toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Freire, J.A.K.; Studart, N.; Peeters, F.M.; Farias, G.A.; Freire, V.N.
  Title Magnetic confinement of electrons into quantum wires and dots on a liquid helium surface Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E
  Volume 12 Issue (up) 1-4 Pages 946-949
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the possibility to laterally confine surface electrons on a liquid helium surface by inserting magnetic discs and stripes which generate nonhomogeneous magnetic field profiles. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300233 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:95139 Serial 1864
Permanent link to this record
 

 
Author Tadić, M.; Mlinar, V.; Peeters, F.M.
  Title Multiband k\cdot p calculation of exciton diamagnetic shift in InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 3rd International Conference on Quantum Dots (QD 2004), MAY 10-13, 2004, Max Bell Bldg Banff Ctr, Banff, Canada Abbreviated Journal Physica E
  Volume 26 Issue (up) 1-4 Pages 212-216
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Exciton states in self-assembled InP/In0.49Ga0.51P quantum dots subject to magnetic fields up to 50T are calculated. Strain and band mixing are explicitly taken into account in the single-particle models of the electronic structure, while an exact diagonalization approach is adopted to compute the exciton states. Reasonably good agreement with magneto-photoluminescence measurements on InP self-assembled quantum dots is found. As a result of the polarization and angular momentum sensitive selection rules, the exciton ground state is dark. For in-plane polarized light, the magnetic field barely affects the exciton spatial localization, and consequently the exciton oscillator strength for recombination increases only slightly with increasing field. For z polarized light, a sharp increase of the oscillator strength beyond 30 T is found which is attributed to the enhanced s character of the relevant portion of the exciton wave function. (C) 2004 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000227249000045 Publication Date 2004-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 4 Open Access
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946
  Call Number UA @ lucian @ c:irua:103180 Serial 2215
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
  Title Theory of trions in quantum wells Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E
  Volume 12 Issue (up) 1-4 Pages 543-545
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300134 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 2 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:103903 Serial 3624
Permanent link to this record
 

 
Author Peeters, F.M.; Riva, C.; Varga, K.
  Title Trions in quantum wells Type A1 Journal article
  Year 2001 Publication Physica: B : condensed matter Abbreviated Journal Physica B
  Volume 300 Issue (up) 1-4 Pages 139-155
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract An overview is given of our investigation of the energy levels and of the correlation functions of the negatively and positively charged excitons (also called trions) in quantum wells in the presence of a perpendicular magnetic field, A detailed comparison is made with available experimental data in III-V and II-VI semiconductor quantum wells. (C) 2001 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000170850000011 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.386 Times cited 31 Open Access
  Notes Approved Most recent IF: 1.386; 2001 IF: 0.663
  Call Number UA @ lucian @ c:irua:103410 Serial 3734
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M.
  Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
  Year 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
  Volume 24 Issue (up) 1/2 Pages 905-910
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000289855700150 Publication Date 2010-10-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.18 Times cited 2 Open Access
  Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650
  Call Number UA @ lucian @ c:irua:89930 Serial 130
Permanent link to this record
 

 
Author Yampolskii, S.V.; Peeters, F.M.
  Title Giant vortices in small mesoscopic disks : an approximate description Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 369 Issue (up) 1/4 Pages 347-350
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present an approximate description of the giant vortex state in a thin mesoscopic superconducting disk within the phenomenological Ginzburg-Landau approach. Analytical asymptotic expressions for the energies of the states with fixed vorticity are obtained when a small magnetic flux is accumulated in the disk. The spectrum of the lowest Landau levels of such a disk is also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000174200000063 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.404 Times cited Open Access
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
  Call Number UA @ lucian @ c:irua:94930 Serial 1342
Permanent link to this record
 

 
Author Baelus, B.J.; Yampolskii, S.V.; Peeters, F.M.
  Title Magnetic coupling between mesoscopic superconducting rings Type A1 Journal article
  Year 2002 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 369 Issue (up) 1/4 Pages 366-369
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the nonlinear Ginzburg-Landau theory we investigated the dependence of the magnetic coupling between two concentric mesoscopic superconducting rings on their thickness. The size of this magnetic coupling increases with the thickness of the rings. (C) 2001 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000174200000067 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited 1 Open Access
  Notes Approved Most recent IF: 1.404; 2002 IF: 0.912
  Call Number UA @ lucian @ c:irua:94931 Serial 1865
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C.
  Title Quenching of the Hall effect in localised high magnetic field regions Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
  Volume 12 Issue (up) 1/4 Pages 244-247
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report the suppression of the Hall effect in a mesoscopic Hall cross with a strong magnetic field only in the centre and vanishingly small outside, The local magnetic field is produced by placing Dy pillar on top of a structure with a high-mobility two-dimensional electron gas. The effect is found to be due to a sharp increase of the number of back-scattered and quasi-localised electron orbits. The possibility of localising electrons inside the magnetic inhomogeneity region is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher North-Holland Place of Publication Amsterdam Editor
  Language Wos 000175206300061 Publication Date 2002-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.221 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
  Call Number UA @ lucian @ c:irua:94939 Serial 2804
Permanent link to this record
 

 
Author Krugel, A.; Axt, V.M.; Kuhn, T.; Vagov, A.; Peeters, F.M.
  Title Coherent nonlinear optical response of excitons and biexcitons in quantum dots coupled to phonons Type A1 Journal article
  Year 2006 Publication Physica status solidi B – basic solid state physics Abbreviated Journal Phys Status Solidi B
  Volume 243 Issue (up) 10 Pages 2241-2246
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000239932300006 Publication Date 2006-08-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 1 Open Access
  Notes Approved Most recent IF: 1.674; 2006 IF: 0.967
  Call Number UA @ lucian @ c:irua:60892 Serial 380
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.
  Title Dependence of the vortex configuration on the geometry of mesoscopic flat samples Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 65 Issue (up) 10 Pages 104515-12
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The influence of the geometry of a thin superconducting sample on the penetration of the magnetic field lines and the arrangement of vortices are investigated theoretically. We compare the vortex state of superconducting disks, squares, and triangles with the same surface area having nonzero thickness. The coupled nonlinear Ginzburg-Landau equations are solved self-consistently and the important demagnetization effects are taken into account. We calculate and compare quantities such as the free energy, the magnetization, the Cooper-pair density, the magnetic field distribution, and the superconducting current density for the three geometries. For given vorticity the vortex lattice is different for the three geometries, i.e., it tries to adapt to the geometry of the sample. This also influences the stability range of the different vortex states. For certain magnetic field ranges we found a coexistence of a giant vortex placed in the center and single vortices towards the corners of the sample. The H-T phase diagram is obtained for the three investigated geometries and we found that the critical magnetic field is substantially enhanced for the triangle geometry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000174548300111 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 189 Open Access
  Notes Approved Most recent IF: 3.836; 2002 IF: NA
  Call Number UA @ lucian @ c:irua:102833 Serial 645
Permanent link to this record
 

 
Author Földi, P.; Benedict, M.G.; Milton Pereira, J.; Peeters, F.M.
  Title Dynamics of molecular nanomagnets in time-dependent external magnetic fields: beyond the Landau-Zener-Stückelberg model Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 75 Issue (up) 10 Pages 104430,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000245329100075 Publication Date 2007-03-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 17 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:64273 Serial 778
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
  Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 100 Issue (up) 10 Pages 101905-101905,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000301655500021 Publication Date 2012-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:97794 Serial 809
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
  Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue (up) 10 Pages 104524-104524,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000282269600005 Publication Date 2010-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 29 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:85419 Serial 1337
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
  Title Strain engineering of the electronic properties of bilayer graphene quantum dots: Strain engineering of the electronic properties of bilayer graphene quantum dots Type A1 Journal article
  Year 2015 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
  Volume 10 Issue (up) 10 Pages 39-45
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the effect of mechanical deformations on the elec- tronic properties of hexagonal flakes of bilayer graphene. The behavior of electrons induced by triaxial strain can be de- scribed by an effective pseudo-magnetic field which is homo- geneous in the center of the flake. We find that in-plane strain, applied to both layers equally, can break the layer symmetry leading to different behavior in the top and bottom layers of graphene. At low energy, just one of the layers feels

the pseudo-magnetic field: the zero-energy pseudo-Landau level is missing in the second layer, thus creating a gap be- tween the lowest non-zero levels. While the layer asymmetry is most significant at zero energy, interaction with the edges of the flake extends the effect to higher pseudo-Landau lev- els. The behavior of the top and bottom layers may be re- versed by rotating the triaxial strain by 60°.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000368814500005 Publication Date 2015-08-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.032 Times cited 9 Open Access
  Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. Approved Most recent IF: 3.032; 2015 IF: 2.142
  Call Number c:irua:129592 Serial 3970
Permanent link to this record
 

 
Author Vagov, A.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.; Peeters, F.M.
  Title High pulse area undamping of Rabi oscillations in quantum dots coupled to phonons Type A1 Journal article
  Year 2006 Publication Physica status solidi B – Basic solid state physics Abbreviated Journal Phys Status Solidi B
  Volume 243 Issue (up) 10 Pages 2233-2240
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000239932300005 Publication Date 2006-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 16 Open Access
  Notes Approved Most recent IF: 1.674; 2006 IF: 0.967
  Call Number UA @ lucian @ c:irua:60891 Serial 1440
Permanent link to this record
 

 
Author Silhanek, A.V.; Gillijns, W.; Milošević, M.V.; Volodin, A.; Moshchalkov, V.V.; Peeters, F.
  Title Optimization of superconducting critical parameters by tuning the size and magnetization of arrays of magnetic dots Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 76 Issue (up) 10 Pages 100502,1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000249786300012 Publication Date 2007-09-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:66607 Serial 2489
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K.
  Title Commensurability Effects in Viscosity of Nanoconfined Water Type A1 Journal article
  Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 10 Issue (up) 10 Pages 3685-3692
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm. To this end, we study the structure and dynamics of water confined between two parallel graphene layers using equilibrium molecular dynamics simulations. We find that the shear viscosity is not only greatly enhanced for subnanometer capillaries, but also exhibits large oscillations that originate from commensurability between the capillary size and the size of water molecules. Such oscillating behavior of viscosity and, consequently, the slip length should be taken into account in designing and studying graphene-based and similar membranes for desalination and filtration.
  Address School of Physics and Astronomy, University of Manchester , Manchester M13 9PL, United Kingdom
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000372855400073 Publication Date 2016-02-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 160 Open Access
  Notes ; M.N.A. was support by Shahid Rajaee Teacher Training University under contract number 29605. ; Approved Most recent IF: 13.942
  Call Number c:irua:133237 Serial 4012
Permanent link to this record
 

 
Author Chang, K.; Xia, J.B.; Wu, H.B.; Feng, S.L.; Peeters, F.M.
  Title Quantum-confined magneto-Stark effect in diluted magnetic semiconductor coupled quantum wells Type A1 Journal article
  Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 80 Issue (up) 10 Pages 1788-1790
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000174181800036 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 8 Open Access
  Notes Approved Most recent IF: 3.411; 2002 IF: 4.207
  Call Number UA @ lucian @ c:irua:94932 Serial 2775
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M.
  Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 109 Issue (up) 10 Pages 107201
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000308295700015 Publication Date 2012-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 41 Open Access
  Notes ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
  Call Number UA @ lucian @ c:irua:101849 Serial 3094
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L.; Korkusinski, M.; Hawrylak, P.
  Title Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 92 Issue (up) 10 Pages 5819-5829
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A comparative study is made of the strain distribution in cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots as obtained from isotropic elasticity theory, the anisotropic continuum mechanical model, and from atomistic calculations. For the isotropic case, the recently proposed approach [J. H. Davies, J. Appl. Phys. 84, 1358 (1998)] is used, while the finite-element method, the valence force field method, and Stillinger-Weber potentials are employed to calculate the strain in anisotropic structures. We found that all four methods result in strain distributions of similar shapes, but with notable quantitative differences inside the dot and near the disk-matrix boundary. The variations of the diagonal strains with the height of the quantum dot, with fixed radius, as calculated from all models, are almost linear. Furthermore, the energies of the band edges in the two types of quantum dots are extracted from the multiband effective-mass theory by inserting the strain distributions as obtained by the four models. We demonstrated that all strain models produce effective potentials for the heavy and light holes which agree very well inside the dot. A negligible anisotropy of all normal strains in the (x,y) plane is found, which, providing the axial symmetry of the kinetic part of the multiband effective-mass Hamiltonian, justifies the use of the axial approximation. Strain propagation along the vertical direction is also considered with the aim to study the influence of strain on the electron coupling in stacks of quantum dots. We found that the interaction between the strain fields of the individual quantum dots makes the effective quantum wells for the electrons in the conduction band shallower, thereby counteracting the quantum mechanical coupling. (C) 2002 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000178987200036 Publication Date 2002-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 73 Open Access
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281
  Call Number UA @ lucian @ c:irua:103327 Serial 3164
Permanent link to this record
 

 
Author Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
  Title Strong-coupling analysis of large bipolarons in 2 and 3 dimensions Type A1 Journal article
  Year 1992 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 45 Issue (up) 10 Pages 5262-5269
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
  Abstract In the limit of strong electron-phonon coupling, we use either a Pekar-type or an oscillator wave function for the center-of-mass coordinate and either a Coulomb or an oscillator wave function for the relative coordinate, and are able to reproduce all the results from the literature for the large-bipolaron binding energy. Lower bounds are constructed for the critical ratio eta(c) of dielectric constants below which bipolarons can exist. It is found that, in the strong-coupling limit, the stability region for bipolaron formation is much larger in two dimensions (2D) than in 3D. We introduce a model that combines the averaging of the relative coordinate over the asymptotically best wave function with a path-integral treatment of the center-of-mass motion. The stability region for bipolaron formation is increased compared with the full path-integral treatment at large values of the coupling constant alpha. The critical values are alpha(c) almost-equal-to 9.3 in 3D and alpha(c) almost-equal-to 4.5 in 2D. Phase diagrams for the presented models are also obtained in both 2D and 3D.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos A1992HJ68900016 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.736 Times cited 68 Open Access
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:103051 Serial 3178
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Peeters, F.M.
  Title Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane Type A1 Journal article
  Year 2011 Publication Carbon Abbreviated Journal Carbon
  Volume 49 Issue (up) 10 Pages 3258-3266
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES)
  Abstract Chemisorption of hydrogen on graphene is studied using atomistic simulations with the second generation of reactive empirical bond order Brenner inter-atomic potential. The lowest energy adsorption sites and the most important metastable sites are determined. The H concentration is varied from a single H atom, to clusters of H atoms up to full coverage. We found that when two or more H atoms are present, the most stable configurations of H chemisorption on a single graphene layer are ortho hydrogen pairs adsorbed on one side or on both sides of the graphene sheet. The latter has the highest hydrogen binding energy. The next stable configuration is the orthopara pair combination, and then para hydrogen pairs. The structural changes of graphene caused by chemisorbed hydrogen are discussed and are compared with existing experimental data and other theoretical calculations. The obtained results will be useful for nanoengineering of graphene by hydrogenation and for hydrogen storage.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000291959300014 Publication Date 2011-04-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 46 Open Access
  Notes ; A.D. thanks M.W. Zhao for a useful correspondence. This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 6.337; 2011 IF: 5.378
  Call Number UA @ lucian @ c:irua:90877 Serial 3275
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
  Title Symmetric and asymmetric states in a mesoscopic superconducting wire in the voltage-driven regime Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 75 Issue (up) 10 Pages 104515,1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000245329100092 Publication Date 2007-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:64274 Serial 3400
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M.
  Title Thermal properties of fluorinated graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 87 Issue (up) 10 Pages 104114-104116
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000316933500002 Publication Date 2013-03-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 80 Open Access
  Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:108495 Serial 3629
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 109 Issue (up) 10 Pages 107001
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000308295700014 Publication Date 2012-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 31 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
  Call Number UA @ lucian @ c:irua:101850 Serial 3801
Permanent link to this record
 

 
Author Doria, M.M.; Romaguera, A.R. de C.; Peeters, F.M.
  Title Vortex patterns in a mesoscopic superconducting rod with a magnetic dot Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 81 Issue (up) 10 Pages 104529,1-104529,11
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study a mesoscopic superconducting rod with a magnetic dot on its top having its moment oriented along the axis of symmetry. We study the dependence of the vortex pattern with the height and find that for very short and very long rods, the vortex pattern acquires a simple structure, consisting of giant and of multivortex states, respectively. In the long limit, the most stable configuration consists of two vortices, that reach the lateral surface of the rod diametrically opposed. The long rod shows reentrant behavior within some range of its radius and of the dots magnetic moment. Our results are obtained within the Ginzburg-Landau approach in the limit of no magnetic shielding.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000276248700123 Publication Date 2010-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes ; The three authors acknowledge CNPq and the bilateral program between Brazil and Flanders for financial support. They also make the following acknowledgments for financial support: A. R. de C. Romaguera to FACEPE, M. M. Doria to FAPERJ, and F. M. Peeters to the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IUAP), and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:82272 Serial 3877
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.; Oboznov, V.; Dubonos, S.V.; Grigorieva, I.V.
  Title Vortex states in mesoscopic superconducting squares: formation of vortex shells Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 78 Issue (up) 10 Pages 104517
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We analyze theoretically and experimentally vortex configurations in mesoscopic superconducting squares. Our theoretical approach is based on the analytical solution of the London equation using Green's-function method. The potential-energy landscape found for each vortex configuration is then used in Langevin-type molecular-dynamics simulations to obtain stable vortex configurations. Metastable states and transitions between them and the ground state are analyzed. We present our results of the first direct visualization of vortex patterns in micrometer-sized Nb squares, using the Bitter decoration technique. We show that the filling rules for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner than in disks, in terms of formation of vortex “shells”.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000259690400093 Publication Date 2008-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 39 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:102608 Serial 3890
Permanent link to this record
 

 
Author Hawrylak, P.; Peeters, F.; Ensslin, K.
  Title Carbononics : integrating electronics, photonics and spintronics with graphene quantum dots Preface Type Editorial
  Year 2016 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
  Volume 10 Issue (up) 10 Pages 11-12
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Wiley-v c h verlag gmbh Place of Publication Weinheim Editor
  Language Wos 000368814500002 Publication Date 2016-01-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.032 Times cited 7 Open Access
  Notes ; ; Approved Most recent IF: 3.032
  Call Number UA @ lucian @ c:irua:131600 Serial 4146
Permanent link to this record
 

 
Author Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M.
  Title Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators Type A1 Journal article
  Year 2017 Publication Nano Research Abbreviated Journal Nano Res
  Volume 10 Issue (up) 10 Pages 2168-2180
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000401320700029 Publication Date 2017-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.354 Times cited 15 Open Access
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 7.354
  Call Number UA @ lucian @ c:irua:143739 Serial 4598
Permanent link to this record
 

 
Author Mogg, L.; Hao, G.-P.; Zhang, S.; Bacaksiz, C.; Zou, Y.; Haigh, S.J.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.
  Title Atomically thin micas as proton-conducting membranes Type A1 Journal article
  Year 2019 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
  Volume 14 Issue (up) 10 Pages 962-+
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000488977100016 Publication Date 2019-09-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 38.986 Times cited 44 Open Access
  Notes ; The work was supported by the Lloyd's Register Foundation, the Engineering and Physical Sciences Research Council (EPSRC)-EP/N010345/1, EP/M010619/1 and EP/ P009050/1, the European Research Council, the Graphene Flagship and the Royal Society. M.L.-H. acknowledges a Leverhulme Early Career Fellowship, G.-P.H. acknowledges a Marie Curie International Incoming Fellowship, and L.M. acknowledges the EPSRC NOWNano programme for funding. Y.Z. acknowledges the assistance of Eric Prestat in TEM specimen preparation. Computational resources were provided by the TUBITAK ULAKBIM High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 38.986
  Call Number UA @ admin @ c:irua:163589 Serial 5407
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: