|   | 
Details
   web
Records
Author Clavel, J.
Title Plant-mycorrhizal interactions and their role in plant invasions in mountains Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 182 p.
Keywords (down) Doctoral thesis; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Non-native species invasions are one of the most impactful drivers of biodiversity and ecosystem services loss worldwide. One aspect of plant species invasion, which is only recently starting to be recognized as a determinant of invasion success, is the symbiosis between plant and mycorrhizal fungi. Here, I focus on anthropogenic disturbance in mountain ecosystems and its impact on plant communities and mycorrhizal fungi to answer how these communities are impacted by disturbance and whether non-native plants can benefit to establish and spread. To this end I used a combination of different approaches: 1) repeated surveys of plants and arbuscular mycorrhizal fungi along disturbed roadsides in the mountains of Norway, 2) combining a global dataset of native and non-native plants along mountain roads with a database associating plants with their mycorrhizal types, and 3) an in-situ experiment measuring non-native plant success and changes in fungal community following different types of disturbances. Through these methods, I could assess the effects of anthropogenic disturbance on mycorrhizal symbiosis and non-native plant species at multiple scales and resolutions. We found that road disturbance has a globally consistent effect on mycorrhizal types in mountain systems, as plants associated with arbuscular mycorrhizal (AM) fungi were more abundant following disturbance. Conversely, vegetation associated with either ectomycorrhizal (EcM) or ericoid mycorrhizal (ErM) fungi was less abundant in disturbed sites. In the regional study, AM fungi were most abundant and diverse in the roots of plant communities affected by road disturbance. Non-native plants were also restricted to these disturbed sites. The experimental results showed that physical disturbance and nutrient addition have negative effects on EcM fungi and positive effects on fungal pathogens, and facilitate non-native plant success. Our results show that anthropogenic disturbance does have an effect on mycorrhizal fungi that in turn impacts the distribution of plant species in disturbed mountain systems. The resulting shift in mycorrhizal fungi benefiting AM fungi and AM plant species could have implications for non-native plant invasions. Indeed, we know that non-native plants predominantly form associations with AM fungi. Therefore, anthropogenic disturbance can facilitate non-native plant success through disruption of the native fungal communities, and especially so in high elevation and cold climate regions which are naturally less dominated by AM plants. I believe this highlights the importance of mycorrhizal symbiosis in understanding plant invasions and emphasizes the importance of monitoring sources of anthropogenic disturbance in mountains to prevent future establishment of non-native plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204154 Serial 9219
Permanent link to this record
 

 
Author Ramirez-Rojas, I.
Title Underground connections : the interplay between tropical rainforest trees and soil microbial communities Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 205 p.
Keywords (down) Doctoral thesis; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Tropical rainforests host an exceptional biodiversity and play a fundamental role in the regulation of global climatic cycles. Soil fungi and bacteria are key players in the transformation and processing of nutrients in terrestrial ecosystems while having an essential role as tree mutualists or antagonists. Still, there are gaps in our understanding of the main variables driving soil microbes on these forests and it is unclear how future climate change scenarios may impact soil microbes and further affect the ecosystem. In this thesis, we first explored the drivers of the microbial community composition in two pristine forests in French Guiana by using amplicon DNA sequencing. The neighboring tree species were found to be a crucial factor influencing the fungal and bacterial community composition at our sites regardless of the season. Additionally, within the environmental factors explored, soil moisture, phosphorus (P) and nitrogen (N) availability were consistently the main soil properties controlling the composition of soil microbial communities. Secondly, as increased nutrient deposition due to anthropogenic activities are expected to affect tropical forests ecosystems N and P availability, a factorial N and P nutrient addition experiment in the same sites was used to assess the effects of changes in the soil nutrient stoichiometry on the soil microbial communities. These results showed that after 3 years of nutrient additions, the bacterial and fungal community composition was affected by both the N and P additions. Besides, the fungal community composition had a stronger response to the nutrient addition, especially when P was added. Moreover, when the nutrient addition effect was assessed in bacteria and fungi with different life strategies, we found different nutrient optima between them. Furthermore, to study the effect of the connection to an existing mycorrhizal mycelium on tree seedlings, I established a mycelium exclusion experiment. Interestingly, we could not detect an effect of the mycorrhizal mycelium exclusion on the seedling N uptake, performance, or fungal community composition in roots after one year. All together this work provides a deeper understanding of the factors influencing the soil microbial communities on these lowland tropical forests, demonstrating that the tree community composition exerts a higher influence on the soil microbial community composition than previously expected. Moreover, our results show that the fungal and bacterial community composition and its relationship with trees in the vicinity is highly dependent on the ecosystem nutrient availability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204907 Serial 9237
Permanent link to this record
 

 
Author Cong, S.
Title Numerical study on low-pressure hollow cathode argon arc plasma Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages XIX, 126 p.
Keywords (down) Doctoral thesis; Philosophy; Educational sciences; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The low-pressure hollow cathode discharge made of a hollow circular tube and an anode is a type of simple structure discharge system. In particular, under the arc discharge mode, hollow cathodes have high plasma density and energy density with a wide range of adaptability of pressure and current. Low-pressure hollow cathode arc (HCA) discharges have been widely used as plasma sources in various fields such as manufacturing, vacuum welding, and aerospace since the 1960s. Despite the early experimental and applied researches on low-pressure HCA discharges, the basic theoretical study was relatively lagged much behind, resulting in many unanswered questions, such as the optimal discharge operating parameters, the power deposition inside the cathode, the causes of plasma instability, and how to effectively reduce cathode erosion and so on. Due to the special discharge structure of the hollow cathode, it is difficult to make an accurate experimental diagnosis, so a reasonable numerical simulation is an effective study method. However, up to now, there is still a lack of complete and effective numerical models which can evaluate various physical fields in the low-pressure hollow cathode discharges. To address the above problems and difficulties, a comprehensive and self-consistent 2D multi-physical coupling numerical model based on a commercial program of finite element method, the COMSOL Multiphysics, was provided in this paper. The model involves plasma transport, arc flow and heat transfer, and cathode thermal equilibrium, and can consider the effect of an applied magnetic field. The processes of secondary electron emission, thermal-field electron emission, ions and backflow high-energy electrons bombardment, and thermal radiation from the cathode surface are considered in the cathode thermal equilibrium process. Based on the above background, this paper works from the following aspects: In Chapter 1, the basic concepts of low-pressure HCA discharge including the hollow cathode effect, the basic characteristics, and operation modes were introduced firstly; Secondly, the application fields, development history, and overseas and domestic research status of hollow cathode discharge were reviewed; finally, the problems were presented and the research background was explained, and the research purpose of this paper was clarified. In Chapter 2, a complete and self-consistent numerical model of low-pressure hollow cathode discharge was proposed based on the fundamental theory and assumptions, and the set of control equations and boundary conditions in the model were elaborated. In addition, the electron energy distribution function, the collision processes, the solving tools of this model, and calculation schemes were introduced in detail. Finally, a validation example was given to test the rationality and applicability of the numerical model. In Chapter 3, the fundamental plasma properties of low-pressure hollow cathode arcs were investigated. Firstly, the ion Joule heating effect was studied. The results showed that the temperature distributions of the arc and cathode are only able to approach the experimental measurements after considering the ion Joule heating, which shows that the Joule heating of ions is crucial for the heating of the arc plasma. Secondly, by comparing the radial distribution of electron and ion density inside the cathode, the structure of the cathode sheath could be simulated well using this model. Finally, it was shown that the thermal radiation from the cathode surface is an important cooling mechanism of the cathode and only under higher surface emissivity can balance the larger heat flow given by the plasma to the cathode, and the temperature distribution of the cathode shows a non-monotonic increasing trend and is consistent with the profile of experimental measurement so that the so-called active zone is formed. In Chapter 4, the power deposition in the low-pressure HCA was studied in simulation. Two main aspects were considered: the power deposition into particles (both electrons and heavy particles) and the power deposition onto the cathode. It was found that the deposited power into particles increases with the rise of discharge current, but there is no effect on the total power deposition onto the cathode. In high-density plasmas, Coulomb collisions between electrons and ions also become very important, especially since a portion of the deposition energy on heavy particles comes mainly from the energy transfer from electrons to ions. It was also found that regardless of external parameters, half of the power deposition onto the cathode always comes from the particle contribution, while the other half is the net contribution of heat transfer and cathode radiation. The HCA model also allows the simulation of multiple discharge modes for low-pressure HCA discharges over a wide range of gas flow rates. It was also shown that the discharge operating conditions and the external magnetic field can change the distribution of the particle flow on the cathode wall. In Chapter 5, the ion sputtering erosion process on the cathode was simulated by coupling the HCA numerical model with the moving grid technique. The results showed that the ion sputtering erosion on the cathode depends on the ion flux and the plasma potential near the cathode wall and that their distribution and magnitude jointly determine the erosion morphology of the cathode. It was also found that the location of the most severe erosion on the cathode is located in the region of the densest ion flux on the cathode wall, rather than in the longitudinal correspondence with the central region of the internal positive column (IPC). The external magnetic fields can mitigate the cathode erosion and reduce the erosion depth, but stronger magnetic fields lead to a concentration of current density at the cathode tip, which can enhance erosion slightly at the cathode outlet end. Finally, the conclusions and innovation highlights were summarized, and prospects for future work were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:178725 Serial 8323
Permanent link to this record
 

 
Author De Backer, J.
Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XVIII, 232 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:193568 Serial 7277
Permanent link to this record
 

 
Author Drăgan, A.-M.
Title Investigation of the electrochemical behaviour of illicit substances and their redox pathways in the development of nanomaterial-modified platforms for decentralized analysis Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 169 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199086 Serial 8892
Permanent link to this record
 

 
Author Schram, J.
Title Electrochemical sensing strategies for multiple illicit drugs Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 290 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Today, illicit drugs are omnipresent in society. Clandestine markets are growing faster than ever before, record amounts of cocaine are seized in seaports and airports, while the associated violence is spiralling out of control. In addition, drug monitoring centres worldwide are warning for the increasing complexity of the drug markets, as the traditionally popular drugs are joined by countless new synthetic variants, while medical drugs are also increasingly being abused. In order to provide services confronted with illicit drug samples (police, customs, forensic scientists, first responders, …) with important information on the identity of an unknown sample, suitable analytical tests are required. While these exist for laboratory environments, on-site applicable tests are important to accelerate the decision-making process. Electrochemical sensors have all the advantages required for such on-site tests: they are fast, portable, easy-to-use and reliable. Furthermore, they are not influenced by colours, which are frequently added to drug samples to deceive the existing tests. Previous work has mainly focussed on the detection of a single drug per analysis. However, many drugs could be encountered due to the diversity of the drug markets. Therefore, this project developed electrochemical strategies for the detection of multiple drugs simultaneously. First, the electrochemical behaviour of the individual drugs was studied in different measuring conditions (assessing the influence of pH, concentration and temperature). Then, all findings and strategies were combined to detect multiple targets simultaneously. An electrochemical sensor was developed for the four most popular drugs at music festivals: cocaine, MDMA, amphetamine and ketamine. This sensor generates a so-called ‘superfingerprint’ of the sample, which is then automatically interpreted by a developed algorithm in order to produce a straightforward output. Finally, a pill analysis sensor was developed in the context of drug checking services, where a consumer can anonymously have a sample chemically analysed to obtain information on the composition, dose and potentially harmful additives. The sensor achieved an outstanding accuracy in identifying the main component and provided the option to quantify, as well as an indication on the presence of other substances in the sample. The project’s findings demonstrate the potential for electrochemistry in illicit drug detection and provide a basis for the development of new sensors, targeting other drug combinations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203199 Serial 9029
Permanent link to this record
 

 
Author Van Echelpoel, R.
Title Making an impact with voltammetric illicit drug sensors : bridging the gap between fundamental lab research and on-site application Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxviii, 194 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Illicit drugs are harmful substances, posing a threat to the health and safety of society. Policies, such as supply reduction and harm reduction, are in place to combat the illicit drug problem. Science can play a substantial role in this fight, by providing tools that enable these policies to be successfully enforced. One example are on-site detection tools, i.e. sensors that allow the on-site identification of an illicit drug in a sample of interest. Several technologies, such as color tests and portable spectroscopic techniques, are currently employed for this goal. Although these are valuable techniques, there is an opportunity for voltammetry, an electrochemical technique, to make an impactful addition to this repertoire of on-site detection tools. Despite its attractive features (low-cost, portable, short analysis time, indifference to color,...), voltammetric illicit drug sensor have failed to make an impact in real scenarios. The work outlined in this PhD thesis aims to change this by bringing the technology from the lab to the field. Strategic choices, fueled by feedback from end-users, were made to further develop those specific aspects of the technology that previously haltered the technology to fulfill its potential. A detection algorithm was introduced that converts the voltammetric output into a clear-cut interpretation thereof, opening up the technology to end-users without prior knowledge of the technology. A sensor that allows qualitative and quantitative detection of the psychoactive drug MDMA was introduced, and importantly, validated on a large set of 212 confiscated samples. A state-of-the art mobile application and adequate sampling methodology were developed, alongside other, often more practical studies and product developments, to evolve the technology into a product that truly creates value for end-users. Important steps towards multidrug detection were made with a festival sensor and a flowchart based on visual appearance that ties together a variety of voltammetric single sensors into a single multidrug sensing approach. Last but not least, multiple valorization aspects were researched, including a market study and an analysis to determine the optimal commercialization strategy. Overall, this PhD thesis has facilitated the transition of the voltammetric illicit drug sensing technology from lab to on-site application. The final application creates value for end-users, and is ready to make an impact in real on-site scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 987-90-5728-534-7 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200601 Serial 9055
Permanent link to this record
 

 
Author Montiel, F.N.
Title Voltage against illicit drug trafficking : capabilities of electrochemical fingerprinting to detect illicit drugs Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 256 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:204707 Serial 9243
Permanent link to this record
 

 
Author Blidar, A.-M.
Title The development of sensitive and selective electrochemical methods for the detection of antibiotics Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 139 p.
Keywords (down) Doctoral thesis; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The discovery of antibiotics represented one of the greatest breakthroughs in medicine. Their success combined with an increasing intensive use is apparently bound to be also their undoing. This is due to the development of acquired antibiotic resistance, leading to inefficient antibiotherapy and even to the impossibility of treatment and death. The development and spread of antibiotic resistance are fueled by the widespread presence of trace levels of antibiotics residue, in various media, from environment to aliments. One of the solutions is the rigorous monitoring of the levels of antibiotics, which in term requires an almost constant development of new, more accessible analytical methods, especially screening methods, capable of decentralized analysis. In this direction, the electrochemical detection of antibiotics represents a very viable alternative. In this context, the aim of this thesis was to develop new electrochemical methods for the detection of antibiotics by employing and expanding on several strategies, like biomimetic sensors and electrochemical fingerprinting. Five studies were described in this thesis, that can be roughly divided in three categories, based on the analytical strategy employed. The first group is represented by direct electrochemical methods. The second group focuses on the use of biomimetic elements, molecularly imprinted polymers and aptamers. The hyphenation of electrochemical methods with other analytical methods was explored in the last group. In the last study, included in this group, the singlet oxygen-based photoelectrochemical approach was used for the detection of a phenolic antibiotic, rifampicin. The originality of the thesis consists in the testing and development of new approaches to various strategies used in electrochemical detection, revealing new insights in the field of electrochemical detection of antibiotics. The complex electrochemical fingerprint and the mechanism of the electrochemical oxidation were created and investigated, respectively, for the antibiotic vancomycin. New sensitive nanoplatforms were prepared by employing and combining new protocols. Additionally, important contributions were brought through the study involving the singlet oxygen-based detection of rifampicin. We demonstrated how a photocatalyst can exhibit analyte selectivity by strongly interacting with a complex phenolic compound, rifampicin. Summing up, the studies presented in this thesis will have an important impact in the field of electrochemical detection of antibiotics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182955 Serial 7804
Permanent link to this record
 

 
Author Bjørnåvold, A.
Title Unlocking lock-in : accelerating socio-technical transitions to sustainability Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages 189 p.
Keywords (down) Doctoral thesis; Linguistics; Engineering Management (ENM)
Abstract Achieving global sustainability goals will require cleaner and cheaper technologies. Public policy is central to achieving these goals and, in turn, ensuring a quicker pace of change. A major obstacle lies in the fact that technologies cannot be considered isolated entities: they are embedded in a powerful social context of cultural, organisational and institutional systems. This intertwining of different elements is referred to as a socio-technical system. This thesis discusses how socio-technical systems have, over time, allowed locked-in configurations to emerge, referring to a combination of systematic forces that perpetuate unsustainable infrastructures embedded in society. Such lock-ins can inhibit innovation and competitiveness of low-carbon and sustainable technologies, and this thesis looks to concrete solutions for unlocking them. Vital to this objective lies better understanding preferences, intentions, and behaviour of actors involved at each stage of technological development to improve public policy design. A discrete choice experiment – a quantitative non-market valuation method – was, therefore, a core method used to model preferences of key target groups. Target groups considered in the four components of the thesis include i) industry players, ii) policymakers, iii) farmers, and iv) the general public in Belgium, France, Germany, Italy and Spain. The thesis seeks to establish how both economic and regulatory instruments can be leveraged to overcome lock-in. One conclusion sees that implementing an efficient environmental tax regime – an economic instrument – requires balancing political feasibility and public acceptance considerations in line with tax and environmental policy. Results indicate that public acceptance for environmental taxation increases with earmarking. Another conclusion highlights the importance of taking behavioural and habitual considerations into account – both when considering policymakers’ investment decisions, and farmers’ decisions to adopting agro-ecological practices when responding to regulatory instruments. Overall, policy design should emphasise a more continuous and systemic approach to innovation and technology policy on the road to accelerating socio-technical transitions to sustainability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-692-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:179247 Serial 6949
Permanent link to this record
 

 
Author Eliaerts, J.
Title Qualitative and quantitative determination of cocaine using mid-infrared spectroscopy and chemometrics Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 184 p.
Keywords (down) Doctoral thesis; Law; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169398 Serial 6589
Permanent link to this record
 

 
Author Michielsen, I.
Title Plasma catalysis : study of packing materials on CO2 reforming in a DBD reactor Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 215 p.
Keywords (down) Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160087 Serial 5278
Permanent link to this record
 

 
Author Xu, W.
Title Plasma-catalytic DRM : study of LDH derived catalyst for DRM in a GAP plasma system Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 350 p.
Keywords (down) Doctoral thesis; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma is considered one of the promising technologies to solve greenhouse gas problems, as it can activate CO2 and CH4 at relatively low temperatures. Among the various types of plasmas, the gliding arc plasmatron (GAP) is promising, as it has a high level of non-equilibrium and high electron density. Nevertheless, the conversion of CO2 and CH4 in the GAP reactor is limited. Therefore, combining the GAP reactor with catalysts and making use of the heat produced by the plasma to provide thermal energy to the catalyst, forming a post-plasma catalytic (PPC) system, is hypothesized to improve its performance. Therefore, in this PhD research, we investigate important aspects of the PPC concept towards the use of the heat produced by GAP plasma to heat the plasma bed, without additional energy input. Aiming at this, based on a literature study (chapter 1), Ni-loaded layered double hydroxide (LDH) derived catalyst with good thermal catalytic DRM performance were chosen as the catalyst material. Before applying the LDH as a support material, the rehydration property of calcined LDH in moist and liquid environment was studied as part of chapter 2. The data indicated that after high temperatures calcination (600-900 C), the obtained layered double oxides (LDOs) can rehydrate into LDH, although, the rehydrated LDH were different from the original LDH. In chapter 3, different operating conditions, such as gas flow rate, gas compositions (e.g. CH4/CO2 ratio and nitrogen dilution), and addition of H2O were studied to investigate optimal conditions for PPC DRM, identifying possible differences in temperature profiles and exhaust gas compositions that might influence the catalytic performance. Subsequently, the impact of different PPC configurations, making use of the heat and exhaust gas composition produced by the GAP plasma, is shown in Chapter 4. Experiments studying the impact of adjusting the catalyst bed distance to the post-plasma, the catalyst amount, the influence of external heating (below 250 C) and the addition of H2O are discussed. As only limited improvement in the performance was achieved, a new type of catalyst bed was designed and utilized, as described in chapter 5. This improved configuration can realize better heat and mass transfer by directly connecting to the GAP device. The performance was improved and became comparable to the traditional thermal catalytic DRM results obtained at 800 C, although obtained by a fully electrically driven plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201534 Serial 9074
Permanent link to this record
 

 
Author Zhang, K.
Title Revealing the correlation between titania support properties and propylphosphonic acid modification by in-depth characterization Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages XVI, 262 p.
Keywords (down) Doctoral thesis; Laboratory of adsorption and catalysis (LADCA)
Abstract Grafting organophosphonic acids modification (PAs) on metal oxides has shown to be a flexible technology to tune the surface properties of metal oxides for various applications. Nevertheless, there are still puzzles that need to be addressed, such as the correlations between metal oxides properties (types of surface reactive sites) and the modification (modification degree), the correlations between metal oxides properties and the properties of modified surfaces. Moreover, the currently used liquid-phase method for the grafting has associated impeding effects of solvent on tailoring the modification degrees, and also causes the formation of metal phosphonate side products. The solid-phase method can induce the unwanted changes in crystal phase of supports. Based on these questions, the three titania supports with divergent surface properties were selected as the metal oxides supports investigated, propylphosphonic acid (3PA) modification was carried out under the same synthesis conditions: four different concentrations, two solvents (water or toluene), and one reaction time (4 h) and temperature (90 ). MeOH chemisorption was introduced to probe the surface (un)reactive sites for 3PA modification. On the other hand, MeOH chemisorption and inverse gas chromatography (IGC) were combined to characterize the changes in surface polarity and acidic properties induced by the modification. Next, a solid-phase method, manual grinding, was proposed to graft 3PA on titania, avoiding the impeding effects of solvent on improving modification degree and the formation of the titania phosphonate side products, as well as preserving the crystal phase. The results indicate that methanol chemisorption can qualitatively analyze the surface active sites that are consumed by 3PA modification, its chemisorption capacity shows the consistent trend with the maximum modification degree, hereby revealing the kinds of interactions that are important in controlling surface coverage. Titania supports is found to play an important role in changes in surface polarity and acidic properties by charactering the three modified titania samples at a similar modification degree using the methanol chemisorption coupled with in-situ infrared and thermogravimetric-mass spectrometer, and the IGC. Moreover, IGC provides additional information about the changes in binding modes. Furthermore, grafting 3PA modification on titania was achieved by manual grinding. Compared to the liquid-phase method, the maximum modification degree obtained by the manual grinding is 25 % higher while using 83.3 % or 75.0% lower amounts of expensive 3PA and limiting the formation of titania phosphonate side products. Compared to the reactive milling method, the proposed manual grinding method preserves the crystal phase(s) of titania.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198726 Serial 8924
Permanent link to this record
 

 
Author Li, L.
Title Untangling microbial community assembly in rainforest and grassland soils under increasing precipitation persistence Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 179 p.
Keywords (down) Doctoral thesis; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Climate change is causing alterations in precipitation patterns, leading to adverse ecological consequences in many ecosystems. Recently, an increasingly persistent weather pattern has emerged, characterized by lengthening the duration of alternating dry and wet periods, which is more complex than exclusively drought or increasing precipitation. It is currently unclear how soil microbial communities respond to these new regimes in relation to their interactions with plants, especially in precipitation-sensitive ecosystems, such as tropical rainforests and grasslands. In this thesis, we explored responses of soil bacterial and fungal communities to increasing weather persistence in rainforests and grasslands, using high throughput sequencing technology. We firstly investigated the resistance and resilience of microbial communities to prolonged drought in a mature seasonal tropical rainforest which experiences unusually intensive dry seasons in the current century. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to the control. Our results indicate that as rain exclusion progressed, the microbial communities increasingly diverged from the control, indicating a moderate resistance to prolonged drought. However, when the drought ceased, the composition and co-occurrence patterns of soil microbial communities immediately recovered to that in the control, implying a high resilience. To further investigate the ecological roles of soil microbial communities in response to increasing weather persistence, we set up grassland mesocosm experiments. In these experiments, precipitation frequency was adjusted along a series, ranging from 1 to 60 consecutive days alternating of dry and wet periods, while keeping the total precipitation constant. Our results show that microbial community assembly tended to be more stochastic processes at intermediate persistence of dry and wet alternations while more deterministic processes dominated at low and high persistence within 120 days regime exposure. Moreover, more persistent precipitation reduced the fungal diversity and network connectivity but barely impacted that of bacterial communities. The prior experiences of persistent weather events for one year caused legacy effects. The soil microbial legacy induced by soil microbial communities subjected to prior persistent weather events was more enduring in subsequent fungal communities than bacterial communities, likely due to slower growth of fungi compared to bacteria. However, a minor effect of soil microbial legacy  was observed on plant performance. In addition, we kept the grassland mesocosm experiment for two growing seasons. The effects of precipitation persistence on soil microbial communities increased in the second year. The dissimilarities of microbial communities between the first and second year were less with more persistent precipitation, potentially resulting in more vulnerable microbial communities, due to some taxa disappearing and a reduction in functional redundancy under more persistent weather. To conclude, our findings provide a comprehensive theoretical understanding of soil microbial communities in response to the current and future climate change, drawing from both natural and experimental systems. It helps in predicting and managing the impacts of future climate change on ecosystems mediated by microbial communities. Additionally, the findings of microbe-mediated legacy effects on grassland ecosystems can provide practical guidance for their application in agriculture, specifically for using an inoculum to mitigate the impacts of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:198498 Serial 9240
Permanent link to this record
 

 
Author Voordeckers, D.
Title Design to breathe : understanding and altering wind patterns in street canyons to reduce human exposure to air pollution Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxii, 303 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Air pollution is proclaimed by the World Health Organiaation (WHO) as the biggest environmental threat to human health. Street canyons, or urban roads flanked by a continuous row of high buildings on both sides, are perceived as typical bottleneck areas for air quality due to their lack of natural ventilation. This doctoral thesis aims to integrate expert knowledge on in-canyon flow fields and pollution dispersion in street canyons from the specialized field of (bio)engineering into the field of urban planning and vice versa. In Chapter 1, a Geospatial Information System (GIS) method was developed to detect exposure zones and hotspot street canyons. A critical combination between aspect ratio (AR > 0.65) and traffic volume (TVmax > 300) was detected and subsequently used to detect hotspot street canyons in three major European cities (Antwerp, London and Paris). Chapter 2 focusses on acquiring in-depth knowledge on flow and concentration fields in street canyons by conducting an extensive literature review on over 200 studies and translates this knowledge into nineteen guidelines and eleven spatial tools, comprised in a toolbox for urban planning. Subsequently, computational fluid dynamics (CFD) was used into a research trough design process (Chapter 4) to illustrate how the design tools can be applied to a specific case study (Belgiëlei, Antwerp). Alternations to traffic lanes (traffic lane reduction and lateral displacement) combined with low boundary walls (LBWs), were found to reduce NO2 levels in the entire pedestrian area up to – 3.6 % and peak pollutions were reduced by -8 %. A maximum NO2 reduction was reached by combining a traffic lane displacement with hedges, adjustments to the tree planting pattern and an increased ground-level permeability, leading to reductions up to – 4.5 % in the pedestrian areas. In conclusion, urban design was found to be a valuable tool to enhance the effect of emission reduction strategies and draw in-canyon concentrations closer to the value of the background concentration. However, the background concentration seemed to dominate the efficiency of the urban design interventions and therefore, additional measures should be taken to reduce background pollution levels. This dissertation aims to contribute to the awareness of air pollution in street canyons, as well as support local governments in taking action by delivering spatial tools and guidelines applicable for urban planning and represents a framework for the dissemination of expert information on air quality in street canyons to the field of urban planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196399 Serial 7767
Permanent link to this record
 

 
Author Sóti, V.
Title Catalytic detoxification of lignocellulose hydrolyzate Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages XXVII, 243 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract The present PhD research investigated the possibility of catalytic detoxification of poplar wood based and steam exploded lignocellulosic hydrolyzate with different types of laccase enzymes, with special focus on ethanol and lactic acid products at industrially relevant parameters: high final product concentration, high initial substrate loading and integrated processes. The simultaneous saccharification and fermentation (SSF) process was taken as a base case and five types of laccases were thoroughly investigated on their utilization potential. Phenolic removal from the liquid xylose rich fraction (XRF) was higher with fungal laccases (65-90 %) compared to approximately 30 % removal with bacterial laccase. Moreover, the optimal pH of fungal laccases was close to pH 4.5, the optimum for cellulase, while the bacterial laccase worked at basic pH. Integrating laccase treatment and hydrolysis together showed that fungal laccases have negative impact on final sugar concentration, while bacterial laccase had a strong positive effect. Although bacterial laccase removed less phenol and although its optimal conditions are difficult to integrate with hydrolysis, its enhancing effect on cellulase activity makes it a better candidate for application. The presence of the solid fraction (SF) alters the phenolic concentration evolution significantly, thus screening experiments with the liquid fraction alone do not provide sufficient information for the combined process. Magnetic Cross-Linked Enzyme Aggregates (m-CLEAs) immobilization was assessed for bacterial laccase. m-CLEAs decreased phenolic concentration faster at every pH compared to free bacterial laccase; however, the removal was caused by adsorption rather than by enzyme activity. Although the size of m-CLEAs particles are in the µm range, around 90 % of the initial catalyst mass was recycled from a dense (15 % substrate loading) mixture via magnetic separation. The high recycling rate is promising; m-CLEAs immobilization method can have industrial utilization potential. Minimum sugar revenue (MSR) estimations show that currently hardwood based MSR is 70 % more expensive than corn grain based MSR. About 7-10 fold cellulase activity increase will be needed until MSR will be competitive with corn grain MSR. However, m-CLEAs cellulase can already be competitive if the corn prices are in the higher regime of last year’s prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:180125 Serial 7584
Permanent link to this record
 

 
Author Wittner, N.
Title Improving and characterising solid-state fungal pretreatment by Phanerochaete chrysosporium for sugar production from poplar wood Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 206 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Pretreatment is a critical step in the conversion of lignocellulose into biofuels and biochemicals. During pretreatment, the recalcitrance of lignocellulose is reduced, e.g. by removing lignin, thereby making the carbohydrates more accessible for enzymatic saccharification. Fungal delignification by white-rot fungi is a biotechnological alternative to chemical/physicochemical methods, which is carried out in solid-state fermentation with mild reaction conditions and without the formation of microbial inhibitors. However, fungal pretreatment presents some challenges, such as long pretreatment time, non-selective and low delignification, low enzymatic digestibility and feedstock sterilisation requirement, making its commercial implementation challenging compared to conventional methods. This study investigates the possibility of improving and characterising the solid-state fungal pretreatment of poplar wood by Phanerochaete chrysosporium. The individual and combined effects of MnSO4 and CuSO4 supplements on the delignification of sterilised wood are investigated using response surface methodology to improve the degree and selectivity of fungal delignification. Spore-inoculated solid-state fermentations are carried out for 4 weeks in sterile vented bottles. The mechanism of the concerted action of the metal ions on lignin degradation is then elucidated by relating fungal growth and ligninolytic enzyme activities to lignocellulose degradation as a function of pretreatment time. The optimised metal-supplemented system is then applied to the pretreatment of non-sterilised wood using different inoculation techniques (spores and pre-colonised substrate), nutrients (metal ions with or without glucose and sodium nitrate) and cultivation environments (sterile aerated bottles and open trays). The fermentations are then characterised using infrared spectroscopy, in particular NIR and ATR-FTIR spectroscopy, with the aim of developing rapid lignin quantification methods as an alternative to conventional wet chemical methods. Finally, the feasibility of producing fermentable sugars from sterilised and non-sterilised poplar wood using fungal pretreatment is evaluated through a techno-economic analysis. Supplementing the pretreatment system with 2.01 µmol CuSO4 and 0.77 µmol MnSO4 g-1 wood resulted in 1.9-fold higher lignin degradation, 2.3-fold higher delignification selectivity value and 2.9-fold higher glucose yield. The improved delignification could be explained by the concerted action of Mn2+ and Cu2+ ions, with Mn2+ ions inducing and Cu2+ prolonging manganese peroxidase production responsible for delignification. Fungal pretreatment at non-sterile conditions was obtained using trays in a simple solid-state fermentation set-up without sterile aeration. A 1:3 ratio of pre-colonised and untreated wood was applied for inoculation and only Cu2+, Mn2+ and sodium nitrate as supplements. Remarkably, this technology resulted in a comparably high glucose yield (28.51 ± 0.28%) to the traditional method using sterilised wood, sterile aeration and spores as inoculum, while reducing the amount of wood to be sterilised by 71.2%. Infrared spectroscopy-based methods with high coefficients of determination (R_CV
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:197185 Serial 8883
Permanent link to this record
 

 
Author Verbruggen, S.
Title TiO2 gas phase photocatalysis from morphological design to plasmonic enhancement Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 173 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-441-0 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:116937 Serial 5998
Permanent link to this record
 

 
Author Borah, R.
Title Photoactive nanostructures : from single plasmonic nanoparticles to self-assembled films Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages xxxiv, 220 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photoactive nanoparticles and their light-driven applications have gained tremendous scientific attention towards remediation of the global environmental problems, meeting alternative energy demands, and other new technological discoveries. The research work presented in this dissertation includes a fundamental investigation of such nanoparticles to gain deeper insights that will ultimately benefit their application. In particular, the study of plasmonic metal nanoparticles and metal oxide nanoparticles for light driven applications is the major theme of this work. The investigation begins with isolated plasmonic Au and Ag nanoparticles, followed by a natural extension to nanoparticle clusters, and then further to nanoparticle films. Next, the application of such plasmonic nanoparticle films for gaseous phase sensing of volatile organic compounds is explored. Finally, the film formation of metal-oxide nanoparticles by self-assembly is investigated for the fabrication of photoactive functional interfaces. The fundamental theoretical investigation of the isolated plasmonic nanoparticles encompasses alloy and core-shell nanostructures of Au-Ag bimetallic compositions. First, the optical properties of bimetallic alloy and core-shell nanoparticles are compared for different structures such as nanospheres, nanotriangles and nanorods. Based on the optical properties, the photothermal properties of these nanostructures are also evaluated for relevant light-driven applications. Further, to bridge the gap between the theoretical and experimental optical properties of colloidal plasmonic nanoparticles, the effect of different statistical parameters pertaining to the particle size distribution is studied. Going from isolated nanoparticles to nanoparticle clusters, the changes in the optical properties of plasmonic nanoparticles when they form finite clusters is investigated. A strong effect of clustering on the absorption intensities of the nanoparticles and hence, on the photothermal properties is found. Next, for the study of plasmonic nanoparticle infinite arrays, Au and Ag nanoparticles films are experimentally obtained by the self-assembly at the air-ethylene glycol interface. Upon further validation of the computational models with the experimental optical properties of these films, the near-field and far-field optical response of the plasmonic nanoparticle arrays is investigated. An application of the self-assembled Au nanoparticle film is then demonstrated in the sensing of volatile organic compounds (VOCs). Finally, the focus is shifted from plasmonic nanoparticles to metal oxide nanoparticles for their self-assembly at the air-water interface to obtain self-assembled films. For this, the hydrophobic functionalization of four metal oxides nanoparticles namely, TiO2, ZnO, WO3 and CuO is investigated. The insights from this work is useful for the design and fabrication of functional nanoparticles and interfaces for light driven applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189155 Serial 7188
Permanent link to this record
 

 
Author Spanoghe, J.
Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages vi, 207 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-741-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188233 Serial 7198
Permanent link to this record
 

 
Author Van Tendeloo, M.
Title Resource-efficient nitrogen removal from sewage : kinetic, physical and chemical tools for mainstream partial nitritation/anammox Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages iv, 204 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Adequate removal of pollutants from sewage is important to protect the environment and public health. Today, sewage treatment plants are operational in many parts of the world, and although the used technologies are effective in removing pollutants from wastewater, they are energy- and resource-intensive. Reshaping sewage treatment into a two-stage system, with separated organic carbon and nitrogen removal, facilitates the transformation towards energy-positive sewage treatment. This thesis will focus on resource-efficient nitrogen removal from sewage via partial nitritation/anammox (PN/A), with reduced organic carbon and oxygen consumption compared to conventional techniques. PN/A relies on the teamwork between two microbial groups to convert ammonium into nitrogen gas. Several other groups of microbes however can proliferate in the sludge, competing for substrate with the key players, lowering the nitrogen removal efficiency and increasing the energy demand. To obtain the desired microbial community, control tools should be applied to selectively promote the desired microbes while suppressing the unwanted competitors. In this thesis, multiple control tools were studied to establish a workable framework for successful implementation of PN/A in the main stream of a sewage treatment plant. These tools can be divided into three categories: i) kinetic tools, regulating substrate availability (e.g., oxygen availability control and residual ammonium concentration), ii) physical tools, revolving around sludge retention and selection (e.g., sludge age control and sludge aggregation form), and iii) chemical tools, exposing the sludge to stress conditions for which the unwanted microbes are vulnerable (e.g., sludge treatments with a single stressor such as free ammonia). The first research chapter focussed on oxygen availability control and single-stressor sludge treatments. The following two chapters covered the development of a novel multi-stressor concept combining substrate starvation and exposure to sulphide and free ammonia. In the final research chapter, the previously obtained knowledge was combined into a demonstration study on pilot-scale. The combination of these control tools was found effective in achieving nitrogen removal via PN/A, both on lab- and pilot-scale. Consequently, the obtained results in this thesis can catalyse the implementation of mainstream PN/A by providing a toolbox with multiple control tools and clever reactor design, thus advancing the concept of energy neutrality and resource efficiency in sewage treatment plants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:187665 Serial 7204
Permanent link to this record
 

 
Author Xie, Y.
Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
Year 2021 Publication Abbreviated Journal
Volume Issue Pages iv, 205 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:182099 Serial 7563
Permanent link to this record
 

 
Author Van Eynde, E.
Title Biotemplate silica-titania diatoms for gas phase photocatalysis Type Doctoral thesis
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 184 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-500-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130503 Serial 7564
Permanent link to this record
 

 
Author Verstraelen, H.
Title Corrosion in ballast tanks on board of merchant vessels : study of the relation between steel quality and corrosion Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages 172 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5718-278-5 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:112176 Serial 7737
Permanent link to this record
 

 
Author van Walsem, J.
Title Design and optimization of a photocatalytic reactor for air purification in ventilation systems Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 158 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Photocatalysis has been labeled for decades as a promising technique for air purification. The principle seems straightforward and requires a photocatalyst that is immobilized on a substrate, and one or more UV sources to activate the photocatalyst. No waste products are produced, the reactions occur in mild conditions and the supplies are relatively cheap. Yet it seems that the commercialization of photocatalytic systems does not break through on the global market. The aim of this thesis is to identify and tackle the bottlenecks that impede commercialization from an application-oriented approach. The problem of indoor air pollution is enhanced by the fact that people spend more and more time indoors and that ventilation is kept to a minimum as an energy-saving measure. This inevitably leads to an accumulation of volatile organic compounds (VOCs) that are emitted by e.g. building materials, paint and furniture. Human exposure to VOCs is directly related to the sick building syndrome leading to complaints such as headache, fatigue, dizziness and lack of concentration. In addition, exposure to VOCs is related to serious long-term health effects such as cancer or respiratory diseases. Therefore, significant research efforts are focused on advanced indoor air purification methods. Integration or retrofitting of a photocatalytic (PCO) air purifying unit into heating, ventilation and air conditioning (HVAC) equipment has been chosen as an interesting approach. As a starting point of this thesis, the operational conditions of a ventilation system were mapped. These systems are characterized by high flow rates and the necessity of minimal pressure losses. Pressure losses increase the energy demand and can lead to failure of the ventilation fan and thereby undermine the proper functioning of the ventilation system. A suitable substrate must allow the contaminated air to pass through with a minimal pressure drop, allow sufficient contact time between VOC and photocatalyst, have a large surface area available for coating with excellent adhesion, and be transparent to UV light. Therefore, the permeability and the available exposed surface were selected as main selection criteria. After a thorough quantitative analysis of potential substrates, borosilicate glass tubes were selected. Glass tubes can easily be stacked to constitute a transparent monolithic multi-tube reactor, with their length parallel to the air flow in order to minimize the pressure drop. Moreover, borosilicate glass is relatively inexpensive and has excellent UV-A light transmitting properties. Based on a literature study, a sol-gel coating procedure was selected that is extremely suitable for coating glass substrates. The next step was to optimize the amount of P25 (commercial titanium dioxide) in the photocatalytic sol-gel coating for its application. More P25 in the sol-gel coating results in a higher adsorption capacity and consequently a higher photocatalytic activity, but greatly reduces the transparency of the coating. After an in-depth study, the concentration of 10 g L-1 P25 was selected as the most feasible for multi-tube reactors. Since the operation of photocatalytic reactors is based on a complex interaction of physical and chemical processes, mathematical models were developed, supported by experimental data, that include all these phenomena as a tool for reactor design and optimization. By making use of such models, time-consuming and expensive experimental research can be minimized. However, the experimental validation of models is of utmost importance to prove its reliability and accuracy. Intrinsic kinetic parameters provide the fundamentals for these models as they describe the photocatalytic reaction rate, independent of fluid dynamics, reactor geometry and radiation field. In this work they were estimated by means of a Computational Fluid Dynamics (CFD) study, based on FTIR (Fourier-transform infrared spectroscopy) experiments with a lab scale multi-tube reactor. The kinetic parameters were validated by an alternative analytic approach, emphasizing the accuracy and reliability of the simulations. Finally, the aforementioned CFD approach, based on the simultaneously modelling of airflow, mass transfer, UV light irradiation and photocatalytic reactions, was used to obtain insights for the light source configuration in upscaled multi-tube reactors. After taking all these insights and some practical implications into account, a final upscaled multi-tube reactor design was proposed and converted into a first built prototype. Subsequently, it was evaluated according the CEN-EN-16486-1 standard for VOC removal by the external scientific research center ‘CERTECH’. The scientific results, regarding the mineralization of the VOCs and photocatalytic efficiency of the reactor, demonstrated the feasibility for indoor air purification by the upscaled multi-tube reactor and the possible implementation in ventilation systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:160205 Serial 7763
Permanent link to this record
 

 
Author Hauchecorne, B.
Title Development of an FTIR in situ reactor for real time study of surface reactions in photocatalysis Type Doctoral thesis
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 155 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-335-2 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:89854 Serial 7801
Permanent link to this record
 

 
Author Huyskens, C.
Title Fouling in submerged membrane bioreactors Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 198 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-374-1 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:99492 Serial 7980
Permanent link to this record
 

 
Author Nikolova, I.
Title Modeling emission, formation and dispersion of ultrafine particles in an urban environment Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 191 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-360-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:94392 Serial 8262
Permanent link to this record
 

 
Author Fenu, A.
Title Modelling and operations of municipal membrane bioreactors : from conventional to novel applications Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages 180 p.
Keywords (down) Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-504-2 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157025 Serial 8266
Permanent link to this record