|   | 
Details
   web
Records
Author Korneychik, O.E.; Batuk, M.; Abakumov, A.M.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.
Title Pb2.85Ba2.15Fe4SnO13 : a new member of the AnBnO3n-2 anion-deficient perovskite-based homologous series Type A1 Journal article
Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 184 Issue (up) 12 Pages 3150-3157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2.85Ba2.15Fe4SnO13, a new n=5 member of the anion-deficient perovskite based AnBnO3n−2 (A=Pb, Ba, B=Fe, Sn) homologous series, was synthesized by the solid state method. The crystal structure of Pb2.85Ba2.15Fe4SnO13 was investigated using a combination of neutron powder diffraction, electron diffraction, high angle annular dark field scanning transmission electron microscopy and Mössbauer spectroscopy. It crystallizes in the Ammm space group with unit cell parameters a=5.7990(1) Å, b=4.04293(7) Å and c=26.9561(5) Å. The Pb2.85Ba2.15Fe4SnO13 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110](1̄01)p crystallographic shear (CS) planes. The corner-sharing FeO6 octahedra at the CS planes are transformed into edge-sharing FeO5 distorted tetragonal pyramids. The octahedral positions in the perovskite blocks between the CS planes are jointly taken up by Fe and Sn, with a preference of Sn towards the position at the center of the perovskite block. The chains of FeO5 pyramids and (Fe,Sn)O6 octahedra of the perovskite blocks delimit six-sided tunnels at the CS planes occupied by double chains of Pb atoms. The compound is antiferromagnetically ordered below TN=368±15 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000297662500003 Publication Date 2011-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 7 Open Access
Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
Call Number UA @ lucian @ c:irua:94013 Serial 3550
Permanent link to this record
 

 
Author Kovba, M.L.; Skolis, Y.Y.; Abakumov, A.M.; Hadermann, J.; Sukhushina, I.S.
Title The synthesis and thermodynamic properties of strontium fluoromanganite Sr2.5Mn6O12.5-\deltaF2 Type A1 Journal article
Year 2010 Publication Russian journal of physical chemistry A Abbreviated Journal Russ J Phys Chem A+
Volume 84 Issue (up) 12 Pages 2033-2038
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The existence of the [SrF(0.8)O(0.1)](2.5)[Mn(6)O(12)] = Sr(2.5)Mn(6)O(12.5 – delta)F(2) compound was established in the SrO-Mn(2)O(3)-SrF(2) system at 900A degrees C and p(O(2)) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c (1) (*) + m q (1), q (1), q (1) = c (2) (*) = gamma c (1) (*) , gamma a parts per thousand 0.632, a a parts per thousand a a parts per thousand 9.72 , b a parts per thousand 9.55 , c (1) a parts per thousand 2.84 , c (2) a parts per thousand 4.49 , monoclinic angle gamma a parts per thousand 95.6A degrees. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn(3)O(6), Mn(2)O(3), SrF(2), and oxygen), Delta GA degrees, kJ/mol = -(111.7 +/- 1.9) + (89.5 +/- 1.5) x 10(-3) T.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000284775000004 Publication Date 2011-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0244;1531-863X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.581 Times cited 1 Open Access
Notes Approved Most recent IF: 0.581; 2010 IF: 0.503
Call Number UA @ lucian @ c:irua:99190 Serial 3601
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Hadermann, J.; Alekseeva, A.M.; Rozova, M.G.; Perkisas, T.; Woodward, P.M.; Van Tendeloo, G.; Antipov, E.V.
Title Crystal structure and phase transitions in Sr3WO6 Type A1 Journal article
Year 2010 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 49 Issue (up) 13 Pages 6058-6065
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the beta and gamma polymorphs of Sr3WO6 and the gamma <->beta phase transition have been investigated using electron diffraction, synchrotron X-ray powder diffraction, and neutron powder diffraction. The gamma-Sr3WO6 polymorph is stable above T-c approximate to 470 K and adopts a monoclinically distorted double perovskite A(2)BB'O-6= Sr2SrWO6 structure (space group Cc, a = 10.2363(1)angstrom, b= 17.9007(1)angstrom, c= 11.9717(1)angstrom, beta=125.585(1)degrees at T= 1373 K, Z=12, corresponding to a = a(p)+1/2b(p) – 1/2c(p), b =3/2b(p) + 3/2c(p), c =-b(p) + c(p), a(p),b(p), c(p), lattice vectors of the parent Fm (3) over barm double perovskite structure). Upon cooling it undergoes a continuous phase transition into the triclinically distorted beta-Sr3WO6 phase (space group Cl, a = 10.09497(3)angstrom, b = 17.64748(5)angstrom, c = 11.81400(3)angstrom, alpha = 89.5470(2)degrees, beta= 125.4529(2)degrees, gamma =90.2889(2)degrees at T= 300 K). Both crystal structures of Sr3WO6 belong to a family of double perovskites with broken corner sharing connectivity of the octahedral framework. A remarkable feature of the gamma-Sr3WO6 structure is a non-cooperative rotation of the WO6 octahedra. One third of the WO6 octahedra are rotated by 45 about either the bp or the cp axis of the parent double perovskite structure. As a result, the WO6 octahedra do not share corners but instead share edges with the coordination polyhedra of the Sr cations at the B positions increasing their coordination number from 6 to 7 or 8. The crystal structure of the beta-phase is very close to the structure of the gamma-phase; decreasing symmetry upon the gamma ->beta transformation occurs because of unequal octahedral rotation angles about the bp and cp axes and increasing distortions of the WO6 octahedra.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000279211500036 Publication Date 2010-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 18 Open Access
Notes Approved Most recent IF: 4.857; 2010 IF: 4.326
Call Number UA @ lucian @ c:irua:83877 Serial 562
Permanent link to this record
 

 
Author Abakumov, A.M.; Erni, R.; Tsirlin, A.A.; Rossell, M.D.; Batuk, D.; Nénert, G.; Van Tendeloo, G.
Title Frustrated octahedral tilting distortion in the incommensurately modulated Li3xNd2/3-xTiO3 perovskites Type A1 Journal article
Year 2013 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 25 Issue (up) 13 Pages 2670-2683
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite-structured titanates with layered A-site ordering form remarkably complex superstructures. Using transmission electron microscopy, synchrotron X-ray and neutron powder diffraction, and ab initio structure relaxation, we present the structural solution of the incommensurately modulated Li3xNd2/3xTiO3 perovskites (x = 0.05, superspace group Pmmm(α1,1/2,0)000(1/2,β2 0)000, a = 3.831048(5) Å, b = 3.827977(4) Å, c = 7.724356(8) Å, q1 = 0.45131(8)a* + 1/2b*, q2 = 1/2a* + 0.41923(4)b*). In contrast to earlier conjectures on the nanoscale compositional phase separation in these materials, all peculiarities of the superstructure can be understood in terms of displacive modulations related to an intricate octahedral tilting pattern. It involves fragmenting the pattern of the out-of-phase tilted TiO6 octahedra around the a- and b-axes into antiphase domains, superimposed on the pattern of domains with either pronounced or suppressed in-phase tilt component around the c-axis. The octahedral tilting competes with the second order JahnTeller distortion of the TiO6 octahedra. This competition is considered as the primary driving force for the modulated structure. The A cations are suspected to play a role in this modulation affecting it mainly through the tolerance factor and the size variance. The reported crystal structure calls for a revision of the structure models proposed for the family of layered A-site ordered perovskites exhibiting a similar type of modulated structure.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000321809700015 Publication Date 2013-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 23 Open Access
Notes Countatoms Approved Most recent IF: 9.466; 2013 IF: 8.535
Call Number UA @ lucian @ c:irua:109216 Serial 1292
Permanent link to this record
 

 
Author Lobanov, M.V.; Balagurov, A.M.; Pomjakushin, V.J.; Fischer, P.; Gutmann, M.; Abakumov, A.M.; D'yachenko, O.G.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.
Title Structural and magnetic properties of the colossal magnetoresistance perovskite La0.85Ca0.15MnO3 Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue (up) 13 Pages 8941-8949
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000086597400059 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 47 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:54735 Serial 3197
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Gutnikova, O.Y.; Drozhzhin, O.A.; Leonova, L.S.; Dobrovolsky, Y.A.; Istomin, S.Y.; Van Tendeloo, G.; Antipov, E.V.
Title Superspace description, crystal structures, and electric conductiof the Ba4In6-xMgxO13-x/2 solid solutions Type A1 Journal article
Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 20 Issue (up) 13 Pages 4457-4467
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000257279200041 Publication Date 2008-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 15 Open Access
Notes Approved Most recent IF: 9.466; 2008 IF: 5.046
Call Number UA @ lucian @ c:irua:70141 Serial 3383
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 8 Issue (up) 13 Pages 7287-7300
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425508900064 Publication Date 2018-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 9 Open Access OpenAccess
Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108
Call Number EMAT @ emat @c:irua:149513 Serial 4905
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J.
Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue (up) 13 Pages 2269-18
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000824547500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:189591 Serial 7098
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue (up) 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.;
Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue (up) 138 Pages 3211-3217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000371945800055 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 28 Open Access
Notes Approved Most recent IF: 13.858
Call Number UA @ lucian @ c:irua:133156 Serial 4266
Permanent link to this record
 

 
Author Kuno, Y.; Tassel, C.; Fujita, K.; Batuk, D.; Abakumov, A.M.; Shitara, K.; Kuwabara, A.; Moriwake, H.; Watabe, D.; Ritter, C.; Brown, C.M.; Yamamoto, T.; Takeiri, F.; Abe, R.; Kobayashi, Y.; Tanaka, K.; Kageyama, H.
Title ZnTaO2N: Stabilized High-Temperature LiNbO3-type Structure Type A1 Journal article
Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 138 Issue (up) 138 Pages 15950-15955
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R (3) over barc) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order disorder mechanism of the phase transition. It is found that the dosed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000389962800032 Publication Date 2016-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 13 Open Access
Notes Approved Most recent IF: 13.858
Call Number UA @ lucian @ c:irua:140298 Serial 4452
Permanent link to this record
 

 
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Abakumov, A.M.; Van Tendeloo, G.; Olenev, A.; Shevelkov, A.V.
Title Cationic clathrate of type-III Ge172-xPxTey (y\approx21,5, x\approx2y) : synthesis, crystal structure and thermoelectric properties Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue (up) 14 Pages 8272-8279
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A first germanium-based cationic clathrate of type-III, Ge129.3P42.7Te21.53, was synthesized and structurally characterized (space group P42/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge129.3P42.7Te21.53 composition corresponds to the Zintl counting scheme with a good accuracy. Ge129.3P42.7Te21.53 demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 μV K1 at 300 K), and low thermal conductivity (<0.92 W m1 K1) within the measured temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100052 Publication Date 2013-06-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:109214 Serial 301
Permanent link to this record
 

 
Author Sathiya, M.; Abakumov, A.M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. .; Vezin, H.; Laisa, C.P.; Prakash, A.S.; Gonbeau, D.; Van Tendeloo, G.; Tarascon, J.M.
Title Origin of voltage decay in high-capacity layered oxide electrodes Type A1 Journal article
Year 2015 Publication Nature materials Abbreviated Journal Nat Mater
Volume 14 Issue (up) 14 Pages 230-238
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although Li-rich layered oxides (Li1+xNiyCozMn1−x−y−zO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than todays commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the chargedischarge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000348600200024 Publication Date 2014-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 395 Open Access
Notes 246791 Countatoms; 312483 Esteem2; esteem2_ta Approved Most recent IF: 39.737; 2015 IF: 36.503
Call Number c:irua:132555 c:irua:132555 Serial 2528
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, M.; Tsirlin, A.A.; Tyablikov, O.A.; Sheptyakov, D.V.; Filimonov, D.S.; Pokholok, K.V.; Zhidal, V.S.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.;
Title Structural and magnetic phase transitions in the AnBnO3n-2 anion-deficient perovskites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue (up) 14 Pages 7834-7843
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel anion-deficient perovskite-based ferrites Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 were synthesized by solid-state reaction in air. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 belong to the perovskite-based AnBnO3n2 homologous series with n = 5 and 6, respectively, with a unit cell related to the perovskite subcell ap as ap√2 × ap × nap√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]p(1̅01)p crystallographic shear (CS) planes. The CS operation results in (1̅01)p-shaped perovskite blocks with a thickness of (n 2) FeO6 octahedra connected to each other through double chains of edge-sharing FeO5 distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above T ≈ 750 K for Pb2Ba2BiFe5O13 and T ≈ 400 K for Pb1.5Ba2.5Bi2Fe6O16 the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb2Ba2BiFe5O13 and Pb1.5Ba2.5Bi2Fe6O16 undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned FeFe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all n = 4, 5, 6 AnFenO3n2 (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623632 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000322087100006 Publication Date 2013-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 10 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:109213 Serial 3196
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M.
Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue (up) 14 Pages 5637-5652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000789034200023 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access
Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188631 Serial 7079
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.;
Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue (up) 15 Pages 157002-157005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000325371500011 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 127 Open Access
Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110820 Serial 729
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Turner, S.; Hafideddine, Z.; Khasanova, N.R.; Antipov, E.V.; Van Tendeloo, G.
Title Solving the structure of Li ion battery materials with precession electron diffraction : application to Li2CoPo4F Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue (up) 15 Pages 3540-3545
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of the Li2CoPO4F high-voltage cathode for Li ion rechargeable batteries has been completely solved from precession electron diffraction (PED) data, including the location of the Li atoms. The crystal structure consists of infinite chains of CoO4F2 octahedra sharing common edges and linked into a 3D framework by PO4 tetrahedra. The chains and phosphate anions together delimit tunnels filled with the Li atoms. This investigation demonstrates that PED can be successfully applied for obtaining structural information on a variety of Li-containing electrode materials even from single micrometer-sized crystallites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000293357100019 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 46 Open Access
Notes Fwo; Bof Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:90357 Serial 3053
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M.
Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue (up) 15 Pages 8782-8792
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000407405500026 Publication Date 2017-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:145727 Serial 4744
Permanent link to this record
 

 
Author Takatsu, H.; Hernandez, O.; Yoshimune, W.; Prestipino, C.; Yamamoto, T.; Tassel, C.; Kobayashi, Y.; Batuk, D.; Shibata, Y.; Abakumov, A.M.; Brown, C.M.; Kageyama, H.
Title Cubic lead perovskite PbMoO3 with anomalous metallic behavior Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal
Volume 95 Issue (up) 15 Pages 155105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A previously unreported Pb-based perovskite PbMoO3 is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the Pm3m cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO3 exhibits a metallic behavior down to 0.1 K with an unusual T-sublinear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in C-P/T-3 around 10 K, in marked contrast to the isostructural metallic system SrMoO3. These transport and thermal properties for PbMoO3, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone-pair Pb2+ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaronlike conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440605700001 Publication Date 2017-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:167288 Serial 7743
Permanent link to this record
 

 
Author King, G.; Abakumov, A.M.; Woodward, P.M.; Llobet, A.; Tsirlin, A.A.; Batuk, D.; Antipov, E.V.
Title The high-temperature polymorphs of K3AlF6 Type A1 Journal article
Year 2011 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 50 Issue (up) 16 Pages 7792-7801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of the three high-temperature polymorphs of K3AlF6 have been solved from neutron powder diffraction, synchrotron X-ray powder diffraction, and electron diffraction data. The β-phase (stable between 132 and 153 °C) and γ-phase (stable between 153 to 306 °C) can be described as unusually complex superstructures of the double-perovskite structure (K2KAlF6) which result from noncooperative tilting of the AlF6 octahedra. The β-phase is tetragonal, space group I4/m, with lattice parameters of a = 13.3862(5) Å and c = 8.5617(3) Å (at 143 °C) and Z = 10. In this phase, one-fifth of the AlF6 octahedra are rotated about the c-axis by 45° while the other four-fifths remain untilted. The large 45° rotations result in edge sharing between these AlF6 octahedra and the neighboring K-centered polyhedra, resulting in pentagonal bipyramidal coordination for four-fifths of the K+ ions that reside on the B-sites of the perovskite structure. The remaining one-fifth of the K+ ions on the B-sites retain octahedral coordination. The γ-phase is orthorhombic, space group Fddd, with lattice parameters of a = 36.1276(4) Å, b = 17.1133(2) Å, and c = 12.0562(1) Å (at 225 °C) and Z = 48. In the γ-phase, one-sixth of the AlF6 octahedra are randomly rotated about one of two directions by 45° while the other five-sixths remain essentially untilted. These rotations result in two-thirds of the K+ ions on the B-site obtaining 7-fold coordination while the other one-third remain in octahedral coordination. The δ-phase adopts the ideal cubic double-perovskite structure, space group Fmm, with a = 8.5943(1) Å at 400 °C. However, pair distribution function analysis shows that locally the δ-phase is quite different from its long-range average crystal structure. The AlF6 octahedra undergo large-amplitude rotations which are accompanied by off-center displacements of the K+ ions that occupy the 12-coordinate A-sites.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000293493100052 Publication Date 2011-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 19 Open Access
Notes Approved Most recent IF: 4.857; 2011 IF: 4.601
Call Number UA @ lucian @ c:irua:91131 Serial 1468
Permanent link to this record
 

 
Author Charkin, D.O.; Urmanov, A.V.; Kazakov, S.M.; Batuk, D.; Abakumov, A.M.; Knöner, S.; Gati, E.; Wolf, B.; Lang, M.; Shevelkov, A.V.; Van Tendeloo, G.; Antipov, E.V.;
Title Synthesis, crystal structure, transport, and magnetic properties of novel ternary copper phosphides, A2Cu6P5(A = Sr, Eu) and EuCu4P3 Type A1 Journal article
Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 51 Issue (up) 16 Pages 8948-8955
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three new ternary copper phosphides, Sr2Cu6P5, Eu2Cu6P5, and EuCu4P3, have been synthesized from the elements in evacuated silica capsules. Eu2Cu6P5 and Sr2Cu6P5 adopt the Ca2Cu6P5-type structure, while EuCu4P3 is isostructural to BaMg4Si3 and still remains the only representative of this structure type among the ternary Cu pnictides. All three materials show metallic conductivity in the temperature range 2 K <= T <= 290 K, with no indication for superconductivity. For Eu2Cu6P5 and EuCu4P3, long-range magnetic order was observed, governed by 4f local moments on the Eu atoms with predominant ferromagnetic interactions. While Eu2Cu6P5 shows a single ferromagnetic transition at T-C = 34 K, the magnetic behavior of EuCu4P3 is more complex, giving rise to three consecutive magnetic phase transitions at 70, 43, and 18 K.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000307606200042 Publication Date 2012-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 13 Open Access
Notes Approved Most recent IF: 4.857; 2012 IF: 4.593
Call Number UA @ lucian @ c:irua:102217 Serial 3453
Permanent link to this record
 

 
Author McCalla, E.; Prakash, A.S.; Berg, E.; Saubanere, M.; Abakumov, A.M.; Foix, D.; Klobes, B.; Sougrati, M.T.; Rousse, G.; Lepoivre, F.; Mariyappan, S.; Doublet, M.L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; Hermann, R.P.; Tarascon, J.M.;
Title Reversible Li-intercalation through oxygen reactivity in Li-rich Li-Fe-Te oxide materials Type A1 Journal article
Year 2015 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc
Volume 162 Issue (up) 162 Pages A1341-A1351
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Lithium-rich oxides are a promising class of positive electrode materials for next generation lithium-ion batteries, and oxygen plays a prominent role during electrochemical cycling either by forming peroxo-like species and/or by irreversibly forming oxygen gas during first charge. Here, we present Li-Fe-Te-O materials which show a tremendous amount of oxygen gas release. This oxygen release accounts for nearly all the capacity during the first charge and results in vacancies as seen by transmission electron microscopy. There is no oxidation of either metal during charge but significant changes in their environments. These changes are particularly extreme for tellurium. XRD and neutron powder diffraction both show limited Changes during cycling and no appreciable change in lattice parameters. A density functional theory study of this material is performed and demonstrates that the holes created on some of the oxygen atoms upon oxidation are partially stabilized through the formation of shorter O-O bonds, i.e. (O-2)(n-) species which on further delithiation show a spontaneous O-2 de-coordination from the cationic network and migration to the now empty lithium layer. The rate limiting step during charge is undoubtedly the diffusion of oxygen either out along the lithium layer or via columns of oxygen atoms. (C) 2015 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000355643700030 Publication Date 2015-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4651;1945-7111; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.259 Times cited 23 Open Access
Notes Approved Most recent IF: 3.259; 2015 IF: 3.266
Call Number c:irua:126445 Serial 2903
Permanent link to this record
 

 
Author Abakumov, A.M.; Morozov, V.A.; Tsirlin, A.A.; Verbeeck, J.; Hadermann, J.
Title Cation ordering and flexibility of the BO42- tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue (up) 17 Pages 9407-9415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The factors mediating cation ordering in the scheelite-based molybdates and tungstates are discussed on the basis of the incommensurately modulated crystal structures of the CaEu2(BO4)(4) (B = Mo, W) red phosphors solved from high-resolution synchrotron powder X-ray diffraction data. Monoclinic CaEu2(WO4)(4) adopts a (3 + 1)-dimensionally modulated structure [superspace group I2/b(alpha beta 0)00, a = 5.238 73(1)A, b = 5.266 35(1) A, c = 11.463 19(9) A, gamma = 91.1511(2)degrees, q = 0.56153(6)a* + 0.7708(9)b*, R-F = 0.050, R-p = 0.069], whereas tetragonal CaEu2(MoO4)(4) is (3 + 2)-dimensionally modulated [superspace group I4(1)/ a(alpha beta 0)00(-beta alpha 0)00, a = 5.238 672(7) A, c = 11.548 43(2) A, q(1) = 035331(8)a* + 0.82068(9)b*, q(2) = -0.82068(9)a* + 0.55331(8)b*, R-F = 0.061, R-p = 0.082]. In both cases the modulation arises from the ordering of the Ca/Eu cations and the cation vacancies at the A-sublattice of the parent scheelite ABO(4) structure. The cation ordering is incomplete and better described with harmonic rather than with steplike occupational modulation functions. The structures respond to the variation of the effective charge and cation size at the A-position through the flexible geometry of the MoO42- and WO42- tetrahedra demonstrating an alternation of stretching the B-O bond lengths and bending the O-B-O bond angles. The tendency towards A-site cation ordering in scheelites is rationalized using the difference in ionic radii and concentration of the A-site vacancies as parameters and presented in the form of a structure map.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000341229600068 Publication Date 2014-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 48 Open Access
Notes Fwo G039211n Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:119292UA @ admin @ c:irua:119292 Serial 297
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Tsirlin, A.A.; McCammon, C.M.; Dubrovinsky, L.; Hadermann, J.
Title Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue (up) 17 Pages 10009-10020
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites are investigated using the (Pb1−zSrz)1−xFe1+xO3−y perovskites as a model system. The orientation of the CS planes in the system varies unevenly with z. A comparison of the structures with different CS planes revels that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000326129000037 Publication Date 2013-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:111394 Serial 822
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Shpanchenko, R.V.; Geibel, C.; Rosner, H.
Title Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 17 Pages 174424,1-174424,13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific-heat measurements, as well as band-structure calculations. The compound resembles AA′VO(PO4)2 vanadium phosphates and fits to the extended frustrated square-lattice model with the couplings J1, J1′ between nearest neighbors and J2, J2′ between next-nearest neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J̅ 1≃−5.2 K and J̅ 2≃10.0 K, respectively. The effective frustration ratio α=J̅ 2/J̅ 1 amounts to −1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific-heat data support the estimates of J̅ 1 and J̅ 2 and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band-structure calculations confirm the identification of ferromagnetic J1, J1′ and antiferromagnetic J2, J2′ in PbZnVO(PO4)2 and yield (J1′−J1)≃1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds and propose a strategy for further design of strongly frustrated square-lattice materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278141600082 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83384 Serial 1294
Permanent link to this record
 

 
Author Zhang, H.; Yang, J.-H.; Shpanchenko, R.V.; Abakumov, A.M.; Hadermann, J.; Clérac, R.; Dikarev, E.V.
Title New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn \beta-diketonates Type A1 Journal article
Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 48 Issue (up) 17 Pages 8480-8488
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterometallic lead−manganese â-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn2(hfac)6 (1) and PbMn(hfac)4 (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)3] units, while 2 consists of infinite chains of alternating [Pb(hfac)2] and [Mn(hfac)2] fragments. The heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb−Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500−800 °C. The phase that has been previously reported as Pb0.43MnO2.18 was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead−manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000269313500056 Publication Date 2009-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 28 Open Access
Notes Approved Most recent IF: 4.857; 2009 IF: 4.657
Call Number UA @ lucian @ c:irua:78486 Serial 2308
Permanent link to this record
 

 
Author Van Tendeloo, G.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V.
Title Advanced electron microscopy and its possibilities to solve complex structures: application to transition metal oxides Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue (up) 18 Pages 2660-2670
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Design and optimization of materials properties can only be performed through a thorough knowledge of the structure of the compound. In this feature article we illustrate the possibilities of advanced electron microscopy in materials science and solid state chemistry. The different techniques are briefly discussed and several examples are given where the structures of complex oxides, often with a modulated structure, have been solved using electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000265740600002 Publication Date 2009-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:77065 Serial 68
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Chizhov, P.S.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Hadermann, J.; Antipov, E.V.; Grin, Y.
Title Ternary magnesium rhodium boride Mg2Rh1-xB6+2x with a modified Y2ReB6-type crystal structure Type A1 Journal article
Year 2007 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 46 Issue (up) 18 Pages 7378-7386
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000248984500026 Publication Date 2007-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 12 Open Access
Notes Approved Most recent IF: 4.857; 2007 IF: 4.123
Call Number UA @ lucian @ c:irua:65595 Serial 3510
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Perkisas, T.; d' Hondt, H.; Tan, H.; Verbeeck, J.; Filonenko, V.P.; Antipov, E.V.; Van Tendeloo, G.
Title New perovskite-based manganite Pb2Mn2O5 Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue (up) 183 Pages 2190-2195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new perovskite based compound Pb2Mn2O5 has been synthesized using a high pressure high temperature technique. The structure model of Pb2Mn2O5 is proposed based on electron diffraction, high angle annular dark field scanning transmission electron microscopy and high resolution transmission electron microscopy. The compound crystallizes in an orthorhombic unit cell with parameters a=5.736(1)Å≈√2a p p p (a p the parameter of the perovskite subcell) and space group Pnma. The Pb2Mn2O5 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110] p (1̄01) p crystallographic shear planes. The blocks are connected to each other by chains of edge-sharing MnO5 distorted tetragonal pyramids. The chains of MnO5 pyramids and the MnO6 octahedra of the perovskite blocks delimit six-sided tunnels accommodating double chains of Pb atoms. The tunnels and pyramidal chains adopt two mirror-related configurations (left L and right R) and layers consisting of chains and tunnels of the same configuration alternate in the structure according to an -LRLR-sequence. The sequence is sometimes locally violated by the appearance of -LL- or -RR-fragments. A scheme is proposed with a JahnTeller distortion of the MnO6 octahedra with two long and two short bonds lying in the ac plane, along two perpendicular orientations within this plane, forming a d-type pattern.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000282139600041 Publication Date 2010-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 8 Open Access
Notes Fwo; Bof; Esteem 026019 Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:85472UA @ admin @ c:irua:85472 Serial 2332
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.;
Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 187 Issue (up) 187 Pages 161-172
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000367235600019 Publication Date 2015-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 51 Open Access
Notes Approved Most recent IF: 4.798
Call Number UA @ lucian @ c:irua:131096 Serial 4237
Permanent link to this record