|   | 
Details
   web
Records
Author Romaguera, A.R. de C.; Doria, M.M.; Peeters, F.M.
Title Tilted vortices in a superconducting mesoscopic cylinder Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 75 Issue Pages 184525,1-12
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000246890600107 Publication Date 2007-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69650 Serial 3663
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M.
Title Topologically trapped vortex molecules in Bose-Einstein condensates Type A1 Journal article
Year 2008 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 78 Issue 5 Pages 053610,1-053610,5
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in a rotating BEC can be pinned by a geometric arrangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000261215600127 Publication Date 2008-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 12 Open Access
Notes Approved Most recent IF: 2.925; 2008 IF: 2.908
Call Number UA @ lucian @ c:irua:73184 Serial 3679
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M.
Title Trions in cylindrical nanowires with a dielectric mismatch Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 7 Pages 075405,1-9
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300136 Publication Date 2007-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66119 Serial 3732
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys
Volume 139 Issue 1 Pages 257-272
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos Publication Date 2005-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.3 Times cited 12 Open Access
Notes Approved Most recent IF: 1.3; 2005 IF: 0.753
Call Number UA @ lucian @ c:irua:57245 Serial 3853
Permanent link to this record
 

 
Author Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A.
Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 711-715
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500034 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited 12 Open Access
Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132287 Serial 4143
Permanent link to this record
 

 
Author Iyikanat, F.; Senger, R.T.; Peeters, F.M.; Sahin, H.
Title Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3 Type A1 Journal article
Year 2016 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 17 Issue 17 Pages 3985-3991
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory and non-equilibrium Green's function-based methods, we investigated the electronic and transport properties of a TiS3 monolayer p-n junction. We constructed a lateral p-n junction on a TiS3 monolayer using Li and F adatoms. An applied bias voltage caused significant variability in the electronic and transport properties of the TiS3 p-n junction. In addition, the spin-dependent current-volt-age characteristics of the constructed TiS3 p-n junction were analyzed. Important device characteristics were found, such as negative differential resistance and rectifying diode behaviors for spin-polarized currents in the TiS3 p-n junction. These prominent conduction properties of the TiS3 p-n junction offer remarkable opportunities for the design of nanoelectronic devices based on a recently synthesized single-layered material.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389534800018 Publication Date 2016-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 12 Open Access
Notes ; This work was supported by the bilateral project between TUBITAK (through Grant No. 113T050) and the Flemish Science Foundation (FWO-Vl). The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). FI, HS, and RTS acknowledge the support from TUBITAK Project No 114F397. H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.075
Call Number UA @ lucian @ c:irua:140245 Serial 4458
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M.
Title Strained graphene Hall bar Type A1 Journal article
Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 29 Issue 29 Pages 075601
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, RB, around zero-magnetic field and the occurrence of side-peaks in RB. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in RB are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000391584900001 Publication Date 2016-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:140381 Serial 4464
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M.
Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 115436
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399140700012 Publication Date 2017-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:142431 Serial 4564
Permanent link to this record
 

 
Author Abdullah, H.M.; da Costa, D.R.; Bahlouli, H.; Chaves, A.; Peeters, F.M.; Van Duppen, B.
Title Electron collimation at van der Waals domain walls in bilayer graphene Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 4 Pages 045137
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show that a domain wall separating single-layer graphene and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Two distinct configurations are studied, namely, locally delaminated AA-BLG and terminated AA-BLG whose terminal edge types are assumed to be either zigzag or armchair. We investigate the electron scattering using semiclassical dynamics and verify the results independently with wave-packet dynamics simulations. We find that the proposed system supports two distinct types of collimated beams that correspond to the lower and upper cones in AA-BLG. Our computational results also reveal that collimation is robust against the number of layers connected to AA-BLG and terminal edges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477892800005 Publication Date 2019-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes ; H.M.A. and H.B. acknowledge the support of King Fahd University of Petroleum and Minerals under research group Project No. RG181001. D.R.C and A.C. were financially supported by the Brazilian Council for Research (CNPq) and CAPES foundation. B.V.D. is supported by a postdoctoral fellowship by the Research Foundation Flanders (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161887 Serial 5410
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 114 Issue 24 Pages 243102
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472599100029 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411
Call Number UA @ admin @ c:irua:161327 Serial 5428
Permanent link to this record
 

 
Author Conti, S.; Van der Donck, M.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Doping-dependent switch from one- to two-component superfluidity in coupled electron-hole van der Waals heterostructures Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 22 Pages 220504-220506
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract The hunt for high-temperature superfluidity has received new impetus from the discovery of atomically thin stable materials. Electron-hole superfluidity in coupled MoSe2-WSe2 monolayers is investigated using a mean-field multiband model that includes band splitting caused by strong spin-orbit coupling. This splitting leads to a large energy misalignment of the electron and hole bands which is strongly modified by interchanging the doping of the monolayers. The choice of doping determines if the superfluidity is tunable from one to two components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000538941900002 Publication Date 2020-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation, and the FLAG-ERA project TRANS2DTMD. We thank A. R. Hamilton and A. Vargas-Paredes for useful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:170201 Serial 6489
Permanent link to this record
 

 
Author Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V.
Title Hematite at its thinnest limit Type A1 Journal article
Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater
Volume 7 Issue 2 Pages 025029
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537341000002 Publication Date 2020-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 12 Open Access
Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937
Call Number UA @ admin @ c:irua:170301 Serial 6533
Permanent link to this record
 

 
Author Nguyen, H.T.T.; Obeid, M.M.; Bafekry, A.; Idrees, M.; Vu, T.V.; Phuc, H., V; Hieu, N.N.; Le Hoa, T.; Amin, B.; Nguyen, C., V
Title Interfacial characteristics, Schottky contact, and optical performance of a graphene/Ga2SSe van der Waals heterostructure: Strain engineering and electric field tunability Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 7 Pages 075414-10
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional graphene-based van der Waals heterostructures have received considerable interest because of their intriguing characteristics compared with the constituent single-layer two-dimensional materials. Here, we investigate the interfacial characteristics, Schottky contact, and optical performance of graphene/Ga2SSe van der Waals (vdW) heterostructure using first-principles calculations. The effects of stacking patterns, electric gating, and interlayer coupling on the interfacial properties of graphene/Ga2SSe heterostructures are also examined. Our results demonstrate that the Dirac cone of graphene is well preserved at the F point in all stacking patterns due to the weak vdW interactions, which keep the heterostructures feasible such that they can be obtained in further experiments. Moreover, depending on the stacking patterns, a small band gap of about 13-17 meV opens in graphene and has a high carrier mobility, indicating that the graphene/Ga2SSe heterostructures are potential candidates for future high-speed nanoelectronic applications. In the ground state, the graphene/Ga2SSe heterostructures form an n-type Schottky contact. The transformation from an n-type to a p-type Schottky contact or to an Ohmic contact can be forced by electric gating or by varying the interlayer coupling. Our findings could provide physical guidance for designing controllable Schottky nanodevices with high electronic and optical performances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000557294500006 Publication Date 2020-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access
Notes ; This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.01-2019.05. The authors declare that there are no conflicts of interest regarding the publication of this paper. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:171163 Serial 6549
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M.
Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 23 Pages 235406
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000657129800006 Publication Date 2021-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179109 Serial 6996
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V.
Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys
Volume 94 Issue 3 Pages 035005-35061
Keywords (down) A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861559900001 Publication Date 2022-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 44.1 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 44.1
Call Number UA @ admin @ c:irua:191507 Serial 7339
Permanent link to this record
 

 
Author Bichlmeier, S.; Janssens, K.; Heckel, J.; Hoffmann, P.; Ortner, H.M.
Title Comparative material characterization of historical and industrial samples by using a compact micro-XRF spectrometer Type A1 Journal article
Year 2002 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom
Volume 31 Issue 1 Pages 87-91
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000173653400016 Publication Date 2002-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.298 Times cited 12 Open Access
Notes Approved Most recent IF: 1.298; 2002 IF: 1.574
Call Number UA @ admin @ c:irua:36670 Serial 5529
Permanent link to this record
 

 
Author Rouchon, V.; Pellizzi, E.; Janssens, K.
Title FTIR techniques applied to the detection of gelatine in paper artifacts: from macroscopic to microscopic approach Type A1 Journal article
Year 2010 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 100 Issue 3 Pages 663-669
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In order to render paper hydrophobic for ink and thus adequate for writing, gelatine has been largely used. To this day, it is still employed in conservation workshops as an adhesive or a sizing agent, for instance, during the treatment of iron gall ink manuscripts. Various types and concentrations of gelatine are recommended, depending on the desired effect, but little information is available regarding to the physical distribution of gelatine in the paper. This aspect is however determinant for a better control of conservation treatments. In this work, we investigate the possibilities offered by FTIR microscopy for the measurement of the gelatine distribution in paper. Laboratory papers were preliminary treated with different types of gelatine and then embedded in a resin and cut in thin slices. Mapping techniques enable to compare the penetration of different types of gelatine in a semiquantitative way. The performance of conventional laboratory equipment and synchrotron radiation experimental setup are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281317700011 Publication Date 2010-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 12 Open Access
Notes ; This work was performed with the support of the Fondazione Cassa di Risparmio di Torino, who founded the postgraduate internship of Eleonora Pellizzi at the CRCC (Master dei talenti). It received the technical support of the SMIS line of the SOLEIL synchrotron (Saint Aubin, France). We are thankful to all our colleagues who helped us during our experiments: Anne Laurence Dupont for providing gelatine samples, Chakib Djediat (Museum National d'Histoire Naturelle, Paris) for his advice regarding the samples preparation, Christophe Sandt (Synchrotron SOLEIL) for his help and availability during our Beam time allocation, and Paul Dumas (Synchrotron SOLEIL) for his warm reception on the SMIS line. ; Approved Most recent IF: 1.455; 2010 IF: 1.765
Call Number UA @ admin @ c:irua:84579 Serial 5627
Permanent link to this record
 

 
Author Anaf, W.; Bencs, L.; Van Grieken, R.; Janssens, K.; De Wael, K.
Title Indoor particulate matter in four Belgian heritage sites : case studies on the deposition of dark-colored and hygroscopic particles Type A1 Journal article
Year 2015 Publication The science of the total environment Abbreviated Journal Sci Total Environ
Volume 506 Issue Pages 361-368
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Atmospheric total suspended particulate (TSP) was passively sampled by means of deployed horizontal and vertical filters in various rooms of four Belgian cultural heritage buildings, installed with various heating/ventilation systems. Soiling/blackening and deposition of inorganic, water-soluble aerosol components were considered. The extent of soiling was determined by means of two independent methods: (1) in terms of the covering rate of the samplers by optical reflection microscopy and (2) the reduction in lightness of the samplers using the CIE L*a*b* color space by spectrophotometry. A fairly good correlation was found between both methods. The inorganic composition of the deposited water-soluble TSP was quantified by means of ion chromatography. Compared to controlled environments, uncontrolled environments showed increased water-soluble aerosol content of the total deposited mass. Higher chloride deposition was observed on horizontal surfaces, compared to vertical surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347576800039 Publication Date 2014-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.9; 2015 IF: 4.099
Call Number UA @ admin @ c:irua:120640 Serial 5662
Permanent link to this record
 

 
Author Legrand, S.; Ricciardi, P.; Nodari, L.; Janssens, K.
Title Non-invasive analysis of a 15th century illuminated manuscript fragment: point-based vs imaging spectroscopy Type A1 Journal article
Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
Volume 138 Issue 138 Pages 162-172
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Illuminated manuscript fragments are some of the best preserved objects of Western cultural heritage. Therefore, scholars are limited to non-invasive – often point-based – methods, to answer questions on material usage, technique, origin and previous treatments. These powerful methods yield specific information; however, the information is limited to the number of points analyzed. Imaging spectroscopies such as MA-XRF and MA-rFTIR combine specificity with the power of imaging, resulting in distribution images that are interpretable by non-spectroscopists and the public at large. In this paper the possible added value of using imaging spectroscopy is discussed. Do these methods yield the same results as an extensive point-based spectroscopic campaign and can they bring novel information? As a case study, a 15th century illuminated manuscript fragment is employed in order to explore the differences between these approaches and present an inventory of their advantages and limitations. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000428103000019 Publication Date 2018-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.034 Times cited 12 Open Access
Notes ; The authors wish to thank Dr. Stella Panayotova, Keeper of Manuscripts and Printed Books at the Fitzwilliam Museum, for allowing technical analysis of the manuscript fragment, and Dr. Suzanne Reynolds, Assistant Keeper of Manuscripts and Printed Books, for crucial help in identifying the text on the reverse of the fragment and its significance. We also wish to thank Prof. Andrew Beeby and Dr. Catherine Nicholson for their complementary Raman analyses. The warm hospitality of the Hamilton Kerr Institute is also gratefully acknowledged. The Esmee Fairbairn Collections Fund and Cambridge University's Returning Carers Scheme provided funding for part of this research. SL and KJ acknowledge support from project METOX (contract BR/165/A6/MetOx), BELSPO, Brussels. ; Approved Most recent IF: 3.034
Call Number UA @ admin @ c:irua:151563 Serial 5749
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume 12 Issue 1 Pages 39-44
Keywords (down) A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record