toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M.
  Title Value in sustainable materials management strategies for open economies case of Flanders (Belgium) Type A1 Journal article
  Year 2015 Publication Resources, conservation and recycling Abbreviated Journal
  Volume 103 Issue Pages 110-124
  Keywords (down) A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Sustainable Materials Management (SMM) strategies, such as reuse, recycling and energy recovery aim, to capture more of the embedded resource or material value in products and waste streams. Reuse, recycling and energy recovery are existing activities in every society but they are poorly reflected in official statistics. Reaching higher levels of reuse, recycling and energy recovery may provide economic and environmental opportunities (i.e., in terms of GDP, jobs, reduced impacts), but not all options will have a net win-win-win property in practice, as they reduce the need for producing new commodities. In open economies, many primary resources, components and products are imported from abroad, and many goods produced are exported abroad. This paper describes a top-down methodology for estimating the substitution potential of intensifying specific SMM-strategies and material efficiency strategies. We combined both regional and multi-regional EE-IO (environmentally extended input-output) models to link industrial sectors to SMM-strategies. Our method enables us to compare the different SMM and material efficiency strategies in terms of the maximum available budgets for reaching them on a break even basis, maximum savings in global warming emissions and substituted employment effects, both through a regional and global perspective. We add a case on Flanders (Northern region in Belgium) to illustrate the methodology. Flanders is currently developing a policy for SMM. Selecting new regional actions for a Sustainable Materials Management policy can benefit from a good understanding of the international entangled value chains. It is important to understand how much of the chain is within reach of domestic policies and also to assess the consequences in terms of potential winners and losers, regarding GDP, jobs and environmental impacts, both domestically and abroad. We illustrated the potential outcomes for Flanders from four generic SMM-strategies: energy recovery, food waste prevention, recycling and reuse. From a strict regional self-interest perspective, it is preferable to substitute foreign value chains with local economic activities. Reuse creates by far the largest budget for new activities to realize the strategy (31.2% of Flemish GDP compared to 8.3% for food waste prevention, 6.2% for energy recovery and 4.2% for recycling). All four strategies have similar and significant potentials to reduce greenhouse gas emissions. However, food waste prevention and reuse have higher potentials to reduce Flemish territorial GHG-emissions. From a pure Flemish employment perspective, the energy recovery and recycling strategies could replace the fewest Flemish jobs, and from a global perspective, all strategies most likely imply losses of jobs abroad. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000362618600011 Publication Date 2015-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:128777 Serial 8732
Permanent link to this record
 

 
Author Mahmoudi, H.; Renn, O.; Hoffmann, V.; Van Passel, S.; Azadi, H.
  Title Social risk screening using a socio-political ambiguity approach : the case of organic agriculture in Iran Type A1 Journal article
  Year 2015 Publication Journal Of Risk Research Abbreviated Journal J Risk Res
  Volume 18 Issue 6 Pages 747-770
  Keywords (down) A1 Journal article; Sociology; Engineering Management (ENM)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000356236300009 Publication Date 2014-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1366-9877 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.34 Times cited 1 Open Access
  Notes ; H.M. thanks the Ministry of Science, Research, and Technology of Iran (MSRT) for a PhD fellowship. The authors wish to thank Dr. Stefan Burkart for his kind help to improve the English of the paper. ; Approved Most recent IF: 1.34; 2015 IF: 0.935
  Call Number UA @ admin @ c:irua:127534 Serial 6249
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
  Title A 2D model for a gliding arc discharge Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 015025
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication Bristol Editor
  Language Wos 000348298200026 Publication Date 2014-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 34 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author Zhao, S.-X.; Zhang, Y.-R.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
  Title Bulk plasma fragmentation in a C4F8 inductively coupled plasma : a hybrid modelling study Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages 243303
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000357613900009 Publication Date 2015-06-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 11 Open Access
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:126477 Serial 261
Permanent link to this record
 

 
Author Aerts, R.; Somers, W.; Bogaerts, A.
  Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem
  Volume 8 Issue 8 Pages 702-716
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000349954400019 Publication Date 2015-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.226 Times cited 131 Open Access
  Notes Approved Most recent IF: 7.226; 2015 IF: 7.657
  Call Number c:irua:123930 Serial 279
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Bogaerts, A.
  Title Cryogenic etching of silicon with SF6 inductively coupled plasmas: a combined modelling and experimental study Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 48 Issue 48 Pages 155204
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A hybrid Monte Carlofluid model is applied to simulate the wafer-temperature-dependent etching of silicon with SF6 inductively coupled plasmas (ICP). The bulk plasma within the ICP reactor volume as well as the surface reactions occurring at the wafer are self-consistently described. The calculated etch rates are validated by experiments. The calculations and experiments are performed at two different wafer temperatures, i.e. 300 and 173 K, resembling conventional etching and cryoetching, respectively. In the case of cryoetching, a physisorbed SFx layer (x = 06) is formed on the wafer, which is negligible at room temperature, because of fast thermal desorption, However, even in the case of cryoetching, this layer can easily be disintegrated by low-energy ions, so it does not affect the etch rates. In the investigated pressure range of 19 Pa, the etch rate is always slightly higher at cryogenic conditions, both in the experiments and in the model, and this could be explained in the model due to a local cooling of the gas above the wafer, making the gas denser and increasing the flux of reactive neutrals, like F and F2, towards the wafer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000351856600009 Publication Date 2015-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 9 Open Access
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
  Call Number c:irua:124209 Serial 551
Permanent link to this record
 

 
Author Peerenboom, K.; Parente, A.; Kozák, T.; Bogaerts, A.; Degrez, G.
  Title Dimension reduction of non-equilibrium plasma kinetic models using principal component analysis Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 025004
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The chemical complexity of non-equilibrium plasmas poses a challenge for plasma modeling because of the computational load. This paper presents a dimension reduction method for such chemically complex plasmas based on principal component analysis (PCA). PCA is used to identify a low-dimensional manifold in chemical state space that is described by a small number of parameters: the principal components. Reduction is obtained since continuity equations only need to be solved for these principal components and not for all the species. Application of the presented method to a CO2 plasma model including state-to-state vibrational kinetics of CO2 and CO demonstrates the potential of the PCA method for dimension reduction. A manifold described by only two principal components is able to predict the CO2 to CO conversion at varying ionization degrees very accurately.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication Bristol Editor
  Language Wos 000356816200008 Publication Date 2015-01-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 11 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:123534 Serial 704
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-P.; Wang, Y.-N.; Bogaerts, A.
  Title Effects of feedstock availability on the negative ion behavior in a C4F8 inductively coupled plasma Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue 118 Pages 033301
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper, the negative ion behavior in a C4F8 inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (1030 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C2F6, CHF3, and C4F8. This behavior is explained by the availability of feedstock C4F8 gas as a source of the negative ions, as well as by the presence of low energy electrons due to vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C4F8 molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C4F8 plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000358429200004 Publication Date 2015-07-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:126735 Serial 861
Permanent link to this record
 

 
Author Xie, L.; Brault, P.; Coutanceau, C.; Bauchire, J.-M.; Caillard, A.; Baranton, S.; Berndt, J.; Neyts, E.C.
  Title Efficient amorphous platinum catalyst cluster growth on porous carbon : a combined molecular dynamics and experimental study Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
  Volume 162 Issue 162 Pages 21-26
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Amorphous platinum clusters supported on porous carbon have been envisaged for high-performance fuel cell electrodes. For this application, it is crucial to control the morphology of the Pt layer and the Ptsubstrate interaction to maximize activity and stability. We thus investigate the morphology evolution during Pt cluster growth on a porous carbon substrate employing atomic scale molecular dynamics simulations. The simulations are based on the Pt-C interaction potential using parameters derived from density functional theory and are found to yield a Pt cluster morphology similar to that observed in low loaded fuel cell electrodes prepared by plasma sputtering. Moreover, the simulations show amorphous Pt cluster growth in agreement with X-ray diffraction and transmission electron microscopy experiments on high performance low Pt content (10 μgPt cm−2) loaded fuel cell electrodes and provide a fundamental insight in the cluster growth mechanism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000343686900003 Publication Date 2014-06-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.446 Times cited 20 Open Access
  Notes Approved Most recent IF: 9.446; 2015 IF: 7.435
  Call Number c:irua:117949 Serial 874
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N.
  Title Electromagnetic effects in high-frequency large-area capacitive discharges : a review Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
  Volume 33 Issue 33 Pages 020801
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength k in the plasma becomes comparable to the electrode radius, and the plasma skin depth d becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwells equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.
  Address
  Corporate Author Thesis
  Publisher A v s amer inst physics Place of Publication Melville Editor
  Language Wos 000355739500007 Publication Date 2015-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.374 Times cited 10 Open Access
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
  Call Number c:irua:123541 Serial 903
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A.
  Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 015024
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.
  Address
  Corporate Author Thesis
  Publisher Institute of Physics Place of Publication Bristol Editor
  Language Wos 000348298200025 Publication Date 2014-12-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 100 Open Access
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:122243 Serial 1087
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G.
  Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
  Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
  Volume 4 Issue 4 Pages N3127-N3133
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
  Language Wos 000349547900018 Publication Date 2014-11-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.787 Times cited 19 Open Access
  Notes Approved Most recent IF: 1.787; 2015 IF: 1.558
  Call Number c:irua:125296 Serial 1150
Permanent link to this record
 

 
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N.
  Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
  Volume 33 Issue 33 Pages 061303
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000365503800020 Publication Date 2015-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.374 Times cited 9 Open Access
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
  Call Number c:irua:126824 Serial 1229
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C.
  Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
  Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases
  Volume 10 Issue 10 Pages 029501
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000357195600019 Publication Date 2014-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.603 Times cited 10 Open Access
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
  Call Number c:irua:121371 Serial 1492
Permanent link to this record
 

 
Author Wende, K.; Williams, P.; Dalluge, J.; Van Gaens, W.; Aboubakr, H.; Bischof, J.; von Woedtke, T.; Goyal, S.M.; Weltmann, K.D.; Bogaerts, A.; Masur, K.; Bruggeman, P.J.;
  Title Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet Type A1 Journal article
  Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases
  Volume 10 Issue 10 Pages 029518
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argonoxygen and argonair plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argonoxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2 − or ClO−. These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000357195600036 Publication Date 2015-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.603 Times cited 137 Open Access
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
  Call Number c:irua:126774 Serial 1549
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A.
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 12 Issue 12 Pages 162-171
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000350275400005 Publication Date 2014-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 18 Open Access
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453
  Call Number c:irua:123540 Serial 1589
Permanent link to this record
 

 
Author Dumpala, S.; Broderick, S.R.; Khalilov, U.; Neyts, E.C.; van Duin, A.C.T.; Provine, J.; Howe, R.T.; Rajan, K.
  Title Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation Type A1 Journal article
  Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 106 Issue 106 Pages 011602
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000347976900008 Publication Date 2015-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 19 Open Access
  Notes Approved Most recent IF: 3.411; 2015 IF: 3.302
  Call Number c:irua:122300 Serial 1679
Permanent link to this record
 

 
Author Nishio, K.; Lu, A.K.A.; Pourtois, G.
  Title Low-strain Si/O superlattices with tunable electronic properties : ab initio calculations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 165303
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We propose that low-strain Si/O superlattices can be constructed by connecting reconstructed Si{001} surfaces by Si-O-Si bridges. Ab initio calculations show that our models are energetically more favorable than all the models proposed so far. The part of our Si/O superlattice model is experimentally accessible just by oxidizing a Si( 001) substrate. To complete our Si/O superlattice model, we propose a three-step method. We also explore the potential of our Si/O superlattice models for new materials used in future Si electronics. We find that the location of the channel where the carriers travel can be controlled between the interfaces and the Si layers by the insertion of O atoms into the Si-Si dimers. By revealing the origins of the interface electron and hole states, we find that similar interface states should be easily achieved for Si slabs and Si substrates. Interestingly, the interface electrons and holes have small effective masses in the direction parallel to the channel and large effective masses in the direction normal to the channel, which makes the Si/O superlattices attractive to be used for channel materials. We also find that the valley splitting of Si is enhanced by the formation of the Si/O/Si interfaces, which is ideal for developing Si-based qubits. Our findings open new perspectives to design and control the electronic properties of Si.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000352986700002 Publication Date 2015-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:125998 Serial 1852
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A.
  Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
  Volume 33 Issue 33 Pages 021310
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000355739500026 Publication Date 2015-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.374 Times cited 3 Open Access
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
  Call Number c:irua:122650 Serial 2107
Permanent link to this record
 

 
Author Vandenbroucke, A.M.; Aerts, R.; Van Gaens, W.; De Geyter, N.; Leys, C.; Morent, R.; Bogaerts, A.
  Title Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge Type A1 Journal article
  Year 2015 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P
  Volume 35 Issue 35 Pages 217-230
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000347285800014 Publication Date 2014-09-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-4324;1572-8986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.355 Times cited 9 Open Access
  Notes Approved Most recent IF: 2.355; 2015 IF: 2.056
  Call Number c:irua:118882 Serial 2108
Permanent link to this record
 

 
Author Brault, P.; Neyts, E.C.
  Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
  Volume 256 Issue 256 Pages 3-12
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000360085300002 Publication Date 2015-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.636 Times cited 18 Open Access
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
  Call Number c:irua:127408 Serial 2174
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.(K.)
  Title Nanoscale thermodynamic aspects of plasma catalysis Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today
  Volume 256 Issue 256 Pages 23-28
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma catalysis continues to gain increasing scientific interest, both in established fields like toxic waste abatement and emerging fields like greenhouse gas conversion into value-added chemicals. Attention is typically focused on the obtained conversion process selectivity, rates and energy efficiency. Much less attention is usually paid to the underlying mechanistic aspects of the processes that occur. In this contribution, we critically examine a number of fundamentally important nanoscale thermodynamic aspects of plasma catalysis, which are very relevant to these processes but so far have been overlooked or insufficiently covered in the plasma catalysis literature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000360085300004 Publication Date 2015-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.636 Times cited 14 Open Access
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893
  Call Number c:irua:127409 Serial 2274
Permanent link to this record
 

 
Author Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A.
  Title Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 033003
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure , and + . Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone () and nitrogen dioxide () species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the and the generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000352898500003 Publication Date 2015-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 29 Open Access
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:124228 Serial 2391
Permanent link to this record
 

 
Author Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A.
  Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 48 Issue 48 Pages 025202
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000347980100011 Publication Date 2014-12-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 7 Open Access
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
  Call Number c:irua:121335 Serial 2394
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A.
  Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 5 Issue 5 Pages 29799-29808
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000352789500026 Publication Date 2015-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 67 Open Access
  Notes Approved Most recent IF: 3.108; 2015 IF: 3.840
  Call Number c:irua:132577 Serial 2629
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A.
  Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 103005
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367328100001 Publication Date 2015-10-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 18 Open Access
  Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:129178 Serial 3955
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A.
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 48 Issue 48 Pages 155202
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000351856600007 Publication Date 2015-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 20 Open Access
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
  Call Number c:irua:124230 Serial 3242
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
  Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 24 Issue 24 Pages 065023
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000368117100028 Publication Date 2015-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 12 Open Access
  Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
  Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Arnoult, G.; De Keyzer, P.; Bogaerts, A.; Reniers, F.
  Title CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util
  Volume 9 Issue 9 Pages 74-81
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The conversion of CO2 and CH4 into value-added chemicals is studied in a new geometry of a dielectric barrier discharge (DBD) with multi-electrodes, dedicated to the treatment of high gas flow rates. Gas chromatography is used to define the CO2 and CH4 conversion as well as the yields of the products of decomposition (CO, O2 and H2) and of recombination (C2H4, C2H6 and CH2O). The influence of three parameters is investigated on the conversion: the CO2 and CH4 flow rates, the plasma power and the nature of the carrier gas (argon or helium). The energy efficiency of the CO2 conversion is estimated and compared with those of similar atmospheric plasma sources. Our DBD reactor shows a good compromise between a good energy efficiency and the treatment of a large CO2 flow rate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000350088700010 Publication Date 2015-01-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2212-9820; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.292 Times cited 57 Open Access
  Notes Approved Most recent IF: 4.292; 2015 IF: 3.091
  Call Number c:irua:123029 Serial 3522
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Jiang, W.; Bogaerts, A.
  Title Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 17 Issue 17 Pages 083056
  Keywords (down) A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of −20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of $4\times {10}
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000360957800003 Publication Date 2015-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 22 Open Access
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558
  Call Number c:irua:127650 Serial 3777
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: