pages 012025-012025,4
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce a new method to measure structure factors from parallel beam electron diffraction (PBED) patterns. Bloch wave refinement routines were developed which can minimise the difference between simulated and experimental Bragg intensities via variation of structure factors, Debye parameters, specimen thickness and -orientation. Due to plane wave illumination, the PBED refinement is highly efficient not only in computational respect, but also concerning the experimental effort since energy filtering is shown to have no significant effect on the refinement results. The PBED method was applied to simulated GaAs diffraction patterns to derive systematic errors and rules for the identification of plausible refinement results. The evaluation of experimental GaAs PBED patterns yields a 200 X-ray structure factor of -6.33±0.14. Additionally, we obtained -6.35±0.13 from two-dimensional convergent beam electron diffraction refinements. Both results confirm density functional theory calculations published by Rosenauer et al. and indicate the inaccuracy of isolated atom scattering data, which is crucial e.g. for the composition evaluation by lattice fringe analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos Publication Date 2010-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85761 Serial 2855
Permanent link to this record
 

 
Author Müller, K.; Schowalter, M.; Jansen, J.; Tsuda, K.; Titantah, J.; Lamoen, D.; Rosenauer, A.
Title Refinement of the 200 structure factor for GaAs using parallel and convergent beam electron nanodiffraction data Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 7 Pages 802-814
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a new method to measure structure factors from electron spot diffraction patterns recorded under almost parallel illumination in transmission electron microscopes. Bloch wave refinement routines have been developed to refine the crystal thickness, its orientation and structure factors by comparison of experimentally recorded and calculated intensities. Our method requires a modicum of computational effort, making it suitable for contemporary personal computers. Frozen lattice and Bloch wave simulations of GaAs diffraction patterns are used to derive optimised experimental conditions. Systematic errors are estimated from the application of the method to simulated diffraction patterns and rules for the recognition of physically reasonable initial refinement conditions are derived. The method is applied to the measurement of the 200 structure factor for GaAs. We found that the influence of inelastically scattered electrons is negligible. Additionally, we measured the 200 structure factor from zero loss filtered two-dimensional convergent beam electron diffraction patterns. The precision of both methods is found to be comparable and the results agree well with each other. A deviation of more than 20% from isolated atom scattering data is observed, whereas close agreement is found with structure factors obtained from density functional theory [A. Rosenauer, M. Schowalter, F. Glas, D. Lamoen, Phys. Rev. B 72 (2005), 085326-1], which account for the redistribution of electrons due to chemical bonding via modified atomic scattering amplitudes.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000266787900005 Publication Date 2009-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 8 Open Access
Notes Fwo; G.0425.05; Esteem; Ant 200611271505 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77361 Serial 2856
Permanent link to this record