toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Buysse, C. openurl 
  Title Perovskite capillaries for gas separation in sustainable energy production Type Doctoral thesis
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages 201 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:90548 Serial 8373  
Permanent link to this record
 

 
Author Van Hal, M. url  openurl
  Title Photo(electro)catalytic air purification and soot degradation with simultaneous energy recovery Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXXII, 203 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Today’s society is increasingly challenged by a range of urgent environmental problems. Air pollution is one of these pressing topics. This thesis will mainly focus on the degradation of volatile organic compounds (VOCs) and particulate matter (PM) – more specifically soot. A second globally urging topic is the quest for sustainable energy production. To simultaneously target both environmental problems, a photoelectrochemical (PEC) cell will be studied in this thesis, combining air purification and sustainable energy production in a single device. Photocatalysis is used at the anode of the PEC cell to drive the air purification process, while the energy contained in the degraded compounds is (partially) recovered at the cathode, either as H2 gas or electricity. The first two experimental chapters focus on the proof of concept of such an unbiased all-gas phase PEC cell targeting VOC degradation, using both TiO2- and WO3-based photocatalysts. In the two following experimental chapters the photocatalytic soot oxidation capacity of these TiO2- and WO3-based photocatalysts was studied. In the final experimental chapter the previously obtained results were combined, striving towards an efficient, sunlight-driven and soot-degrading waste gas-to-energy PEC cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184521 Serial 8378  
Permanent link to this record
 

 
Author Smits, M. isbn  openurl
  Title Photocatalytic degradation of diesel soot : from application to reaction mechanism Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 160 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-415-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:108803 Serial 8380  
Permanent link to this record
 

 
Author Van Wesenbeeck, K. url  isbn
openurl 
  Title Plasma catalysis as an efficient and sustainable air purification technology Type Doctoral thesis
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 171 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-514-1 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:135267 Serial 8388  
Permanent link to this record
 

 
Author Blommaerts, N. url  openurl
  Title Plasmonic core shell nanoparticles : from synthesis to photocatalytic applications Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 153 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Het gebruik van plasmon-actieve nanodeeltjes heeft de laatste 10 jaar zeer veel interesse gewekt bij onderzoekers in verschillende toepassingsdomeinen zoals fotokatalyse of oppervlakte versterkte Raman spectroscopie. Er is echter een grote limiterende factor bij het gebruik van edelmetaal nanodeeltjes zoals goud en zilver en dat is de stabiliteit. Deze oxideren en aggregeren snel, zeker in oxidatieve omgeving zoals in lucht. Een interessante aanpak om plasmon-actieve nanodeeltjes te stabiliseren, is om ze te omgeven in een schil, met andere woorden om een kern-schil nanodeeltje te vormen. Er zijn een heel aantal verschillende manieren waarop kern-schil nanodeeltjes gesynthetiseerd kunnen worden. In eerste instantie werden metaal nanodeeltjes omgeven door een (dunne) TiO2 laag. Afhankelijk van de hoeveelheid TiO2 precursor kon de dikte van de laag gecontroleerd worden tot enkele nanometers dik. De stalen werden getest voor de fotokatalytische afbraak van een vaste laag stearinezuur waarbij toevoeging van 2 wt% metaal@TiO2 op P25 leidde tot een significante verbetering in afbraakefficiëntie in vergelijking met zuiver P25. Een andere manier voor het stabiliseren van metaal nanodeeltjes is door ze te omgeven met een polymeerschil. Op deze manier kon de laagdikte gecontroleerd worden met sub-nanometer controle wat een zeer belangrijke factor is voor de hoeveelheid near-field versterking dat buiten de polymeer schil kan gaan. Een XTT test werd uitgevoerd om te bepalen wat de zuurstofactivatie snelheid was van goud en zilver (en goud-zilver bimetallische) nanodeeltjes, al dan niet omgeven door een (niet-)geleidende polymeer laag. Wanneer de stalen gecoat werden met vier niet-geleidende polymeerlagen zakte de zuurstofactivatie nagenoeg tot nul. Aan de andere kant, als goud nanodeeltjes werden omgeven door een geleidende schil was er nog steeds zuurstofactivatie, hoewel lager dan in het geval van goud zonder laag. Het laatste deel van deze thesis focuste meer op mogelijke toepassingen in luchtzuivering. In dit werk werd een glazen buis, gecoat aan de binnenkant met (Ag@polymer gemodificeerd) TiO2, als een spiraal rond een UVA lamp gewikkeld. De geoptimaliseerde spiraalreactor werd dan vergeleken met een conventionele cilindervormige fotoreactor, met dezelfde dimensies en totale katalysatorbelading, over een grote range aan experimentele condities. Uit de resultaten bleek dat de spiraalreactor significant betere afbraakefficiënties vertoonde in vergelijking met de conventionele cilindervormige reactor over een grote range aan debieten. Een adsorptiestap in combinatie met de geoptimaliseerde spiraalreactor zou kunnen leiden tot een zeer krachtige luchtzuiveringstechnologie.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164835 Serial 8389  
Permanent link to this record
 

 
Author Jochems, P. isbn  openurl
  Title Process intensification by immobilization of \beta-galactosidase on a mixed matrix membrance : galacto-oligosaccharides production as a case study Type Doctoral thesis
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages 199 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-430-4 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111811 Serial 8415  
Permanent link to this record
 

 
Author Sui, Y. url  isbn
openurl 
  Title Producing nutritional protein with Dunaliella microalgae : technological and economic optimization Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 140 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract ​In this thesis, microalga Dunaliella salina is highlighted as a novel source of protein to sustain the human needs. As demonstrated in this thesis, the biochemical composition of D. salina is not fixed, and can be substantially influenced by internal and external conditions. In order to comply with the human requirement of protein, various important factors affecting the protein quantity and quality of D. salina have been evaluated in this thesis for an optimized production strategy. All tested parameters, namely salinity, pH, light regimes (continuous light and light/dark cycle), light intensity, nutrient levels and growth phases can contribute to significant variations of protein content and essential amino acid (EAA) level in D. salina. Ultimately, D. salina is capable of producing high amount of superior quality protein, complying with the FAO reference for human consumption. Even better, such protein of superior quality can be accompanied by unique β-carotene accumulation in D. salina, a pigment with anti-oxidant pro-vitamin A effect. In the end, according to the techno-economic analysis (TEA), it is economically feasible to produce D. salina biomass for human nutrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-630-8 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164002 Serial 8420  
Permanent link to this record
 

 
Author Alloul, A. isbn  openurl
  Title Purple bacteria as microbial protein source : technology development, community control, economic optimization and biomass valorization Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 212 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract ​Food production is a cornerstone in contemporary industrial societies. Its production requires land, water and enormous amounts of fertilizers. These precious fertilizers enter the linear food chain and suffer from a cascade of inefficiencies, resulting in detrimental effects to the environment. A radical transforming of the current food production chain is, therefore, essential to guarantee a sustainable future for humanity. ​This thesis has studied the production of microbial protein (i.e. single-cell protein), which is the use of microorganisms such as yeast, fungi, algae and bacteria as protein ingredient for animal feed. The type of microorganisms targeted in this thesis were purple non-sulfur bacteria (PNSB). These bacteria are an extremely heterogenic group that contain photosynthetic pigments and are able to perform anoxygenic photosynthesis. The core focus of the thesis was technology development for the production of PNSB as a source of microbial protein on wastewater and fresh fertilizers. In the final stage of this research, it was the objective to explore the potential of PNSB as a nutritious feed ingredient for shrimp. ​Overall, this work has provided the building blocks to transform the conventional food production chain. The findings show that PNSB production and biomass valorization is within reach. Further pilot implementation and cost reduction will facilitate the introduction of PNSB production in future’s wastewater treatment plants and the valorization of the biomass as nutritious animal feed ingredient.​  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-636-0 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:164820 Serial 8430  
Permanent link to this record
 

 
Author Tytgat, T. isbn  openurl
  Title Research and development of self-supporting TiO2 foams for removal of VOCs from ambient air Type Doctoral thesis
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages 164 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-395-6 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:104607 Serial 8472  
Permanent link to this record
 

 
Author Keulemans, M. openurl 
  Title Study of electron transfer processes in plasmonic photocatalysis Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 170 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147504 Serial 8596  
Permanent link to this record
 

 
Author Asapu, R. url  openurl
  Title A study of plasmonic systems using Layer-by-Layer synthesized core-shell nanoparticles Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 142 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:153373 Serial 8603  
Permanent link to this record
 

 
Author Ysebaert, T. openurl 
  Title Modelling and experimental validation of deposition on vegetation to facilitate urban particulate matter mitigation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xxvi, 234 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to air pollution, such as particulate matter (PM), causes adverse health effects, particularly to the respiratory tract and cardiovascular system. PM is the collective name for all kinds of particles ranging from small particles and liquid droplets, which contain organic compounds, acids and metals, to soil or dust particles. One distinguishes PM10, PM2.5 and PM0.1, which have aerodynamic particle sizes smaller than 10, 2.5 and 0.1 µm, respectively. It is mainly the latter that is the most harmful, as PM0.1 penetrates deep into the respiratory system and carries relatively more toxic substances than the other PM fractions. Over a 15-year period, PM concentrations in European member states have fallen by about 30%. Nevertheless, the World Health Organisation (WHO) air quality guidelines, which became stricter in 2021, are exceeded in most places around the world. Particularly in cities, excessive levels of PM are measured and it is here that PM mitigation should be investigated. For this, the implementation of urban green infrastructure, including trees, shrubs, green roofs and green walls, is being looked at. Plants hinder airflow and remove PM from the air by deposition on their leaves and branches. This process is known as dry deposition. Plants can capture PM very efficiently, due to their complex structure of leaves and branches. Green walls offer significant advantages over other types of urban green infrastructure because they can grow on the huge available wall area and, because they do not hinder air circulation, as we sometimes see with trees. Green walls are believed to have a much greater, untapped potential to reduce PM pollution. However, a literature review showed that we do not know the quantitative impact of green walls and lack the tools and/or general methodology to do so. The objective of this thesis is therefore to develop a method for assessing PM removal by green walls, based on predictive models and based on relevant parameters that are experimentally determined. Computational fluid dynamics (CFD) is a numerical method to simulate airflow in complex environments such as cities. These models can also simulate the vegetation-wind interaction in detail and are interesting tools to assess the effect of green walls on PM concentrations in real environments. It is important to first study the aerodynamic effect of green walls and parameterise it correctly in CFD models. Plants decrease the wind speed and create turbulence through a combination of viscous and form drag, which are determined by the permeability (K) and drag coefficient (Cd), respectively. Wind tunnel experiments were conducted with three commonly found climbers (Hedera helix, Parthenocissus tricuspidata and Parthenocissus quinquefolia) and the variation of leaf area density was investigated for two of them. It was observed that the air resistance depended on plant species, leaf area density and wind speed. The difference between the plant species was assigned to the functional leaf size (FLS), the ratio of the largest circle within the boundaries of the leaf to the total leaf area. FLS is likely associated with other morphological characteristics of plants that, when considered collectively, provide a more comprehensive representation of leaf complexity. The pressure and velocity measurements obtained were used to optimise the permeability and drag coefficient in a CFD model. At wind speeds below 0.6 m s-1, the resistance was mainly determined by viscous drag and a larger leaf size resulted in a higher viscous drag. At wind speeds above 1.5 m s-1, form drag was dominant and the parameterised Cd decreased with increasing wind speed due to the sheltering effect of successive plant elements. The leaf area density had a significant effect on K and Cd and, is therefore an important plant parameters in CFD models. The main conclusion here is that the common practice of using a constant Cd to model the influence of plants on the air flow leads to deviations from reality. Wind tunnels are highly suitable to study the impact of green walls on PM concentration under controlled environmental conditions. For this purpose, a new wind tunnel setup was built and great attention was paid to obtaining a uniform air flow. Thus, based on CFD models, appropriate flow controllers were chosen, consisting of honeycombs and screens with different mesh sizes. New PM generation devices and measuring equipment were installed and set up appropriately. Devices were available for generating and measuring ultrafine dust (<0.1 µm, i.e. PM0.1) and fine dust (<0.3 µm, i.e. PM0.3) consisting of soot particles, and, on the other hand, fine dust with particle sizes smaller than 2.5 (PM2.5) and 10 µm (PM10) consisting of 'Arizona fine test dust'. With the new wind tunnel setup, it was possible to measure the influence of Hedera helix (common ivy), grown in a planter against a climbing aid, on the PM concentration and this was expressed by a collection efficiency, i.e. the difference in concentration in front and behind the plants normalised for the incoming concentration. The collection efficiency of H. helix depended on the particle size of the PM and wind speed. The collection efficiency decreased when the particle size increased from 0.02 to 0.2 µm and increased again for particle sizes above 0.3 µm. The collection efficiency also increased with increasing wind speed, especially for particle sizes > 0.03 µm. On the other hand, relative humidity and the type of PM (soot or dust) did not significantly affect the collection efficiency. The main objective of this study was to obtain an optimised size-resolved deposition model. Dry deposition occurs through several mechanisms, in particular gravity, diffusion, impaction and interception, and the subsequent resuspension of deposited PM back to the environment. The modelling of these mechanisms was described by \citet{Zhang2001} and \citet{Petroff2010}. The data obtained from the wind tunnel experiments allowed validating these deposition models. It was for the first time that deposition of real PM on green walls was studied. The different PM deposition mechanisms were found to be strongly dependent on particle size and wind speed. The models of \citet{Zhang2001} and \citet{Petroff2010} each matched PM concentration measurements for only certain particle sizes. Therefore, a combination of the two models was investigated and the root mean square error was lower by on average 3.5% (PM < 0.03 µm) and 46% (PM > 0.03 µm) compared to the original models at wind speeds greater than 1.5 m s-1. For wind speeds less than 1.5 m s-1, the optimised model did not differ from the original models. The optimised model was able to meet the imposed criteria for air quality models, where a correct model exhibits low deviation from measurements ('normalised mean square error' < 1.5), low bias ('fractional bias' between -0.3 and 0.3) and high R2. In comparison, the R$2$ of the optimised model was 0.57, while that of Zhang et al. (2001) and Petroff et al. (2010) was 0.23 and 0.31, respectively. The optimised model was however characterised by a high scatter, with the fraction of modeled results located within a factor of two of the measurements being lower than 50. A model study with a green façade oriented parallel to the incoming airflow showed that deposition by interception and impaction reduced remarkably, but that the orientation had no effect on deposition by Brownian diffusion. A promising green wall form for PM mitigation is the living wall system (LWS). LWS consist of supporting structures with substrate to grow plants in and can be planted with a variety of plant species. This allows to select plant species with optimal characteristics to achieve PM deposition. These characteristics refer to the macro- and microstructure of the leaves, and research has been conducted mainly on these. On the other hand, the influence of the supporting structure and substrate on PM concentrations has rarely been studied. With the new wind tunnel setup, LWS from different manufacturers were tested for their ability to capture PM. The setups were subjected for three hours to an air flow with a low PM concentration (resuspension phase) and then for three hours to an air flow to which additional PM was added (deposition phase). Some setups were able to decrease the PM concentration during both phases, while others just caused the concentration to increase. Some systems were able to reduce particulate matter concentration during both phases, namely LWS consisting of planters (-2% and -4% for PM0.1 and PM2.5, respectively) and textile cloths (-23% and -5% for PM0.1 and PM2.5, respectively). While other systems actually resulted in an increase in concentration especially LWS existing textile fabrics consisting of geotextiles (+11% for both PM fractions) and with moss as substrate (+2% and +5% for PM0.1 and PM2.5, respectively). This highlights the importance of careful selection of suspension systems to reduce particulate matter concentrations. Further research is therefore needed on the materials used in these systems in relation to their particulate content, as well as on plant development in these systems. In addition to air measurements, measurements were taken of the amount of PM deposited on the leaves and suspension system of LWS. This allowed the difference in PM resuspension and deposition between plant species to be investigated. The amount of deposited particulate matter was determined based on 'saturation isothermal remanent magnetisation' (SIRM), a measure of magnetisable particulate matter. This was possible because the added 'Arizona fine test dust' contained iron oxide. However, no significant difference was observed between the SIRM values measured before the wind tunnel experiment, after resuspension and after deposition. This suggested that the iron oxide content in the Arizona fine test dust was too low to measure a significant difference in the SIRM values on leaves after three hours. The plant species did give rise to different SIRM values ranging between 5 and 260 µ A. In particular, SIRM values above 26 µ A were observed for the plant species that were grouped due to their significantly higher accumulation of PM. 'Specific leaf area' (SLA), specifically the ratio of the one-sided 'fresh' leaf area to its dry mass, was the significant leaf characteristic. SLA correlated with leaf complexity. In particular, plant species with elongated leaves were characterized by low SLA, high FLS and high complexity and showed significantly higher SIRM values. Finally, the optimised size-resolved deposition model was also tested in an urban model to get an idea of the impact of a green wall on PM concentrations in a so-called 'street canyon'. These are narrow streets with high buildings on both sides, making air pollution more persistent. To this end, an ideal scenario was tested in which a green wall was introduced along both sides of the street over a length of about 270 m. The model result showed a decrease in PM2.5 and PM10 of 46 ± 12% and 52 ± 14%. This result is of course for a very optimal scenario where the green wall covers the entire building façades. Since this is not feasible in reality, other ways of promoting contact between green walls and polluted air can be explored. The insights obtained illustrate that the use of climbing plants can be a cost-effective and environmentally friendly solution to reduce PM concentrations. Moreover, the findings showed that models can be used to investigate the impact of green walls on PM levels. These findings fit within the broader context of designing healthy and sustainable urban environments and developing innovative solutions based on solid scientific knowledge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199439 Serial 8900  
Permanent link to this record
 

 
Author Kovács, A. url  openurl
  Title A structured methodology for natural deep eutectic solvent selection and formulation for enzymatic reactions Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages viii, 216 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Natural deep eutectic solvents (NADES) show great promise as media for enzymatic reactions in areas where (bio)compatibility with natural or medicinal products is a must. While in theory they can be tailored to the intended reaction to ensure optimized yields, the knowledge to date is predominantly empirical, with some mechanistic reports providing a fragmented view at best. Therefore, it is not easy to explain experimental observations, let alone make predictions. The aim of this study was to develop a structured, holistic understanding of the effects of NADES media on enzymatic reactions, distinguishing between effects on solubility, solvation, viscosity, inhibition and denaturation. Experimental and computational chemistry methods were combined to separately study the interactions between enzyme, substrate, and NADES as reaction media. The initial enzyme activity and the final conversion of vinyl laurate transesterification by immobilized Candida antarctica lipase were studied experimentally. The direct effect of NADES on the same enzyme was modeled by molecular dynamics simulation. The effect of solubility was studied by both experimental and computational methods. To predict the solubility and viscosity of NADES, data-driven models were developed by combining group contribution and machine learning methods, based on the accumulated experimental knowledge on NADES found in the literature. Finally, the composed relationships and prediction models were applied to the practical example of deacetylation of mannosylerythritol lipids (MELs). The experimental findings show that the chosen NADES system has a significant effect on both the apparent initial activity and the final conversion. However, in the simulations, the enzyme retains its original structure; moreover, NADES has an additional stabilizing effect on the enzyme. In addition, changes in the molar ratio of the compounds in NADES do not show a significant effect on the stability of the enzyme. These results indicate that the main effect of NADES on the reaction is mainly related to the substrate-solvent interactions (solvation energy) and the viscosity of the system. On the other hand, the experimental results only confirmed the significance of solvation, viscosity did not show a clear correlation with the studied reaction parameters. The machine learning models built for solubility and viscosity gave quantitative predictions of these properties. The accumulated knowledge was used to optimize the yield in the deacetylation reaction of MELs. The combination of these methods provides fundamental knowledge about the effect of NADES on biocatalysis, but the results are also applicable to other uses of NADES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194886 Serial 7276  
Permanent link to this record
 

 
Author Snoeckx, R. url  openurl
  Title Plasma technology : a novel solution for CO2 conversion? Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:143110 Serial 4680  
Permanent link to this record
 

 
Author Huygh, S. openurl 
  Title Towards a fundamental understanding of plasma : TiO2 catalyst interaction for greenhouse gas conversion Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Universiteit Antwerpen Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:143954 Serial 4698  
Permanent link to this record
 

 
Author Ramakers, M. openurl 
  Title Using a gliding arc plasmatron for CO2 conversion : the future in industry? Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 235 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158254 Serial 5282  
Permanent link to this record
 

 
Author Oliveira, M.C. openurl 
  Title Influence of phase-separated domains on the permeability of oxidized lipid membranes Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 151 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biological membranes are under constant attack of reactive oxygen and nitrogen species (RONS), which may lead to a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Because of that, nitro-oxidized lipids are also associated with several tumors and inflammatory and neurodegenerative diseases. Moreover, lipid oxidation may induce membrane phase-separated domains, which also drastically affect the membrane function. Evidence suggests that domain interfaces are “hot spots” for pore formation, but the underlying mechanisms remain elusive. There is an urgent need for an improved understanding of oxidation-induced phase separation on membrane properties. Likewise, the molecular structure at domain interfaces still needs to be elucidated. To evaluate the effect of lipid nitro-oxidation on the permeability of single-phase (homogeneous) and phase-separated (heterogeneous) phospholipid bilayers (PLBs), we performed atomistic molecular dynamics (MD) simulations using: (1) single-phase PLBs composed of several isomers of nitrated and/or oxidized lipids; (2) phase-separated PLBs composed of coexisting liquid ordered (Lo) and liquid disordered (Ld) domains, where the Ld domain is composed of non-oxidized and/or oxidized lipids. Our results show that nitrated lipids increase the membrane permeability of single-phase PLBs by three-fold compared to oxidized lipids. In addition, we show that oxidized lipids in the presence of nitrated lipids decrease the membrane permeability, suggesting an interaction between nitrated and oxidized lipids. Overall, the permeability of single-phase and phase-separated PLBs was comparable, and the presence of oxidized lipids increases the membrane permeability only in single-phase PLBs. Despite the latter, the presence of only 1.5% of lipid aldehydes at the Lo/Ld domain interfaces of phase-separated PLBs was able to increase the membrane permeability. In consequence of this, we also performed coarse-grained MD simulations to evaluate whether lipid aldehydes have a preference to accumulate at the interface between Lo/Ld domains. Our results show that lipid aldehydes derived from mono-unsaturated lipids accumulate at the interface, but those derived from poly-unsaturated lipids remain in the Ld domain. This study is of interest for photodynamic therapy and plasma medicine for cancer treatment, to understand the effects caused by RONS in cell membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191039 Serial 7173  
Permanent link to this record
 

 
Author Van Alphen, S. url  openurl
  Title Modelling plasma reactors for sustainable CO2 conversion and N2 fixation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 202 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract 200 years ago, humanity started the industrial revolution by discovering fossil fuels, which lead to unprecedented technological advancements. However it has become alarmingly clear that the major environmental concerns associated with fossil fuels require a short-term transition from a carbon-based energy economy to a sustainable one based on green electricity. A key step concerning this transition exists in developing electricity-driven alternatives for chemical processes that rely on fossil fuels as a raw material. A technology that is gaining increasing interest to achieve this, is plasma technology. Using plasmas to induce chemical reactions by selectively heating electrons in a gas has already delivered promising results for gas conversion applications like CO2 conversion and N2 fixation, but plasma reactors still require optimization to be considered industrially competitive to existing fossil fuel-based processes and emerging other electricity-based technologies. In this thesis I develop computational models to describe plasma reactors and identify key mechanisms in three different plasma reactors for three different gas conversion applications, i.e. N2 fixation, combined CO2-CH4 conversion and CO2 splitting. I first developed models to describe a new rotating gliding arc (GA) reactor operating in two arc modes, which, as revealed by my model, are characterized by distinct plasma chemistry pathways. Subsequently, my colleague and I study the quenching effect of an effusion nozzle to this rotating GA reactor, reaching the best results to date for N2 fixation into NOx at atmospheric pressure, i.e., NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol. Afterwards, I investigate the possible improvement of N2 admixtures in plasma-based CO2 and CH4 conversion, as significant amounts of N2 are often found in industrial CO2 waste streams, and gas separations are financially costly. Through combining my models with the experiment from a fellow PhD student, we reveal that moderate amounts of N2 (i.e. around 20%) increase both the electron density and the gas temperature to yield an overall energy cost reduction of 21%. Finally, I model quenching nozzles for plasma-based CO2 conversion in a microwave reactor, to explain the enhancements in CO2 conversion that were demonstrated in experiments. Through computational modelling I reveal that the nozzle introduces fast gas quenching resulting in the suppression of recombination reactions, which have more impact at low flow rates, where recombination is the most limiting factor in the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194811 Serial 7270  
Permanent link to this record
 

 
Author Grubova, I.Y. url  openurl
  Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 251 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158087 Serial 7760  
Permanent link to this record
 

 
Author Wang, J. url  openurl
  Title Plasma catalysis : study of CO2 reforming of CH4 in a DBD reactor Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages XVI, 232 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The plasma-based dry reforming in a dielectric barrier discharge (DBD) reactor is important to achieve sustainable goals, but many challenges remain. For example, the conversion and energy yield of DBD reactors are relatively low, and the catalysts or packing materials used in existing studies cannot improve them, possibly due to the unsuitable properties and structures of catalysts or packing materials for plasma processes. In order to study the effect of catalyst structure on plasma-based dry reforming, a controllable synthesis of the catalyst supports or templates was explored. In Chapter 2, an initially immiscible synthesis method was proposed to synthesize uniform silica spheres, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Using the silica spheres as templates, 3D porous Cu and CuO catalysts with different pore sizes were synthesized in Chapter 3 to study the effect of catalyst pore size on the plasma-catalytic dry reforming. In most cases, the smaller the pore size, the higher the conversion of CH4 and CO2 due to the reaction of radicals and ions formed in the plasma. An exception are the samples synthesized from 1 μm silica, which show better performance due to the electric field enhancement for pore sizes close to the Debye length. Besides the pore size, the particle diameter of the catalyst or packing is also one of the important factors affecting the interaction between plasma and catalyst. In Chapter 4, SiO2 spheres (with or without supported metal) were used to study the effect of different support particle sizes on plasma-based dry reforming. We found that a uniform SiO2 packing improves the conversion of plasma-based dry reforming. The conversion of plasma-based dry reforming first increases and then decreases with increasing particle size, due to the balance between the promoting and hindering effect of the particle filling on the plasma discharge. Chapter 5 is to improve the design of the DBD reactor itself, in order to try to increase its low energy yield. Some stainless steel rings were put over the inner electrode rod of the DBD reactor. The presence of rings increases the local electric field, the displaced charges and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. The placement of the rings improves the performance of the reactor at 30 W supplied power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194045 Serial 7273  
Permanent link to this record
 

 
Author Larraín, M. openurl 
  Title Recycling of plastics : linking technical, economic and policy aspects of post-consumer plastic packaging Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages x, 165 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract The rise in plastic packaging production and disposal has encouraged the progress of recycling technologies and aroused policy discussion on how to increase recycling rates. However, the effect that these policy instruments will have on the development of the different recycling technologies has not been studied holistically yet. This dissertation explores how new and existing technologies will behave under the market and policy conditions observed at present and after the implementation of the policy instruments that are under discussion. The technologies that are analyzed in this thesis are mechanical recycling and thermochemical recycling of post-consumer polyolefin waste. Using a techno-economic assessment that takes into account the physical properties of the different plastic fractions and their contamination level, the study shows that both mechanical and thermochemical recycling can be profitable if oil prices remain steady or increase. Specifically, mechanical recycling will show better results than thermochemical recycling for plastic fractions with low contamination levels. On the contrary, thermochemical recycling is more profitable for fractions with a higher contamination level from which high-quality products cannot be obtained with mechanical recycling, such as PE films. Moreover, it demonstrates that besides the oil prices and sorted waste prices, waste purity and the plant capacity are the variables that influence more the net present value of thermochemical recycling and the labor cost and waste purity the ones of mechanical recycling. The thesis explores the dynamics between the stakeholders of the circular value chain and predicts the recycling rates under the implementation of several policy instruments. This is done with a supply chain equilibrium model, based on the extended producer responsibility scheme implemented in Flanders, that uses as an input the cost structures of mechanical and thermochemical recycling obtained from the techno-economic assessments. Direct interventions like recycled content standards, can decouple the recycling industry from the oil market, but in the long term, they may not present incentives to achieve recycling levels beyond the targeted amounts and thus limit technological innovation. On the contrary, economic interventions such as taxes, create economic incentives for recycling and allow fund collection from the government but leave the recycled levels dependent on external markets. Results also show that higher recycling rates does not necessarily mean better environmental performance. Therefore, when designing circular economy policies, policymakers should carefully analyze whether the intention is to increase circularity or improve the sustainability of the value chains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191730 Serial 7366  
Permanent link to this record
 

 
Author Tschulkow, M. openurl 
  Title A techno-environmental economic assessment of a lignin-first biorefinery : a dynamic and prospective framework for emerging technologies Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 175 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Novel emerging biorefinery technologies have gained interest and have the potential to tackle several sustainability challenges in our society. A lignin-first biorefinery process – reductive catalytic fractionation (RCF) – is currently under development with the aim to process wood into high-value end-products that replace highly polluting fossil oil-based products. However, such emerging technologies are not matured yet, holding a certain degree of technological, economic, and environmental uncertainty. Hence, an appropriate assessment method is required to assess techno-economic feasibility and environmental impacts of emerging uncertain technologies (e.g lignin-first RCF process). This dissertation aims to develop an integrated techno-environmental economic assessment framework to assess emerging technologies dynamically and prospectively from economic and environmental points of view. First, a techno-economic assessment (TEA) is performed to assess the economic feasibility and the most influential economic and technological parameters of the lignin-first RCF biorefinery taking the whole wood value chain into account. By making the relations across the wood value chain, the scale of the biorefinery, wood species, and output prices highly determine the economic feasibility. The economic feasibility can be reached by a sufficient capacity level which depends on wood species-specific conditions. Also, waste wood proves to be the most profitable feedstock in comparison to virgin wood. Second, an analytical real options analysis (ROA) is performed taking two correlated market uncertainties and the value of flexibility into account to identify the optimal investment decision in an RCF biorefinery. Two different investment options, separated and united investments in harvesting equipment and RCF biorefinery, are analyzed. In both scenarios, market uncertainty postpones the investment. When both investment decisions are united, the probability of investment increases in comparison to separated investments. The study reveals that RCF has the potential to stimulate investments within the wood value chain. Third, a consequential life cycle assessment (LCA) is performed to assess the carbon emissions and the environmental consequences of the lignin-first RCF process and its products. The study reveals that at the current stage RCF products have higher carbon emissions than their alternative counterparts. Several options to improve the environmental performance are discussed such as different RCF technology configurations, targeting different RCF products with the ability to replace higher polluting alternative counterparts on the markets. Other discussion points such as transportation type and the distance, (in-)direct land-use change, the use stage and disposal stages implications, and a more comprehensive environmental view of the RCF products, show the potential to improve the environmental performance of the RCF technology. Overall, the study shows that the RCF process can be environmentally desirable if the appropriate RCF configuration and products are chosen. Finally, the above-mentioned methods – techno-economic assessment, analytical real options analysis, and consequential life cycle assessment – are uniquely integrated within the newly developed integrated assessment framework. The framework has the aim to complement the shortcomings and combine the advantages of all three methods. The framework assesses emerging technologies to give predictive insights about the time-specific economic and environmental performance under the newly developed three threshold conditions: technological readiness, economic feasibility, and environmental desirability. The developed integrated assessment framework assesses dynamically and prospectively the RCF biorefinery implementation under Belgian conditions. It reveals that the economic feasibility increases and carbon emissions decrease over time. The RCF biorefinery fulfills all three threshold conditions – technological readiness, economic feasibility, and environmental desirability – consecutively. The newly developed integrated assessment framework offers decision support to several stakeholders of emerging technologies starting from low technology readiness level (TRL). Practitioners such as the technology developers, researchers, and policymakers can use the framework to evaluate emerging technologies that deal with high levels of technological, economic, and environmental uncertainties. The framework assesses emerging technologies on a detailed level to give decision-makers in-depth insights into the intertwined nature of the technological, economic, and environmental dimensions. It offers insights into the expected time-specific economic and environmental performances, potential, and challenges of the emerging technology to further improve the technology and direct R&Ds along the right path.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188968 Serial 7369  
Permanent link to this record
 

 
Author Roegiers, J. file  openurl
  Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXX, 197 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181137 Serial 6860  
Permanent link to this record
 

 
Author Pacquets, L. url  openurl
  Title Towards stable Cu-Ag bimetallic nanoparticles to boost the electrocatalytic CO2 reduction Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xvi, 188 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ever since the industrial revolution, the emission of greenhouse gasses dramatically increased, resulting in high CO2 concentration in the atmosphere. The electrochemical conversion of CO2 to value added products, such as carbon monoxide, formic acid, methane, ethylene and ethanol is a very promising strategy to inhibit CO2 emissions. Nevertheless, at the moment, the electrochemical CO2 reduction (eCO2R) is not yet industrially viable, mainly due to the lack of good electrocatalysts. On the other hand, core-shell nanoparticles (NPs) have emerged over the last couple of years as promising candidates. It is believed that bimetallic enhancement effects are behind the improved performance of these core-shell NPs when compared to the individual metals. Although widely investigated, there are still some remaining issues and/or open questions. Indeed, the development of a robust and straightforward synthesis method along with fundamental insight into their resistance towards electrochemical stress remains absent. A good control over morphology, size and composition is key in determining which properties are beneficial for the eCO2R. Since these catalysts are designed to be implemented in electrolyzers, they have to maintain long-term performance. This makes the design of a reproducible method, unveiling structure-performance relationships the effect of electrochemical stress, a crucial aspect. Exploring and modifying existing synthesis methods, have led to the acquisition of a robust and reproducible synthesis method where thermal decomposition of the Cu core is combined with the galvanic replacement of Ag in organic solvents. The implementation of this method has led to the design of a wide variety of Cu-Ag bimetallic NPs and enabled to investigate their composition-selectivity profile. Introducing Ag on Cu suppressed hydrogen and increased the CO formation. CO production was boosted by using Cu@Ag core-shells and was promoted even more by changing the type of electrolyte. As these nanoparticles suffered from degradation, the 3D mapping of the structural changes of Cu@Ag core-shells under operating conditions led to the hypothesis of a two-step degradation mechanism where initially Cu leaching was observed with the subsequent sintering of the Ag shells. One approach to avoid this electrochemical degradation, investigated in this research, was the application of an ultrathin carbon layer to protect the active layer. This ultrathin carbon layer operated as a protective layer, suppressing hydrogen production and increasing the stability of the electrocatalyst. In conclusion, the product selectivity can be tuned by using different Cu-Ag bimetallic nanoparticles synthesized through a robust method. Their unique degradation pathway of Cu@Ag core-shell nanoparticles has led to the proposition of a more accurate stabilization strategy. These findings can contribute significantly in the quest for improved electrocatalysts for the eCO2R.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190236 Serial 7221  
Permanent link to this record
 

 
Author Du, K. url  openurl
  Title In situ TEM study on the manipulation of ferroelectrics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 91 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The strong correlated oxide systems attract a lot of attentions of scientists recently, the coexistence and interplay between various degrees of freedom, such as charge, spin and orbital, has been demonstrated to induce some fancy physical properties and phenomenon, including metal-insulator transition, high temperature superconductivity, colossal magnetoresistance. As a part of the strong correlated oxide systems, the ferroelectrics is abundant in both physical properties and application. First, if the electric dipole continuously rotating around a stable core then a topological structure is produced. If people could manipulate the topological structure and simultaneously observe the structure evolution, with external field applied on the topological structure, then it is very likely for such kind of ferroelectrics to be the next generation of storage, for it is reported to need low power input and produce high density of storage. In the other hand, in solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, such as ferroelectricity and ferromagnetism, antiferroelectricity and antiferromagnetism, but ferrielectricity and ferrimagnetism kept telling a disparate story in microscopic level. The claimed “ferrielectrics” in existing research is equivalent to ferroelectric ones, thus the findings of such a real irreducible solids would complete the last piece of the ferroelectrics family. While solving the above two questions remain challengeable: the size of topological structure is small (typically below 10 nm), general characterization methods are insufficient for such high demand on space resolution, not to mention manipulating and observing its dynamic behavior at an atomic level. Here, employing the spherical aberration corrected electron microscope, we applied external field (heating and bias) on ferroelectrics. Combined with high-end characterization methods including the high-angle annular dark field (HAADF-STEM) image, Electron Energy Loss Spectroscopy (EELS) and integrated differential phase contrast (iDPC), the dynamic evolution of ferroelectrics are observed and analyzed. The main findings of this paper could be concluded as listed here: (1) PbTiO3(001)// SrTiO3(001) is grown on DyScO3 and SrRuO3 by pusled laser deposition, the atomical EDS mapping results reveal that the interface between PTO and STO is atomically sharp. Increasing the thickness of PTO from 1 uc to 21 uc, the topological structure wihtin PTO layer would transform from a/c domain to wave, vortex and finally flux closure domain. The geometric phase analysis results (GPA) reveal that above topological structures are corresponding to various strain. (2) Combined with in-situ biasing holder, the electric bias was applied on polar vortex, and it evolved from vortex (0 V) to polar wave (2 V) and finally polar down (5 V). EELS analysis was performed and we find that negative charge is gathered at vortex core, which turns the Ti4+ to Ti3+ there. The oxygen vacancy at negative polarization surface and the negative charge at the positive polarization surface realized the polarization screening of polar down domain. (3) Through the atomic inspection and analysis on lattice structure of BaFe2Se3, the near ladders within single unit are found to be different in degree of tetramerization, thus leading to a residual polarization along the a-axis. The further in-situ heating and biasing experiment was conducted on BaFe2Se3, and the strong and weak ladders are proved to be independent for their behavior under external field. This findings distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179310 Serial 6842  
Permanent link to this record
 

 
Author Prabhakara, V. url  openurl
  Title Strain measurement for semiconductor applications with Raman spectroscopy and Transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 149 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scaling down the size of transistors has been a trend for several decades which has led to improved transistor performance, increased transistor density and hence the overall computation power of IC chips. The trend slowed in recent years due to reliability and power consumption issues at the nanoscale. Hence strain is introduced into transistor channels that has beneficial effects on improving the mobility of charge carriers, providing an alternative pathway for enhancing transistor performance. Therefore, monitoring strain is vital for the semiconductor industry. With the recent trend of decreasing device dimensions (FinFETS ~ 10-20nm) and strain modulation being used throughout, industry needs a reliable and fast method as quality control or defect characterisation. Such a universal strain measurement method does not exist, and one relies on a combination of quantitative in-line methods and complex off-line approaches. In this thesis, I investigated TEM and Raman spectroscopy-based methodologies for strain measurement. In terms of TEM methodologies, advancements are made for the STEM moiré imaging, targeting strain spatial resolution enhancement. I introduce advanced quadrature demodulation and phase stepping interferometry applied to STEM moiré that greatly enhances the spatial resolution while providing enhanced field of view and sensitivity for strain measurement. We introduce ways to reduce scan distortions in strain maps using an alternative scan strategy called “Block scanning” and the non-linear regression applied for strain extraction. Prospects for 3D strain analysis using high-resolution tomography is also investigated which gives direct access for the full second order strain tensors calculation. Finally, we compare strain measurements from TEM techniques with inline techniques like Raman spectroscopy. Raman stress measurement involves sensitive identification of the TO and LO phonon peaks. Raman spectrum of strained Ge transistor channel consists of strongly overlapping peaks within the spectral resolution of the spectrometer. Hence, the process of deconvolution of the two peaks is rather challenging. Hence, we explore new polarisation geometries like radially polarised incoming light which was shown to ease the deconvolution problem resulting in improved precision for Raman stress–strain measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182261 Serial 6847  
Permanent link to this record
 

 
Author Hao, Y. url  openurl
  Title A joint experimental-modeling study of the structure and properties of functional molecular monolayers for the control of organic crystal growth Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xiii, 174 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Among all types of discovered crystals, those formed by organic molecules show the greatest diversity, which results from the intrinsic complexity of the organic molecules and the weak interactions between them. Even for a given compound, different crystal structures can exist. This feature is referred to as polymorphism in the modern crystallographic context and those different crystal forms are called polymorphs. In reality, the crystallization of organic molecules is often performed at the surface of a substrate, giving rise to heterogeneous crystallization. Except for the well-known catalyzing effects, the existence of substrates brings more possibilities to the polymorphic behaviors of organic molecules, promoting the formation of new polymorphs that are only stable in the vicinity of the substrates. For this reason, these new polymorphic forms are often described as substrate-induced polymorphs (SIPs). It is of great importance to understand the formation of SIPs for organic molecules as it has been reported that SIPs can show superior properties with respect to their bulk form counterparts. Up to now, most studies focus on the identifying and characterizing the presence of SIPs, which relies mainly on X-ray diffraction techniques. However, a detailed explanation about the origin of SIPs is still missing. In this work, we have combined several powerful experimental characterization techniques, including X-ray diffraction, transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) in order to reach an integrated view over the formation of SIPs. These experimental studies are strongly supported by computational chemistry simulations, such as density functional theory and molecular dynamics. A big advantage of using atomistic simulations is that it enables the possibility to predict a priori the crystal structures of SIPs and to establish a posteriori the general rules for the formation of SIPs. In practice, this thesis employs state-of-art atomistic simulation approaches in order to bridge substrate-induced polymorphism with a conceptually-connected research area: the self-assembly of molecular networks (SAMNs), also called 2D crystallization. Unlike SIPs, which extend at least several molecular layers, SAMNs are composed of a single layer of molecules with ordered packing. Our simulations have enabled a more comprehensive understanding about the role of substrate during the formation of SIPs and we elucidate how the positional and orientational order of molecules propagates from the substrate to the upper 2D and even 3D crystal layers. In this way, a fundamental understanding of the substrate-induced crystallization is gained by connecting 2D and 3D crystallization using substrate-induced approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191758 Serial 7176  
Permanent link to this record
 

 
Author Penders, A.G. url  openurl
  Title Microstructural investigation of irradiation assisted stress corrosion cracking mechanisms based on focused ion beam analysis of tested and industrial specimens Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xxxviii, 226 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Irradiation assisted stress corrosion cracking (IASCC) is an intergranular cracking effect which can occur in heavily irradiated internal structural components of nuclear reactor cores. It is a complex phenomenon which is not yet fully understood because it occurs through an interplay of several material degradation processes. The factors that influence IASCC susceptibility include irradiation damage (neutrons and other irradiation particles stemming from the nuclear fission reaction), the operating temperature of the nuclear reactor, water corrosion, operating stresses, and the composition of materials susceptible to IASCC. Such materials are typically fabricated from austenitic stainless steels because of their relatively high strength, ductility, and fracture toughness. However, besides excellent metallurgical and corrosion resistant qualities, the operating conditions may still cause severe material degradation and component failure, which is extremely important for nuclear power plant safety and lifetime managements. Despite much accumulated data in the literature, both crack initiation and crack propagation mechanisms still need to be further elucidated. To that end, a probabilistic fracture model entitled the subcritical crack propagation (SCP) was recently developed, which assumes that the oxidized part of stainless steel in front of the crack plays an essential role in the crack initiation and crack propagation in sample failures. Still, despite a very good agreement with experimental observations, the SCP model but also other contemporary models favoured within the literature, require further experimental verification to what concerns the investigation of (IA)SCC. To that end, the main objective of this doctorate was to utilize experimental instrumentations like SEM, FIB-SEM and (S)TEM to conduct the investigation of the crack initiation and propagation processes in both tested and industrial specimens. Some of the investigated materials were retrieved within a nuclear reactor and are thus considered as unique test material to investigate the material degradation processes relevant for cracking. Other specimens were tailor-made to simulate the cracking processes of irradiated materials in otherwise un-irradiated materials. The newly acquired experimental results in this doctorate help rationalize existing models and methodologies used in the literature to analyse the IASCC failures of structural materials of reactor components. These results also facilitate in the development of predictive methodologies and mitigation strategies towards IASCC cracking and provide more information on IASCC from a microstructural perspective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192431 Serial 7323  
Permanent link to this record
 

 
Author Kashiwar, A. url  doi
openurl 
  Title TEM investigations of deformation mechanisms in nanocrystalline metals and multilayered composites Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xvi, 129 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the last few decades, nanostructuring has driven significant attention towards the development of novel metallic materials with advanced mechanical properties. Nanocrystalline (nc) metals are a class of nanostructured materials with grain sizes smaller than about 100 nm. These exhibit outstanding mechanical strength and fatigue properties compared to their coarse-grained (cg) counterparts. These are promising candidates for application as structural or functional materials. Nc metals in the form of thin films are employed as hard coatings on bulk components, structural components, and conductive layers in various micro-/nanoscale devices. These structural components and devices are often subjected to cyclic stresses or fatigue loading. Under these cyclic stresses, nc metals tend to exhibit the Bauschinger effect (BE). The strength loss during the BE is of great importance concerning the strength-ductility trade-off in nc metals. Furthermore, contact surfaces of the engineering components in service often undergo relative motion and are subject to both friction and wear. These extreme loading conditions demand nc metals with tailored interfacial characteristics for improved tribological performance. Aiming at ensuring high reliability and mechanical robustness for optimum performance of these components, there has been a strong motivation for understanding the mechanical properties and governing deformation mechanisms in nc metallic materials. This thesis aimed at in-depth investigation of microstructures at micro-/nanoscales using state-of-the-art in situ and ex situ transmission electron microscopy (TEM) to develop a closer link between the deformation structure and underlying deformation mechanisms in some nc metallic materials. The thesis has primarily focused on the in situ TEM nanomechanics of the BE and rotational deformation of grains in nc palladium thin films. A sputtered thin film of nc Pd was deformed inside TEM by cyclic loading-unloading experiments and the evolving microstructure was studied in real-time under different TEM imaging modes. The stress-strain response of the film exhibited a characteristic non-linear unloading behavior confirming the BE in the film. The corresponding bright-field TEM imaging revealed evidence of partially reversible dislocation activity. Towards a quantitative understanding of the deformation structure in real-time, in situ nanomechanical testing was coupled with precession-assisted automated crystal orientation mapping in scanning TEM (ACOM-STEM). Global ACOM-STEM analysis offered crystal orientation of a large number of grains at different states of deformation and confirmed partially reversible rotations of nanosized grains fitting to the observed BE during loading and unloading. Analysis of intragranular rotations showed substantial changes in the sub-structure within most of these grains indicating a dominant role of dislocation-based processes in driving these rotations. Globally, an unusually random evolution of texture was seen that demonstrated the influence of deformation heterogeneity and grain interactions on the resulting texture characteristics in nc metals. In the quest of understanding the grain interactions, local investigations based on annular dark-field STEM imaging during loading-unloading showed reversible changes in the contrast of grains with sets of adjoining grains exhibiting a unique cooperative rotation. Local analysis of the density of geometrically necessary dislocations (GNDs) showed the formation of dislocation pile-up at grain boundaries due to the generation of back-stresses during unloading. Critical observations of the evolution of GND density offered greater insights into the mechanism of cooperative grain rotations and these rotations were related to grain structure and grain boundary characteristics. In addition to understanding the influence of grain structure and grain boundaries, the thesis has further investigated the role of heterointerfaces in sputtered Au-Cu and Cu-Cr nanocrystalline multilayered composites (NMCs) deformed under cyclic sliding contact. The microstructural evolution in the NMCs was investigated at different deformation states by classical TEM imaging, ACOM-STEM as well as energy-filtered TEM (EFTEM). Au-Cu NMC with an initial high density of twin boundaries deformed by stress-driven detwinning with a concurrent change in grain structure in both Au and Cu. The formation of a vortex structure was observed due to plastic flow instabilities at Au-Cu interfaces that led to codeformation and mechanical intermixing. Cu-Cr NMC showed a preferential grain growth in Cu layers whereas no noticeable change in the grain sizes was seen in Cr layers. The phase maps revealed sharp interfaces between Cu and Cr layers indicating no intermixing between the immiscible phases. EFTEM results exposed the cracking processes in Cr layers with a concurrent migration of Cu in the cracks. Overall, the thesis has attempted to analyze the competing deformation processes and relate these with the microstructural heterogeneity in terms of grain structure and GB and interfacial characteristics in nc metallic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189013 Serial 7343  
Permanent link to this record
 

 
Author Yu, C.-P. url  isbn
openurl 
  Title Novel imaging methods of transmission electron microscopy based on electron beam scattering and modulation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages x, 154 p.  
  Keywords (down) Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is a technique that uses an electron beam to analyze materials. This analysis is based on the interaction between the electron beam and the sample, such as photon emission and electron diffraction pattern, to name a few. Sample damage, however, also occurs when such interaction alters the structure of the sample. To ensure information from the undamaged material can be acquired, the electron expense to probe the material is thus limited. In this work, we propose efficient methods for acquiring and processing the information originating from the electron-sample interaction so that the study of the material and the conducting of the TEM experiment can be less hindered by the limited dose usage. In the first part of the work, the relationship between the scattering of the electron and the local physical property of the sample is studied. Based on this relationship, two reconstruction schemes are proposed capable of producing high-resolution images at low-dose conditions. Besides, the proposed reconstructions are not restricted to complete datasets but instead work on pieces of data, therefore allowing live feedback during data acquisition. Such feature of the methods allows the whole TEM experiment to be carried out under low dose conditions and thus further reduces possible beam damage on the studied material. In the second part of the work, we discuss our approach to modulating the electron beam and its benefits. An electrostatic device that can alter the wavefront of the passing electron wave is introduced and characterized. The beam-modulation ability is demonstrated by creating orthogonal beam sets, and applications that exploit the adaptability of the wave modulator are demonstrated with both simulation and experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 987-90-5728-534-7 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200885 Serial 9064  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: