|   | 
Details
   web
Records
Author Gao, C.; Hofer, C.; Pennycook, T.J.
Title On central focusing for contrast optimization in direct electron ptychography of thick samples Type A1 Journal article
Year 2024 Publication Ultramicroscopy Abbreviated Journal
Volume 256 Issue Pages 113879-7
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ptychography provides high dose efficiency images that can reveal light elements next to heavy atoms. However, despite ptychography having an otherwise single signed contrast transfer function, contrast reversals can occur when the projected potential becomes strong for both direct and iterative inversion ptychography methods. It has recently been shown that these reversals can often be counteracted in direct ptychography methods by adapting the focus. Here we provide an explanation of why the best contrast is often found with the probe focused to the middle of the sample. The phase contribution due to defocus at each sample slice above and below the central plane in this configuration effectively cancels out, which can prevent contrast reversals when dynamical scattering effects are not overly strong. In addition we show that the convergence angle can be an important consideration for removal of contrast reversals in relatively thin samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001112166400001 Publication Date 2023-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number UA @ admin @ c:irua:202029 Serial 9066
Permanent link to this record
 

 
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A.
Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 47 Pages 33146-33158
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102666700001 Publication Date 2023-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:202091 Serial 9096
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L.
Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal
Volume 145 Issue 36 Pages 19885-19893
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060980300001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access
Notes Approved Most recent IF: 15; 2023 IF: 13.858
Call Number UA @ admin @ c:irua:200342 Serial 9111
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P.
Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type A1 Journal article
Year 2024 Publication Chemistry: a European journal Abbreviated Journal
Volume Issue Pages 1-10
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204094600001 Publication Date 2024-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access
Notes Approved Most recent IF: 4.3; 2024 IF: 5.317
Call Number UA @ admin @ c:irua:205426 Serial 9135
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X.
Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
Year 2024 Publication Energy & environment materials Abbreviated Journal
Volume Issue Pages e12755-8
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001204495900001 Publication Date 2024-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205438 Serial 9148
Permanent link to this record
 

 
Author Poppe, R.; Roth, N.; Neder, R.B.; Palatinus, L.; Iversen, B.B.; Hadermann, J.
Title Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data Type A1 Journal article
Year 2024 Publication IUCrJ Abbreviated Journal
Volume 11 Issue 1 Pages 82-91
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) angstrom for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) angstrom for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168018300012 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved Most recent IF: 3.9; 2024 IF: 5.793
Call Number UA @ admin @ c:irua:205513 Serial 9170
Permanent link to this record
 

 
Author Brognara, A.; Kashiwar, A.; Jung, C.; Zhang, X.; Ahmadian, A.; Gauquelin, N.; Verbeeck, J.; Djemia, P.; Faurie, D.; Dehm, G.; Idrissi, H.; Best, J.P.; Ghidelli, M.
Title Tailoring mechanical properties and shear band propagation in ZrCu metallic glass nanolaminates through chemical heterogeneities and interface density Type A1 Journal article
Year 2024 Publication Small Structures Abbreviated Journal
Volume Issue Pages 2400011-11
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The design of high‐performance structural thin films consistently seeks to achieve a delicate equilibrium by balancing outstanding mechanical properties like yield strength, ductility, and substrate adhesion, which are often mutually exclusive. Metallic glasses (MGs) with their amorphous structure have superior strength, but usually poor ductility with catastrophic failure induced by shear bands (SBs) formation. Herein, we introduce an innovative approach by synthesizing MGs characterized by large and tunable mechanical properties, pioneering a nanoengineering design based on the control of nanoscale chemical/structural heterogeneities. This is realized through a simplified model Zr 24 Cu 76 /Zr 61 Cu 39 , fully amorphous nanocomposite with controlled nanoscale periodicity ( Λ , from 400 down to 5 nm), local chemistry, and glass–glass interfaces, while focusing in‐depth on the SB nucleation/propagation processes. The nanolaminates enable a fine control of the mechanical properties, and an onset of crack formation/percolation (>1.9 and 3.3%, respectively) far above the monolithic counterparts. Moreover, we show that SB propagation induces large chemical intermixing, enabling a brittle‐to‐ductile transition when Λ  ≤ 50 nm, reaching remarkably large plastic deformation of 16% in compression and yield strength ≈2 GPa. Overall, the nanoengineered control of local heterogeneities leads to ultimate and tunable mechanical properties opening up a new approach for strong and ductile materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2688-4062 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:205798 Serial 9176
Permanent link to this record
 

 
Author Grieten, E.; Caen, J.; Schryvers, D.
Title Optimal sample preparation to characterize corrosion in historical photographs with analytical TEM Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue 5 Pages 1585-1590
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract An alternative focused ion beam preparation method is used for sampling historical photographs containing metallic nanoparticles in a polymer matrix. We use the preparation steps of classical ultra-microtomy with an alternative final sectioning with a focused ion beam. Transmission electron microscopy techniques show that the lamella has a uniform thickness, which is an important factor for analytical transmission electron microscopy. Furthermore, the method maintains the spatial distribution of nanoparticles in the soft matrix. The results are compared with traditional preparation techniques such as ultra-microtomy and classical focused ion beam milling.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000345742900031 Publication Date 2014-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:118481 Serial 2484
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; D'Acapito, F.; Barni, L.; Grazia, C.; Buemi, L.P.; Andral, J.-L.; Miliani, C.; Romani, A.
Title Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales Type A1 Journal article
Year 2022 Publication The European Physical Journal Plus Abbreviated Journal Eur Phys J Plus
Volume 137 Issue 3 Pages 311
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Cadmium red is the name used for denoting a class of twentieth century artists' pigments described by the general formula CdS1-xSex. For their vibrant hues and excellent covering power, a number of renowned modern and contemporary painters, including Jackson Pollock, often used cadmium reds. As direct band gap semiconductors, CdS1-xSex compounds undergo direct radiative recombination (with emissions from the green to orange region) and radiative deactivation from intragap trapping states due to crystal defects, which give rise to two peculiar red-NIR emissions, known as deep level emissions (DLEs). The positions of the DLEs mainly depend on the Se content of CdS1-xSex; thus, photoluminescence and diffuse reflectance vis-NIR spectroscopy have been profitably used for the non-invasive identification of different cadmium red varieties in artworks over the last decade. Systematic knowledge is however currently lacking on what are the parameters related to intrinsic crystal defects of CdS1-xSex and environmental factors influencing the spectral properties of DLEs as well as on the overall (photo)chemical reactivity of cadmium reds in paint matrixes. Here, we present the application of a novel multi-length scale and multi-method approach to deepen insights into the photoluminescence properties and (photo)chemical reactivity of cadmium reds in oil paintings by combining both well established and new non-invasive/non-destructive analytical techniques, including macro-scale vis-NIR and vibrational spectroscopies and micro-/nano-scale advanced electron microscopy mapping and X-ray methods employing synchrotron radiation and conventional sources. Macro-scale vis-NIR spectroscopy data obtained from the in situ non-invasive analysis of nine masterpieces by Gerardo Dottori, Jackson Pollock and Nicolas de Stael allowed classifying the CdS1-xSex-paints in three groups, according to the relative intensity of the two DLE bands. These outcomes, combined with results from micro-/nano-scale electron microscopy mapping and X-ray analysis of a set of CdS1-xSex powders and artificially aged paint mock-ups, indicated that the relative intensity of DLEs is not affected by the morphology, microstructure and local atomic environment of the pigment particles but it is influenced by the presence of moisture. Furthermore, the extensive study of artificially aged oil paint mock-ups permitted us to provide first evidence of the tendency of cadmium reds toward photo-degradation and to establish that the conversion of CdS1-xSex to CdSO4 and/or oxalates is triggered by the oil binding medium and moisture level and depends on the Se content. Based on these findings, we could interpret the localized presence of CdSO4 and cadmium oxalate as alteration products of the original cadmium red paints in two paintings by Pollock.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000765807600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 3 Open Access OpenAccess
Notes g The research was financially supported by the EU FP7 and Horizon 2020 Projects CHARISMA (FP7-INFRASTRUCTURES, GA No. 228330), IPERION-CH (H2020-INFRAIA-2014-2015, GA No. 654028), IPERION-HS (H2020-INFRAIA-2019-1, GA No. 871034) and ESTEEM3 (Research and innovation programme, GA No. 823717) and the Italian project AMIS (Dipartimenti di Eccellenza 2018–2022, funded by MIUR and Perugia University). For the beamtime grants received, we thank ESRF-ID21 (Experiment No. HG156 and in-house beamtimes) and the CERIC-ERIC Research Infrastructure for the investigations at ESRF-BM08 (LISA) beamline (Proposal Id: 20207042). D.C. acknowledges TOP/BOF funding of the University of Antwerp.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:187375 Serial 7060
Permanent link to this record
 

 
Author Geboes, B.; Ustarroz, J.; Sentosun, K.; Vanrompay, H.; Hubin, A.; Bals, S.; Breugelmans, T.
Title Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction Type A1 Journal article
Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 6 Issue 6 Pages 5856-5864
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382714000025 Publication Date 2016-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 48 Open Access OpenAccess
Notes ; The Quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. The authors acknowledge financial support from the Fonds Wetenschappelijk Onderzoek in Flanders (FWOAL708). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_Sara Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:135703 Serial 4302
Permanent link to this record
 

 
Author Wang, D.; Dasgupta, T.; van der Wee, E.B.; Zanaga, D.; Altantzis, T.; Wu, Y.; Coli, G.M.; Murray, C.B.; Bals, S.; Dijkstra, M.; van Blaaderen, A.
Title Binary icosahedral clusters of hard spheres in spherical confinement Type A1 Journal article
Year 2020 Publication Nature Physics Abbreviated Journal Nat Phys
Volume Issue Pages 1-9
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The influence of geometry on the local and global packing of particles is important to many fundamental and applied research themes, such as the structure and stability of liquids, crystals and glasses. Here we show by experiments and simulations that a binary mixture of hard-sphere-like nanoparticles crystallizing into a MgZn(2)Laves phase in bulk spontaneously forms icosahedral clusters in slowly drying droplets. Using advanced electron tomography, we are able to obtain the real-space coordinates of all the spheres in the icosahedral clusters of up to about 10,000 particles. The local structure of 70-80% of the particles became similar to that of the MgCu(2)Laves phase. These observations are important for photonic applications. In addition, we observed in simulations that the icosahedral clusters nucleated away from the spherical boundary, which is distinctly different from that of the single species clusters. Our findings open the way for particle-level studies of nucleation and growth of icosahedral clusters, and of binary crystallization. The authors investigate out-of-equilibrium crystallization of a binary mixture of sphere-like nanoparticles in small droplets. They observe the spontaneous formation of an icosahedral structure with stable MgCu(2)phases, which are promising for photonic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000564497300002 Publication Date 2020-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473; 1745-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.6 Times cited 38 Open Access OpenAccess
Notes ; D.W., E.B.v.d.W. and A.v.B. acknowledge partial financial support from the European Research Council under the European Union's Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement 291667 HierarSACol. T.D. and M. D. acknowledge financial support from the Industrial Partnership Programme, 'Computational Sciences for Energy Research' (grant number 13CSER025), of the Netherlands Organization for Scientific Research (NWO), which was co-financed by Shell Global Solutions International BV G.M.C. was also financially supported by NWO. S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). C.B.M. and Y.W. acknowledge support for materials synthesis from the Office of Naval Research Multidisciplinary University Research Initiative Award ONR N00014-18-1-2497. G. A. Blab is gratefully acknowledged for 3D printing numerous truncated tetrahedra, which increased our understanding of the connection between the binary icosahedral cluster and Laves phase structures. N. Tasios is sincerely thanked for providing the code for the diffraction pattern calculation. M. Hermes is sincerely thanked for providing interactive views of the structures in this work. We thank G. van Tendeloo, M. Engel, J. Wang, S. Dussi, L. Filion, E. Boattini, S. Paliwal, N. Tasios, B. van der Meer, I. Lobato, J. Wu and L. Laurens for fruitful discussions. We acknowledge the EM Square centre at Utrecht University for the access to the microscopes. ; sygma Approved Most recent IF: 19.6; 2020 IF: 22.806
Call Number UA @ admin @ c:irua:172044 Serial 6460
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M.
Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem
Volume 14 Issue 18 Pages e202200754-11
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000853941300001 Publication Date 2022-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 7 Open Access OpenAccess
Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved Most recent IF: 4.5
Call Number UA @ admin @ c:irua:190703 Serial 7226
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M.
Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal
Volume 5 Issue 11 Pages 1051-1060
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000884939300006 Publication Date 2022-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 32 Open Access OpenAccess
Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8
Call Number EMAT @ emat @c:irua:192068 Serial 7230
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T.
Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000936694800001 Publication Date 2023-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136
Call Number EMAT @ emat @c:irua:195228 Serial 7249
Permanent link to this record
 

 
Author Yang, S.; Liu, Z.; An, H.; Arnouts, S.; de Ruiter, J.; Rollier, F.; Bals, S.; Altantzis, T.; Figueiredo, M.C.; Filot, I.A.W.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W.
Title Near-unity electrochemical CO₂ to CO conversion over Sn-doped copper oxide nanoparticles Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 24 Pages 15146-15156
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Bimetallic electrocatalysts have emerged as a viable strategy to tune the electrocatalytic CO2 reduction reaction (eCO2RR) for the selective production of valuable base chemicals and fuels. However, obtaining high product selectivity and catalyst stability remain challenging, which hinders the practical application of eCO2RR. In this work, it was found that a small doping concentration of tin (Sn) in copper oxide (CuO) has profound influence on the catalytic performance, boosting the Faradaic efficiency (FE) up to 98% for carbon monoxide (CO) at -0.75 V versus RHE, with prolonged stable performance (FE > 90%) for up to 15 h. Through a combination of ex situ and in situ characterization techniques, the in situ activation and reaction mechanism of the electrocatalyst at work was elucidated. In situ Raman spectroscopy measurements revealed that the binding energy of the crucial adsorbed *CO intermediate was lowered through Sn doping, thereby favoring gaseous CO desorption. This observation was confirmed by density functional theory, which further indicated that hydrogen adsorption and subsequent hydrogen evolution were hampered on the Sn-doped electrocatalysts, resulting in boosted CO formation. It was found that the pristine electrocatalysts consisted of CuO nanoparticles decorated with SnO2 domains, as characterized by ex situ high-resolution scanning transmission electron microscopy and X-ray photoelectron spectroscopy measurements. These pristine nanoparticles were subsequently in situ converted into a catalytically active bimetallic Sn-doped Cu phase. Our work sheds light on the intimate relationship between the bimetallic structure and catalytic behavior, resulting in stable and selective oxide-derived Sn-doped Cu electrocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000900052400001 Publication Date 2022-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited 16 Open Access OpenAccess
Notes B.M.W., S.Y., M.C.F., E.J.M.H., and W.v.d.S. acknowledge support from the Strategic UU-TU/e Alliance project ?Joint Centre for Chemergy Research?. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO) . Z.L. acknowledges financial support of the China Scholarship Council and the Netherlands Organization for Scientific Research for access to computa-tional resources for carrying out the DFT calculations reported in this work. S.A. and T.A. acknowledge funding from theUniversity of Antwerp Research fund (BOF) . The authors also thank Dr. Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, Utrecht University) for helpful technical support. Sander Deelen (Faculty of Science, Utrecht University) is acknowledged for the design of the in situ XRD cell. Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:192742 Serial 7325
Permanent link to this record
 

 
Author Arenas Esteban, D.; Pacquets, L.; Choukroun, D.; Hoekx, S.; Kadu, A.A.; Schalck, J.; Daems, N.; Breugelmans, T.; Bals, S.
Title 3D characterization of the structural transformation undergone by Cu@Ag core-shell nanoparticles following CO₂ reduction reaction Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 17 Pages 6682-6691
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The increasing use of metallic nanoparticles (NPs) is significantly advancing the field of electrocatalysis. In particular, Cu/Ag bimetallic interfaces are widely used to enhance the electrochemical CO2 reduction reaction (eCO(2)RR) toward CO and, more recently, C-2 products. However, drastic changes in the product distribution and performance when Cu@Ag core-shell configurations are used can often be observed under electrochemical reaction conditions, especially during the first few minutes of the reaction. Possible structural changes that generate these observations remain underexplored; therefore, the structure-property relationship is hardly understood. In this study, we use electron tomography to investigate the structural transformation mechanism of Cu@Ag core-shells NPs during the critical first minutes of the eCO(2)RR. In this manner, we found that the crystallinity of the Cu seed determines whether the formation of a complete and homogeneous Ag shell is possible. Moreover, by tracking the particles' transformations, we conclude that modifications of the Cu-Ag interface and Cu2O enrichment at the surface of the NPs are key factors contributing to the product generation changes. These insights provide a better understanding of how bimetallic core-shell NPs transform under electrochemical conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061530700001 Publication Date 2023-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited 1 Open Access OpenAccess
Notes L.P. was supported through a PhD fellowship for strategicbasic research (1S56920N) of the Research Foundation – Flanders(FWO). S.H. was supported through a PhD fellowship for strategic basicresearch (1S42623N) of the Research Foundation – Flanders (FWO).S.B., D.A.E., and A.A.K. acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the researchcouncil of the University of Antwerp (BOF-GOA 33928). Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:199187 Serial 8825
Permanent link to this record
 

 
Author Yang, S.; An, H.; Arnouts, S.; Wang, H.; Yu, X.; de Ruiter, J.; Bals, S.; Altantzis, T.; Weckhuysen, B.M.; van der Stam, W.
Title Halide-guided active site exposure in bismuth electrocatalysts for selective CO₂ conversion into formic acid Type A1 Journal article
Year 2023 Publication Nature Catalysis Abbreviated Journal
Volume 6 Issue 9 Pages 796-806
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a challenge to identify the active sites of bismuth catalysts in the electrochemical CO2 reduction reaction. Here we show through in situ characterization that the activation of bismuth oxyhalide electrocatalysts to metallic bismuth is guided by the halides. In situ X-ray diffraction results show that bromide promotes the selective exposure of planar bismuth surfaces, whereas chloride and iodide result in more disordered active sites. Furthermore, we find that bromide-activated bismuth catalysts outperform the chloride and iodide counterparts, achieving high current density (>100 mA cm(-2)) and formic acid selectivity (>90%), suggesting that planar bismuth surfaces are more active for the electrochemical CO2 reduction reaction. In addition, in situ X-ray absorption spectroscopy measurements reveal that the reconstruction proceeds rapidly in chloride-activated bismuth and gradually when bromide is present, facilitating the formation of ordered planar surfaces. These findings show the pivotal role of halogens on selective facet exposure in activated bismuth-based electrocatalysts during the electrochemical CO2 reduction reaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001050367400001 Publication Date 2023-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.8 Times cited 13 Open Access OpenAccess
Notes B.M.W. acknowledges support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research' as well as from the Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). We also thank J. Wijten, J. Janssens and T. Prins (all from the Inorganic Chemistry and Catalysis group, Utrecht University) for helpful technical support. S. Deelen (Faculty of Science, Utrecht University) and L. Wu (Inorganic Chemistry and Catalysis group, Utrecht University) are acknowledged for the design of the in situ XRD cell. We also acknowledge B. Detlefs, P. Glatzel and V. Paidi (ESRF) for the support during the HERFD-XANES measurements on the ID26 beamline of the ESRF. Approved Most recent IF: 37.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:199190 Serial 8877
Permanent link to this record
 

 
Author Moggia, G.; Hoekx, S.; Daems, N.; Bals, S.; Breugelmans, T.
Title Synthesis and characterization of a highly electroactive composite based on Au nanoparticles supported on nanoporous activated carbon for electrocatalysis Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A facile, “one-pot”, chemical approach to synthesize gold-based nanoparticles finely dispersed on porous activated carbon (Norit) was demonstrated in this work. The pH of the synthesis bath played a critical role in determining the optimal gold-carbon interaction, which enabled a successful deposition of the gold nanoparticles onto the carbon matrix with a maximized metal utilization of 93 %. The obtained AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques. It was found that the Au nanoparticles, with diameters between 5 and 20 nm, were evenly distributed over the carbon matrix, both inside and outside the pores. Electrochemical characterization indicated that the composite had a very large electroactive surface area (EASA), as high as 282.4 m2 gAu-1. By exploiting its very high EASA, the catalyst was intended to boost the productivity of glucaric acid in the electrooxidation of its precursor, gluconic acid. However, cyclic voltammetry experiments revealed a very limited reactivity towards gluconic acid oxidation, due to the spacial hindrance of gluconic acid molecule which prevented diffusion inside the catalyst nanopores. On the other hand, the as-synthesized nanocomposite promises to be effective towards the ORR, and might thus find potential application as anode catalyst for fuel cells as well as for the scalability of all those electrochemical reactions involving small molecules with high diffusivity and catalysed by noble metals (i. e. CO2, CH4, N2, etc..). Electrocatalysis: Gold nanoparticles with diameter between 5 and 20 nm evenly distributed onto porous activated carbon (Norit) were obtained using a facile “one-pot” chemical synthesis technique with very high metal utilization. The AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques, revealing a very large electroactive surface area (EASA). The figure shows the HAADF-STEM image (a) and the respective EDX elemental distribution (b) for the AuNP/C composite with 9.3 % Au-loading developed in this work (Au is marked in red and C in green).image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060398900001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 1 Open Access OpenAccess
Notes The research described in this article has not been supported by the Climate, Infrastructure and Environment Executive Agency of the European Commission. The views expressed in this article have not been adopted or in any way approved by the European Commission and do not constitute a statement of the European Commission & apos;s views.r S. Hoekx was supported by Research Foundation Flanders (FWO 1S42623N). The authors would like to thank Prof. Dr. Christophe Vande Velde, University of Antwerp, for the XRD analysis. Approved Most recent IF: 4; 2023 IF: 4.136
Call Number UA @ admin @ c:irua:199210 Serial 8941
Permanent link to this record
 

 
Author da Pieve, F.; Hogan, C.; Lamoen, D.; Verbeeck, J.; Vanmeert, F.; Radepont, M.; Cotte, M.; Janssens, K.; Gonze, X.; Van Tendeloo, G.
Title Casting light on the darkening of colors in historical paintings Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 20 Pages 208302-208305
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000327244500003 Publication Date 2013-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 30 Open Access
Notes Vortex; ERC FP7; COUNTATOMS; ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:111396UA @ admin @ c:irua:111396 Serial 287
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Miliani, C.; Brunetti, B.G.; Vagnini, M.; Vanmeert, F.; Falkenberg, G.; Abakumov, A.; Lu, Y.; Tian, H.; Verbeeck, J.; Radepont, M.; Cotte, M.; Hendriks, E.; Geldof, M.; van der Loeff, L.; Salvant, J.; Menu, M.;
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : 3 : synthesis, characterization, and detection of different crystal forms of the chrome yellow pigment Type A1 Journal article
Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 85 Issue 2 Pages 860-867
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The painter, Vincent van Gogh, and some of his contemporaries frequently made use of the pigment chrome yellow that is known to show a tendency toward darkening. This pigment may correspond to various chemical compounds such as PbCrO4 and PbCr1-xSxO4, that may each be present in various crystallographic forms with different tendencies toward degradation. Investigations by X-ray diffraction (XRD), mid-Fourier Transform infrared (FTIR), and Raman instruments (benchtop and portable) and synchrotron radiation-based micro-XRD and X-ray absorption near edge structure spectroscopy performed on oil-paint models, prepared with in-house synthesized PbCrO4 and PbCr1-xSxO4, permitted us to characterize the spectroscopic features of the various forms. On the basis of these results, an extended study has been carried out on historic paint tubes and on embedded paint microsamples taken from yellow-orange/pale yellow areas of 12 Van Gogh paintings, demonstrating that Van Gogh effectively made use of different chrome yellow types. This conclusion was also confirmed by in situ mid-FTIR investigations on Van Goghs Portrait of Gauguin (Van Gogh Museum, Amsterdam).
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000313668400031 Publication Date 2012-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 79 Open Access
Notes Goa; Fwo Approved Most recent IF: 6.32; 2013 IF: 5.825
Call Number UA @ lucian @ c:irua:108707UA @ admin @ c:irua:108707 Serial 631
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Verbeeck, J.; Tian, H.; Tan, H.; Dik, J.; Radepont, M.; Cotte, M.
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 1 : artificially aged model samples Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 4 Pages 1214-1223
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1−3 μm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (μ-XANES), X-ray fluorescence spectrometry (μ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR μ-XRD), μ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and μ-XANES spectra are consistent with the presence of Cr2O3·2H2O (viridian). Moreover, as demonstrated by μ-XANES, the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide], is likely.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000287176900011 Publication Date 2011-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 113 Open Access
Notes Iuap; Fwo Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:88794UA @ admin @ c:irua:88794 Serial 632
Permanent link to this record
 

 
Author Fredrickx, P.; de Ryck, I.; Janssens, K.; Schryvers, D.; Petit, J.-P.; Döcking, H.
Title EPMA and µ-SRXRF analysis and TEM-based microstructure characterization of a set of Roman glass fragments Type A1 Journal article
Year 2004 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom
Volume 33 Issue 5 Pages 326-333
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000223880800002 Publication Date 2004-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246;1097-4539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited 13 Open Access
Notes Approved Most recent IF: 1.298; 2004 IF: 1.391
Call Number UA @ lucian @ c:irua:48786 Serial 1076
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G.
Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue 43 Pages 11360-11363
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000330735800026 Publication Date 2013-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 29 Open Access
Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266
Permanent link to this record
 

 
Author Fredrickx, P.; Schryvers, D.; Janssens, K.
Title Nanoscale morphology of a piece of ruby red Kunckel glass Type A1 Journal article
Year 2002 Publication Physics and chemistry of glasses Abbreviated Journal Phys Chem Glasses
Volume 43 Issue 4 Pages 176-183
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Sheffield Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:40020 Serial 2268
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K.
Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem
Volume 374 Issue 374 Pages 81
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
Address
Corporate Author Thesis
Publisher Springer international publishing ag Place of Publication Cham Editor
Language Wos 000391178900006 Publication Date 2016-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.033 Times cited 50 Open Access
Notes ; ; Approved Most recent IF: 4.033
Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443
Permanent link to this record
 

 
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M.
Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 64 Issue 8 Pages 812-820
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab
Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000269995300018 Publication Date 2009-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 28 Open Access
Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719
Call Number UA @ lucian @ c:irua:79647 Serial 1035
Permanent link to this record
 

 
Author Roose, D.; Leroux, F.; de Vocht, N.; Guglielmetti, C.; Pintelon, I.; Adriaensen, D.; Ponsaerts, P.; van der Linden, A.-M.; Bals, S.
Title Multimodal imaging of micron-sized iron oxide particles following in vitro and in vivo uptake by stem cells: down to the nanometer scale Type A1 Journal article
Year 2014 Publication Contrast media and molecular imaging Abbreviated Journal Contrast Media Mol I
Volume 9 Issue 6 Pages 400-408
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Bio-Imaging lab
Abstract In this study, the interaction between cells and micron-sized paramagnetic iron oxide (MPIO) particles was investigated by characterizing MPIO in their original state, and after cellular uptake in vitro as well as in vivo. Moreover, MPIO in the olfactory bulb were studied 9months after injection. Using various imaging techniques, cell-MPIO interactions were investigated with increasing spatial resolution. Live cell confocal microscopy demonstrated that MPIO co-localize with lysosomes after in vitro cellular uptake. In more detail, a membrane surrounding the MPIO was observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Following MPIO uptake in vivo, the same cell-MPIO interaction was observed by HAADF-STEM in the subventricular zone at 1week and in the olfactory bulb at 9months after MPIO injection. These findings provide proof for the current hypothesis that MPIO are internalized by the cell through endocytosis. The results also show MPIO are not biodegradable, even after 9months in the brain. Moreover, they show the possibility of HAADF-STEM generating information on the labeled cell as well as on the MPIO. In summary, the methodology presented here provides a systematic route to investigate the interaction between cells and nanoparticles from the micrometer level down to the nanometer level and beyond. Copyright (c) 2014 John Wiley Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000346172100001 Publication Date 2014-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1555-4309; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 5 Open Access Not_Open_Access
Notes ; The authors would like to thank Sofie Thys for her technical support. The UltraVIEW VoX spinning disk confocal microscope was purchased with support of the Hercules Foundation (Hercules Type 1: AUHA 09/001 and AUHA 11/01). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative no. 262348 European Soft Matter Infrastructure, ESMI), the Fund for Scientific Research- Flanders and the Flemish Institute for Science and Technology and the Belgian government through the Interuniversity Attraction Pole Program (IAP- PAI). ; Approved Most recent IF: 3.307; 2014 IF: 2.923
Call Number UA @ lucian @ c:irua:122750 Serial 2222
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 015703
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347958600067 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:122728 Serial 35
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Accurate pseudopotential description of the GW bandstructure of ZnO Type A1 Journal article
Year 2011 Publication Computer physics communications Abbreviated Journal Comput Phys Commun
Volume 182 Issue 9 Pages 2029-2031
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the GW band structure of ZnO in its wurtzite (WZ), zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. We have used a Zn20+ pseudopotential which is essential for the adequate treatment of the exchange interaction in the self-energy. The accuracy of the pseudopotential used is also discussed. The effect of the pd hybridization on the GW corrections to the band gap is correlated by comparing the ZB and RS phase.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000292675100062 Publication Date 2011-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.936 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 3.936; 2011 IF: 3.268
Call Number UA @ lucian @ c:irua:90761 Serial 51
Permanent link to this record
 

 
Author Matsubara, M.; Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title Attracting shallow donors : hydrogen passivation in (Al,Ga,In)-doped ZnO Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 16 Pages 165207
Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The hydrogen interstitial and the substitutional AlZn, GaZn, and InZn are all shallow donors in ZnO and lead to n-type conductivity. Although shallow donors are expected to repel each other, we show by first-principles calculations that in ZnO these shallow donor impurities attract and form a complex, leading to a donor level deep in the band gap. This puts a limit on the n-type conductivity of (Al,Ga,In)-doped ZnO in the presence of hydrogen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131300008 Publication Date 2012-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:101780 Serial 202
Permanent link to this record