toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Huang, S.; Griffin, E.; Cai, J.; Xin, B.; Tong, J.; Fu, Y.; Kravets, V.; Peeters, F.M.; Lozada-Hidalgo, M.
  Title Gate-controlled suppression of light-driven proton transport through graphene electrodes Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal
  Volume 14 Issue 1 Pages 6932-6937
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Recent experiments demonstrated that proton transport through graphene electrodes can be accelerated by over an order of magnitude with low intensity illumination. Here we show that this photo-effect can be suppressed for a tuneable fraction of the infra-red spectrum by applying a voltage bias. Using photocurrent measurements and Raman spectroscopy, we show that such fraction can be selected by tuning the Fermi energy of electrons in graphene with a bias, a phenomenon controlled by Pauli blocking of photo-excited electrons. These findings demonstrate a dependence between graphene's electronic and proton transport properties and provide fundamental insights into molecularly thin electrode-electrolyte interfaces and their interaction with light. Recent experiments have shown that proton transport through graphene electrodes can be promoted by light, but the understanding of this phenomenon remains unclear. Here, the authors report the electrical tunability of this photo-effect, showing a connection between graphene electronic and proton transport properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001094448600003 Publication Date 2023-10-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record
  Impact Factor 16.6 Times cited Open Access
  Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
  Call Number UA @ admin @ c:irua:201185 Serial 9041
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R.
  Title Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal
  Volume 23 Issue 21 Pages 9683-9689
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001102148900001 Publication Date 2023-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
  Impact Factor 10.8 Times cited 1 Open Access
  Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
  Call Number UA @ admin @ c:irua:201200 Serial 9052
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R.
  Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal
  Volume 620 Issue 7975 Pages 1-17
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001153630400007 Publication Date 2023-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited 17 Open Access
  Notes Approved Most recent IF: 64.8; 2023 IF: 40.137
  Call Number UA @ admin @ c:irua:203827 Serial 9078
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J.
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal
  Volume 18 Issue 1 Pages 220-228
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001139516800001 Publication Date 2023-12-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
  Impact Factor 17.1 Times cited Open Access
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942
  Call Number UA @ admin @ c:irua:202811 Serial 9101
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.; Sorée, B.; Hinkle, C.; Vandenberghe, W.G.
  Title Reduction of magnetic interaction due to clustering in doped transition-metal dichalcogenides : a case study of Mn-, V-, and Fe-doped WSe₂ Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
  Volume 16 Issue 4 Pages 4991-4998
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe2 doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe2. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe2 in the presence of clustering. We show that the clusters of dopants are energetically more stable than discretely doped systems. Further, we show that in the presence of dopant clustering, the magnetic exchange interaction significantly reduces because the magnetic order in clustered WSe2 becomes more itinerant. Finally, we show that the clustering of the dopant atoms has a detrimental effect on the magnetic interaction, and to obtain an optimal Curie temperature, it is important to control the distribution of the dopant atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001155511900001 Publication Date 2024-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record
  Impact Factor 9.5 Times cited Open Access
  Notes Approved Most recent IF: 9.5; 2024 IF: 7.504
  Call Number UA @ admin @ c:irua:203830 Serial 9169
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L.
  Title Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal
  Volume 24 Issue 14 Pages 4108-4116
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001193010700001 Publication Date 2024-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
  Impact Factor 10.8 Times cited Open Access
  Notes Approved Most recent IF: 10.8; 2024 IF: 12.712
  Call Number UA @ admin @ c:irua:205553 Serial 9180
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
  Volume 11 Issue 17 Pages 7363-7370
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569375400061 Publication Date 2020-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.7 Times cited 35 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
  Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 13 Issue 49 Pages 11454-11463
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000893147700001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.7
  Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 14 Issue 30 Pages 34946-34954
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000835946500001 Publication Date 2022-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited 9 Open Access OpenAccess
  Notes Approved Most recent IF: 9.5
  Call Number UA @ admin @ c:irua:189467 Serial 7127
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
  Title Indentation of graphene nano-bubbles Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 14 Issue 15 Pages 5876-5883
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000776763000001 Publication Date 2022-03-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess
  Notes Approved Most recent IF: 6.7
  Call Number UA @ admin @ c:irua:187924 Serial 7171
Permanent link to this record
 

 
Author Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; Schrittwieser, S.; Schotter, J.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Gatel, C.; Soulantica, K.
  Title Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 9 Issue 9 Pages 2792-2804
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Cobalt nanorods possess ideal magnetic properties for applications requiring magnetically hard nanoparticles. However, their exploitation is undermined by their sensitivity toward oxygen and water, which deteriorates their magnetic properties. The development of a continuous metal shell inert to oxidation could render them stable, opening perspectives not only for already identified applications but also for uses in which contact with air and/or aqueous media is inevitable. However, the direct growth of a conformal noble metal shell on magnetic metals is a challenge. Here, we show that prior treatment of Co nanorods with a tin coordination compound is the crucial step that enables the subsequent growth of a continuous noble metal shell on their surface, rendering them air- and water-resistant, while conserving the monocrystallity, metallicity and the magnetic properties of the Co core. Thus, the as-synthesized coreshell ferromagnetic nanorods combine high magnetization and strong uniaxial magnetic anisotropy, even after exposure to air and water, and hold promise for successful implementation in in vitro biodiagnostics requiring probes of high magnetization and anisotropic shape.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000351791800055 Publication Date 2015-03-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 25 Open Access OpenAccess
  Notes 312483 Esteem2; 246791 Countatoms; 335078 Colouratom; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:125380 c:irua:125380 Serial 87
Permanent link to this record
 

 
Author Pfannmöller, M.; Heidari, H.; Nanson, L.; Lozman, O.R.; Chrapa, M.; Offermans, T.; Nisato, G.; Bals, S.
  Title Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 15 Issue 15 Pages 6634-6642
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells.
  Address EMAT-University of Antwerp , Groenenborgerlaan 171, B-2020 Antwerp, Belgium
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000363003100052 Publication Date 2015-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 26 Open Access OpenAccess
  Notes This work was supported by the FP7 European collaborative project SUNFLOWER (FP7-ICT-2011-7-contract num. 287594). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). M.P. gratefully acknowledges the SIM NanoForce program for their financial support. We acknowledge AGFA for providing the neutral PEDOT:PSS and GenesInk for the ZnO nanoparticles. We would like to thank Stijn Van den broeck for extensive support on FIB sample preparation. M.P. and H.H. thank Daniele Zanaga for the many fruitful discussions.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
  Call Number c:irua:129423 c:irua:129423 Serial 3973
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 5 Issue Pages 5653
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000347227700003 Publication Date 2014-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 197 Open Access
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C.
  Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 6 Issue 24 Pages 14991-14998
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000345458200051 Publication Date 2014-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess
  Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
  Call Number UA @ lucian @ c:irua:122227 Serial 169
Permanent link to this record
 

 
Author Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.;
  Title Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 14 Issue 6 Pages 3661-3667
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Here, we show a novel solidsolidvapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe nanocrystals grew epitaxially at the expense of CdSe nanodomains driven by evaporation of Cd. Analysis of atomic-resolution TEM observations and detailed atomistic simulations reveals that the growth process is mediated by vacancies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000337337100106 Publication Date 2014-05-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 42 Open Access OpenAccess
  Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
  Call Number UA @ lucian @ c:irua:117027 Serial 179
Permanent link to this record
 

 
Author Li, K.; Béché, A.; Song, M.; Sha, G.; Lu, X.; Zhang, K.; Du, Y.; Ringer, S.P.; Schryvers, D.
  Title Atomistic structure of Cu-containing \beta" precipitates in an Al-Mg-Si-Cu alloy Type A1 Journal article
  Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
  Volume 75 Issue Pages 86-89
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The beta '' precipitates in a peak-aged Al-Mg-Si-Cu alloy were measured with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at.%) using atom probe tomography. High-angle annular dark-field observations revealed that Cu incompletely substitutes for the Mg-1 and Si-3 columns, preferentially for one column in each pair of Si-3. Cu-free Si columns form a parallelogram-shaped network that constitutes the basis of subsequent precipitates in the system, with a = 0.37 nm, b = 0.38 nm, gamma = 113 degrees and c = 0.405 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000331025200022 Publication Date 2013-12-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.747 Times cited 22 Open Access
  Notes Approved Most recent IF: 3.747; 2014 IF: 3.224
  Call Number UA @ lucian @ c:irua:115749 Serial 201
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.;
  Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 4 Issue 13 Pages 2209-2216
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
  Address
  Corporate Author Thesis
  Publisher American Chemical Society Place of Publication Washington, D.C Editor
  Language Wos 000321809500018 Publication Date 2013-06-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.353 Times cited 131 Open Access
  Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687
  Call Number UA @ lucian @ c:irua:109811 Serial 204
Permanent link to this record
 

 
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.;
  Title Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 19 Issue 37 Pages 375501-375511
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000258385600014 Publication Date 2008-08-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 48 Open Access
  Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446
  Call Number UA @ lucian @ c:irua:103083 Serial 282
Permanent link to this record
 

 
Author Paolella, A.; Bertoni, G.; Hovington, P.; Feng, Z.; Flacau, R.; Prato, M.; Colombo, M.; Marras, S.; Manna, L.; Turner, S.; Van Tendeloo, G.; Guerfi, A.; Demopoulos, G.P.; Zaghib, K.;
  Title Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4 Type A1 Journal article
  Year 2015 Publication Nano energy Abbreviated Journal Nano Energy
  Volume 16 Issue 16 Pages 256-267
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In this work we elucidate the elimination of mechanism Fe-antisite defects in lithium iron phosphate (LiFePO4) during the hydrothermal synthesis. Compelling evidence of this effect is provided by combining Neutron Powder Diffraction (NPD), High Resolution (Scanning) Transmission Electron Microscopy (HR-(S)TEM), Electron Energy Loss Spectroscopy (EELS), X-Ray Photoelectron Spectroscopy (XPS) and calculations. We found: i) the first intermediate vivianite inevitably creates Fe-antisite defects in LiFePO4; ii) the removal of these antisite defects by cation exchange is assisted by a nanometer-thick amorphous layer, rich in Li, that enwraps the LiFePO4 crystals.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000364579300027 Publication Date 2015-06-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.343 Times cited 27 Open Access
  Notes The authorswanttoacknowledgeVincentGariepy,Cathe- rine Gagnon,JulieTrottier,DanielClement,Dr.CyrilFaure of IREQ,Dr.GaiaTomaselloofInstitutfürTheoretische PhysikFreieUniversitätBerlinandProf.MichelArmandof CICenergigune forhelpfuldiscussionsandtechnical supports. Approved Most recent IF: 12.343; 2015 IF: 10.325
  Call Number c:irua:127688 Serial 296
Permanent link to this record
 

 
Author Blank, D.H.A.; Rijnders, A.J.H.M.; Verhoeven, M.A.J.; Bergs, R.M.H.; Rogalla, H.; Verbist, K.; Lebedev, O.; Van Tendeloo, G.
  Title Characterisation of multilayer ramp-type REBa2Cu3O7-\delta structures by scanning probe microscopy and high-resolution electron microscopy Type A1 Journal article
  Year 1997 Publication Journal of alloys and compounds T2 – Symposium on High Temperature Superconductor Thin Films, Growth, Mechanisms, Interfaces, Multilayers, at the 1996 Spring Meeting of the European-Materials-Society, June 04-07, 1996, Strasbourg, France Abbreviated Journal J Alloy Compd
  Volume 251 Issue 1-2 Pages 206-208
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We studied the morphology of ramps in REBa2CU3O7 (REBCO) epitaxial films on SrTiO3 substrates, fabricated by RF magnetron sputter deposition and pulsed laser deposition (PLD), by scanning probe microscopy (SPM) and high resolution electron microscopy (HREM). The ramps were fabricated by Ar ion beam etching using masks of standard photoresist and TIN. AFM-studies on ramps in sputter deposited films show a strong dependence, i.e. formation of facets and ridges, on the angle of incidence of the ion beam with respect to the substrate surface as well as the rotation angle with respect to the crystal axes of the substrate. Ramps in pulsed laser deposited films did not show this dependence, Furthermore, we studied the effect of an anneal step prior to the deposition of barrier layers (i.e. PrBa2CU3O7, SrTiO3, CeO2) on the ramp. First results show a recrystallization of the ramp surface, resulting in terraces and a non-homogeneous growth of the barrier material on top of it. The thickness variations, for thin layers of barrier material, con even become much larger than expected from the amount of deposited material and are dependent on the deposition and anneal conditions. HREM studies show a well defined interface between barrier layer and electrodes. The angle of the ramp depends on the etch rate of the mask and REBCO, and on the angle of incidence of the ion beam. TiN has a much lower etch rate compared to photoresist, resulting in an angle of the ramp comparable to the angle of incidence, resulting in a low etching rate on the ramp. These results will lead to improved electrical characteristics of ramp-type junctions.
  Address
  Corporate Author Thesis
  Publisher Elsevier Science Place of Publication Lausanne Editor
  Language Wos A1997XM34000046 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.133 Times cited Open Access
  Notes Approved Most recent IF: 3.133; 1997 IF: 1.035
  Call Number UA @ lucian @ c:irua:95868 Serial 310
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.;
  Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 5 Issue 9 Pages 3954-3960
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000317859400051 Publication Date 2013-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 40 Open Access
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739
  Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348
Permanent link to this record
 

 
Author Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O.I.; Van Tendeloo, G.; Moshchalkov, V.V.
  Title Classification and control of the origin of photoluminescence from Si nanocrystals Type A1 Journal article
  Year 2008 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
  Volume 3 Issue 3 Pages 174-178
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Silicon dominates the electronics industry, but its poor optical properties mean that III-V compound semiconductors are preferred for photonics applications. Photoluminescence at visible wavelengths was observed from porous Si at room temperature in 1990, but the origin of these photons (do they arise from highly localized defect states or quantum confinement effects?) has been the subject of intense debate ever since. Attention has subsequently shifted from porous Si to Si nanocrystals, but the same fundamental question about the origin of the photoluminescence has remained. Here we show, based on measurements in high magnetic fields, that defects are the dominant source of light from Si nanocrystals. Moreover, we show that it is possible to control the origin of the photoluminescence in a single sample: passivation with hydrogen removes the defects, resulting in photoluminescence from quantum-confined states, but subsequent ultraviolet illumination reintroduces the defects, making them the origin of the light again.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000254743600017 Publication Date 2008-03-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 38.986 Times cited 426 Open Access
  Notes Fwo Approved Most recent IF: 38.986; 2008 IF: 20.571
  Call Number UA @ lucian @ c:irua:102630 Serial 373
Permanent link to this record
 

 
Author Liakakos, N.; Gatel, C.; Blon, T.; Altantzis, T.; Lentijo-Mozo, S.; Garcia-Marcelot, C.; Lacroix, L.M.; Respaud, M.; Bals, S.; Van Tendeloo, G.; Soulantica, K.
  Title CoFe nanodumbbells : synthesis, structure, and magnetic properties Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 14 Issue 5 Pages 2747-2754
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We report the solution phase synthesis, the structural analysis, and the magnetic properties of hybrid nanostructures combining two magnetic metals. These nano-objects are characterized by a remarkable shape, combining Fe nanocubes on Co nanorods. The topological composition, the orientation relationship, and the growth steps have been studied by advanced electron microscopy techniques, such as HRTEM, electron tomography, and state-of-the-art 3-dimensional elemental mapping by EDX tomography. The soft iron nanocubes behave as easy nucleation centers that induce the magnetization reversal of the entire nanohybrid, leading to a drastic modification of the overall effective magnetic anisotropy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000336074800080 Publication Date 2014-04-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 27 Open Access OpenAccess
  Notes The authors thank the ANR for the project “Batmag”, the French national project EMMA (ANR12 BS10 013 01), the European Commission for the FP7 NAMDIATREAM project (EU NMP4-LA-2010-246479), and the METSA network for the HRTEM. This has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative- I3). It was also supported by Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 24691-COUNTATOMS and ERC Starting Grant # 335078-COLOURATOMS).; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
  Call Number UA @ lucian @ c:irua:116953 Serial 377
Permanent link to this record
 

 
Author Javon, E.; Gaceur, M.; Dachraoui, W.; Margeat, O.; Ackermann, J.; Ilenia Saba, M.; Delugas, P.; Mattoni, A.; Bals, S.; Van Tendeloo, G.
  Title Competing forces in the self-assembly of coupled ZnO nanopyramids Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 9 Issue 9 Pages 3685-3694
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligandligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as corecore interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000353867000030 Publication Date 2015-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 21 Open Access OpenAccess
  Notes Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
  Call Number c:irua:125978 Serial 434
Permanent link to this record
 

 
Author Hutter, E.M.; Bladt, E.; Goris, B.; Pietra, F.; van der Bok, J.C.; Boneschanscher, M.P.; de Donega, C.M.; Bals, S.; Vanmaekelbergh, D.
  Title Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 14 Issue 11 Pages 6257-6262
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Currently, ultrathin colloidal CdSe semiconductor nanoplatelets (NPLs) with a uniform thickness that is controllable up to the atomic scale can be prepared. The optical properties of these 2D semiconductor systems are the subject of extensive research. Here, we reveal their natural morphology and atomic arrangement. Using cryo-TEM (cryo-transmission electron microscopy), we show that the shape of rectangular NPLs in solution resembles a helix. Fast incorporation of these NPLs in silica preserves and immobilizes their helical shape, which allowed us to perform an in-depth study by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Electron tomography measurements confirm and detail the helical shape of these systems. Additionally, high-resolution HAADF-STEM shows the thickness of the NPLs on the atomic scale and furthermore that these are consistently folded along a ?110? direction. The presence of a silica shell on both the top and bottom surfaces shows that Cd atoms must be accessible for silica precursor (and ligand) molecules on both sides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000345723800036 Publication Date 2014-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 43 Open Access OpenAccess
  Notes Dariusz Mitoraj, Hans Meeldijk, Relinde van Dijk-Moes, and Stephan Zevenhuizen are acknowledged for technical support and help with some experiments. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 291667. The authors acknowledge financial support from FOM and NOW [FOM program Functional NanoParticle Solids (FNPS)]. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS). E.B. and B.G. gratefully acknowledge financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592
  Call Number UA @ lucian @ c:irua:122209 Serial 490
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.;
  Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
  Year 2013 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
  Volume 23 Issue 42 Pages 5240-5248
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000327480900003 Publication Date 2013-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 87 Open Access
  Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439
  Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W.
  Title Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel Type A1 Journal article
  Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 60 Issue 3 Pages 1311-1321
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of the XRD and EBSD results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material. The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant factor contributing to enhancement of the ductility. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000301157900054 Publication Date 2011-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.301 Times cited 80 Open Access
  Notes Approved Most recent IF: 5.301; 2012 IF: 3.941
  Call Number UA @ lucian @ c:irua:97210 Serial 630
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M.
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 2 Issue 8 Pages 2671-2680
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000331247500031 Publication Date 2013-11-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 56 Open Access
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443
  Call Number UA @ lucian @ c:irua:115807 Serial 659
Permanent link to this record
 

 
Author Akamine, H.; Van den Bos, K.H.W.; Gauquelin, N.; Farjami, S.; Van Aert, S.; Schryvers, D.; Nishida, M.
  Title Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEM Type A1 Journal article
  Year 2015 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
  Volume 644 Issue 644 Pages 570-574
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Anti-phase boundaries (APBs) in an ordered CoPt alloy are planar defects which disturb the ordered structure in their vicinity and decrease the magnetic properties. However, it has not yet been clarified to what extend the APBs disturb the ordering. In this study, high-resolution HAADF-STEM images are statistically analysed based on the image intensities estimated by the statistical parameter estimation theory. In the procedure, averaging intensities, fitting the intensity profiles to specific functions, and assessment based on a statistical test are performed. As a result, the APBs in the stable CoPt are found to be characterised by two atomic planes, and a contrast transition range as well as the centre of an inclined APB is determined. These results show that the APBs are quite sharp and therefore may have no notable effect on the net magnetic properties due to their small volume fraction. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000357143900083 Publication Date 2015-05-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.133 Times cited 12 Open Access
  Notes FWO G036815N; G036915N; G037413N; 278510 VORTEX; Hercules; ECASJO_; Approved Most recent IF: 3.133; 2015 IF: 2.999
  Call Number c:irua:127008 c:irua:127008 Serial 675
Permanent link to this record
 

 
Author Razdobarin, A.G.; Mukhin, E.E.; Semenov, V.V.; Tolstyakov, S.Y.; Kochergin, M.M.; Kurskiev, G.S.; Podushnikova, K.A.; Kirilenko, D.A.; Sitnikova, A.A.; Konovalov, V.G.; Solodovchenko, S.I.; Nekhaieva, O.M.; Skorik, O.A.; Bondarenko, V.N.; Voitsenya, V.S.;
  Title Diagnostic mirrors with transparent protection layer for ITER Type A1 Journal article
  Year 2011 Publication Fusion engineering and design Abbreviated Journal Fusion Eng Des
  Volume 86 Issue 6-8 Pages 1341-1344
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Fast degradation of in-vessel optics is one of the most serious problems for all optical diagnostics in ITER. To provide the resistance to mechanical and thermal stresses along with a high stability of optical characteristics under deposition-dominated conditions we suggest using high-reflective metallic (Ag or Al) film mirrors coated on silicon substrate and protected with thin oxide film in the divertor Thomson Scattering (TS) diagnostics. The mirrors coated with Al2O3 and ZrO2 films were tested under irradiation by deuterium ions. The experimental results on the oxide films sputtering are discussed in the context of their applicability for the first mirror protection in ITER.
  Address
  Corporate Author Thesis
  Publisher Elsevier science sa Place of Publication Amsterdam Editor
  Language Wos 000297426500203 Publication Date 2011-03-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0920-3796; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.319 Times cited 6 Open Access
  Notes Approved Most recent IF: 1.319; 2011 IF: 1.490
  Call Number UA @ lucian @ c:irua:93631 Serial 686
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: