toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bogaerts, A.; Neyts, E.C.; Rousseau, A. doi  openurl
  Title Special issue on fundamentals of plasmasurface interactions Type Editorial
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 22 Pages 220301  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000336207900001 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116917 Serial 3068  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. pdf  doi
openurl 
  Title Understanding plasma catalysis through modelling and simulation : a review Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 22 Pages 224010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis holds great promise for environmental applications, provided that the process viability can be maximized in terms of energy efficiency and product selectivity. This requires a fundamental understanding of the various processes taking place and especially the mutual interactions between plasma and catalyst. In this review, we therefore first examine the various effects of the plasma on the catalyst and of the catalyst on the plasma that have been described in the literature. Most of these studies are purely experimental. The urgently needed fundamental understanding of the mechanisms underpinning plasma catalysis, however, may also be obtained through modelling and simulation. Therefore, we also provide here an overview of the modelling efforts that have been developed already, on both the atomistic and the macroscale, and we identify the data that can be obtained with these models to illustrate how modelling and simulation may contribute to this field. Last but not least, we also identify future modelling opportunities to obtain a more complete understanding of the various underlying plasma catalytic effects, which is needed to provide a comprehensive picture of plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Iop publishing ltd Place of Publication Bristol Editor  
  Language Wos 000336207900011 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 130 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116920 Serial 3803  
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F. pdf  doi
openurl 
  Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 22 Pages 224007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336207900008 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116919 Serial 3804  
Permanent link to this record
 

 
Author Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Johnson, R.L.; Whelan, C.M.; Liang, D.; Van Tendeloo, G. doi  openurl
  Title Effect of oxygen rf-plasma on electronic properties of CNTs Type A1 Journal article
  Year 2007 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 40 Issue (up) 23 Pages 7379-7382  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000251797900029 Publication Date 2007-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.588; 2007 IF: 2.200  
  Call Number UA @ lucian @ c:irua:67284 Serial 828  
Permanent link to this record
 

 
Author Kumar, N.; Attri, P.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue (up) 25 Pages 255401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, the interest in treating cancer cells with plasma treated media (PTM) and plasma treated water (PTW) has increased tremendously. However, the actions of PTM and PTW are still not entirely understood. For instance, it is not clear whether the action of PTM is due to a modification in proteins/amino acids after plasma treatment of the media, or due to reactive oxygen and nitrogen species (RONS) generated from the plasma, or a combination of both effects. To differentiate between the actions of RONS and modified proteins/amino acids on the treatment of cancer cells, we compared the effects of PTM and PTW on two different pancreatic ductal adenocarcinomas (MiaPaca-2, BxPc3) and pancreatic stellate cells

(PSCs) (hPSC128-SV). PSCs closely interact with cancer cells to create a tumor-promoting environment that stimulates local tumor progression and metastasis. We treated culture media and deionized water with a cold atmospheric plasma (CAP) jet, and subsequently applied this PTM/PTW at various ratios to the pancreatic cancer and PSC cell lines. We evaluated cell death, intracellular ROS concentrations and the mRNA expression profiles of four oxidative stress-related genes, i.e. Mitogen-activated protein kinase 7 (MAPK7), B-cell lymphoma 2 (BCL2), Checkpoint kinase 1 (CHEK1) and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP). Our findings demonstrate that PTM and PTW have a similar efficacy to kill pancreatic cancer cells, while PTW is slightly more effective in killing PSCs, as compared to PTM. Furthermore, we observed an enhancement of the intracellular ROS concentrations in both pancreatic cancer cells and PSCs. Thus, it is likely that under our experimental conditions, the anti-cancer activity of PTM can be attributed more to the RONS present in the treated liquid, than to the modification of proteins/amino acids in the media. Furthermore, the fact that the chemo-resistant PSCs were killed by PTM/PTW may offer possibilities for new anti-cancer therapies for pancreatic cancer cells, including PSCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434266900001 Publication Date 2018-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO) (grant number 12J5617N) and from the European Marie Skłodowska–Curie Individual Fellowship ‘Anticancer-PAM’ within Horizon2020 (grant number 743546). We also thank Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan) for providing us with human PSCs (hPSC128-SV) for this study. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:151962 Serial 4997  
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A. pdf  doi
openurl 
  Title Kinetic modelling for an atmospheric pressure argon plasma jet in humid air Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue (up) 27 Pages 275201-275253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as 'long living' species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000320854700009 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 115 Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:108725 Serial 1758  
Permanent link to this record
 

 
Author Neyts, E.C.; Yusupov, M.; Verlackt, C.C.; Bogaerts, A. pdf  doi
openurl 
  Title Computer simulations of plasmabiomolecule and plasmatissue interactions for a better insight in plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 29 Pages 293001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficultif not impossibleto obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasmabiomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000338860300001 Publication Date 2014-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 28 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:117853 Serial 472  
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A. doi  openurl
  Title The origin of Bohm diffusion, investigated by a comparison of different modelling methods Type A1 Journal article
  Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue (up) 29 Pages 292001,1-292001,5  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract 'Bohm diffusion' causes the electrons to diffuse perpendicularly to the magnetic field lines. However, its origin is not yet completely understood: low and high frequency electric field fluctuations are both named to cause Bohm diffusion. The importance of including this process in a Monte Carlo (MC) model is demonstrated by comparing calculated ionization rates with particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations. A good agreement is found with a Bohm diffusion parameter of 0.05, which corresponds well to experiments. Since the PIC/MCC method accounts for fast electric field fluctuations, we conclude that Bohm diffusion is caused by fast electric field phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279638700001 Publication Date 2010-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:83109 Serial 2521  
Permanent link to this record
 

 
Author Wang, H.; Cuppens, J.; Biermans, E.; Bals, S.; Fernandez-Ballester, L.; Kvashnina, K.O.; Bras, W.; van Bael, M.J.; Temst, K.; Vantomme, A. pdf  doi
openurl 
  Title Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue (up) 3 Pages 035301-035301,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000299308400008 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 5 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:94208 Serial 3754  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Zhao, S.-X.; Jiang, W.; Wang, Y.-N. pdf  doi
openurl 
  Title Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue (up) 30 Pages 305203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both geometrical and electrical asymmetry effects in capacitive argon discharges are investigated using a two-dimensional particle-in-cell coupled with Monte Carlo collision model. When changing the ratio of the top and bottom electrode surface areas and the phase shift between the two applied harmonics, the induced self-bias was found to develop separately. By adjusting the ratio between the high and low harmonic amplitudes, the electrical asymmetry effect at a fixed phase shift can be substantially optimized. However, the self-bias caused by the geometrical asymmetry hardly changed. Moreover, the separate control of these two asymmetry effects can also be demonstrated from their power absorption profiles. Both the axial and radial plasma density distributions can be modulated by the electrical asymmetry effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000306475200007 Publication Date 2012-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:100751 Serial 2984  
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A. doi  openurl
  Title Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
  Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue (up) 31 Pages 315203-315203,15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000280275200007 Publication Date 2010-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:88365 Serial 1724  
Permanent link to this record
 

 
Author Setareh, M.; Farnia, M.; Maghari, A.; Bogaerts, A. pdf  doi
openurl 
  Title CF4 decomposition in a low-pressure ICP : influence of applied power and O2 content Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 35 Pages 355205  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper focuses on the investigation of CF4 decomposition in a low-pressure inductively coupled plasma by means of a global model. The influence of O2 on the CF4 decomposition process is studied for conditions used in semiconductor manufacturing processes. The model is applied for different powers and O2 contents ranging between 2% and 98% in the CF4/O2 gas mixture. The model includes the reaction mechanisms in the gas phase coupled with the surface reactions and sticking probabilities of the species at the walls. The calculation results are first compared with experimental results from the literature (for the electron density, temperature and F atom density) at a specific power, in the entire range of CF4/O2 gas mixture ratios, and the obtained agreements indicate the validity of the model. The main products of the gas mixture, obtained from this model, include CO, CO2 and COF2 together with a low fraction of F2. The most effective reactions for the formation and loss of the various species in this process are also determined in detail. Decomposition of CF4 produces mostly CF3 and F radicals. These radicals also contribute to the backward reactions, forming again CF4. This study reveals that the maximum decomposition efficiency of CF4 is achieved at a CF4/O2 ratio equal to 1, at the applied power of 300 W.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000341353800017 Publication Date 2014-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:118327 Serial 3521  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic scale understanding of the permeation of plasma species across native and oxidized membranes Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue (up) 36 Pages 365203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasmas (CAPs) have attracted significant interest for their potential benefits in medical applications, including cancer therapy. The therapeutic effects of CAPs are related to reactive oxygen and nitrogen species (ROS and RNS) present in the plasma. The impact of ROS has been extensively studied, but the role of RNS in CAP-treatment remains poorly understood at the molecular level. Here, we investigate the permeation of RNS and ROS across native and oxidized phospholipid bilayers (PLBs) by means of computer simulations. The results reveal significantly lower free energy barriers for RNS (i.e. NO, NO2, N2O4) and O3 compared to hydrophilic ROS, such as OH, HO2 and H2O2. This suggests that the investigated RNS and O3 can permeate more easily through both native and oxidized PLBs in comparison to hydrophilic ROS, indicating their potentially important role in plasma medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441182400002 Publication Date 2018-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access OpenAccess  
  Notes M Y gratefully acknowledges financial support from the Research Foundation—Flanders (FWO), grant 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. RMC thanks FAPESP and CNPq for financial support (grants 2012/50680-5 and 459270/2014-1, respectively). Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:152824 Serial 5005  
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T. pdf  url
doi  openurl
  Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
  Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 55 Issue (up) 37 Pages 373001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000821410400001 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4  
  Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075  
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A. pdf  doi
openurl 
  Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue (up) 39 Pages 395201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000324810400007 Publication Date 2013-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 36 Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:109904 Serial 1684  
Permanent link to this record
 

 
Author Wang, H.; Wang, W.; Yan, J.D.; Qi, H.; Geng, J.; Wu, Y. pdf  doi
openurl 
  Title Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue (up) 39 Pages 395204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al's derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto's electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000410390100001 Publication Date 2017-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:145603 Serial 4754  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue (up) 39 Pages 394004  
  Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674464100001 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Jappor, H.R.; Hieu, N.N.; Ghergherehchi, M.; Feghhi, S.A.H.; Gogova, D. pdf  url
doi  openurl
  Title Prediction of two-dimensional bismuth-based chalcogenides Bi₂X₃(X = S, Se, Te) monolayers with orthorhombic structure : a first-principles study Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue (up) 39 Pages 395103  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculation is a very powerful tool for discovery and design of novel two-dimensional materials with unique properties needed for the next generation technology. Motivated by the successful preparation of Bi2S3 nanosheets with orthorhombic structure in the last year, herein we gain a deep theoretical insight into the crystal structure, stability, electronic and optical properties of Bi2X3 (X = S, Se, Te) monolayers of orthorhombic phase employing the first-principles calculations. The Molecular dynamics study, phonon spectra, criteria for elastic stability, and cohesive energy results confirm the desired stability of the Bi2X3 monolayers. From S, to Se and Te, the work function value as well as stability of the systems decrease due to the decline in electronegativity. Mechanical properties study reveals that Bi2X3 monolayers have brittle nature. The electronic bandgap values of Bi2S3, Bi2Se3 and Bi2Te3 monolayers are predicted by the HSE06 functional to be 2.05, 1.20 and 1.16 eV, respectively. By assessing the optical properties, it has been found that Bi2X3 monolayers can absorb ultraviolet light. The high in-plane optical anisotropy offers an additional degree of freedom in the design of optical devices. The properties revealed in our survey will stimulate and inspire the search for new approaches of orthorhombic Bi2X3 (X = S, Se, Te) monolayers synthesis and properties manipulation for fabrication of novel nanoelectronic and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674464700001 Publication Date 2021-07-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:179863 Serial 7014  
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Dubois, P.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title Functionalization of MWCNTs with atomic nitrogen : electronic structure Type A1 Journal article
  Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 41 Issue (up) 4 Pages 045202-45204  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The changes induced by exposing multi-walled carbon nanotubes (CNTs) to atomic nitrogen were analysed by high-resolution transmission electron microscopy (HRTEM), x-ray and ultraviolet photoelectron spectroscopy. It was found that the atomic nitrogen generated by a microwave plasma effectively grafts chemical groups onto the CNT surface altering the density of valence electronic states. HRTEM showed that the exposure to atomic nitrogen does not significantly damage the CNT surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000253177900018 Publication Date 2008-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.588; 2008 IF: 2.104  
  Call Number UA @ lucian @ c:irua:102633 Serial 1306  
Permanent link to this record
 

 
Author Lawson, N.C.; Janyavula, S.; Çakir, D.; Burgess, J.O. pdf  doi
openurl 
  Title An analysis of the physiologic parameters of intraoral wear: a review Type A1 Journal article
  Year 2013 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue (up) 40 Pages Unsp 404007  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This paper reviews the conditions of in vivo mastication and describes a novel method of measuring in vitro wear. Methods: parameters of intraoral wear are reviewed in this analysis, including chewing force, tooth sliding distance, food abrasivity, saliva lubrication, and antagonist properties. Results: clinical measurement of mastication forces indicates a range of normal forces between 20 and 140 N for a single molar. During the sliding phase of mastication, horizontal movement has been measured between 0.9 and 2.86 mm. In vivo wear occurs by three-body abrasion when food particles are interposed between teeth and by two-body abrasion after food clearance. Analysis of food particles used in wear testing reveals that food particles are softer than enamel and large enough to separate enamel and restoration surfaces and act as a solid lubricant. In two-body wear, saliva acts as a boundary lubricant with a viscosity of 3 cP. Enamel is the most relevant antagonist material for wear testing. The shape of a palatal cusp has been estimated as a 0.6 mm diameter ball and the hardest region of a tooth is its enamel surface. pH values and temperatures have been shown to range between 2-7 and 5-55 degrees C in intraoral fluids, respectively. These intraoral parameters have been used to modify the Alabama wear testing method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 2013-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:128322 Serial 4585  
Permanent link to this record
 

 
Author Khalili, M.; Daniels, L.; Lin, A.; Krebs, F.C.; Snook, A.E.; Bekeschus, S.; Bownel, W.B.; Miller, V. pdf  url
doi  openurl
  Title Non-thermal plasma-induced immunogenic cell death in cancer Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue (up) 42 Pages 423001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumorspecific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed minor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce ICD in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000479103100001 Publication Date 2019-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:161774 Serial 6313  
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue (up) 43 Pages 435201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A one-dimensional, implicit particle-in-cell Monte Carlo collision model is used to simulate the plasma kinetic properties at a steady state in a parallel-plate direct current argon glow microdischarge under various operating conditions, such as driving voltage (301000 V) and gap size (101000 µm) at atmospheric pressure. First, a comparison between rf and dc modes is shown for the same pressure, driving voltage and gap spacing. Furthermore, the effect of gap size scaling (in the range of 101000 µm) on the breakdown voltage, peak electron density and peak electron current density at the breakdown voltage is examined. The breakdown voltage is lower than 150 V in all gaps considered. The microdischarge is found to have a neutral bulk plasma region and a cathode sheath region with size varying with the applied voltage and the discharge gap. In our calculations, the electron and ion densities are of the order of 10181023 m−3, which is in the glow discharge limit, as the ionization degree is lower than 1% . The electron energy distribution function shows a two-energy group distribution at a gap of 10 µm and a three-energy group distribution at larger gaps such as 200 µm and 1000 µm, emphasizing the importance of the gap spacing in dc microdischarges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000343150500011 Publication Date 2014-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:119152 Serial 1759  
Permanent link to this record
 

 
Author Mao, M.; Wang, Y.N.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the plasma chemistry in inductively coupled SF6 and SF6/AR plasmas used for deep silicon etching applications Type A1 Journal article
  Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 44 Issue (up) 43 Pages 435202,1-435202,15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model, called the hybrid plasma equipment model, was used to study inductively coupled SF6 plasmas used for Si etching applications. The plasma properties such as number densities of electrons, positive and negative ions, and neutrals are calculated under typical etching conditions. The electron kinetics is analysed by means of the electron energy probability function. The plasma chemistry taking place in pure SF6 and in an Ar/SF6 mixture is also discussed, and finally the effect of the argon fraction on the plasma properties is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000296591100004 Publication Date 2011-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2011 IF: 2.544  
  Call Number UA @ lucian @ c:irua:91754 Serial 2409  
Permanent link to this record
 

 
Author Bogaerts, A.; Tu, X.; Whitehead, J.C.; Centi, G.; Lefferts, L.; Guaitella, O.; Azzolina-Jury, F.; Kim, H.-H.; Murphy, A.B.; Schneider, W.F.; Nozaki, T.; Hicks, J.C.; Rousseau, A.; Thevenet, F.; Khacef, A.; Carreon, M. pdf  url
doi  openurl
  Title The 2020 plasma catalysis roadmap Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 53 Issue (up) 44 Pages 443001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, CH4 activation into hydrogen, higher hydrocarbons or oxygenates, and NH3 synthesis. Other applications are already more established, such as for air pollution control, e.g. volatile organic compound remediation, particulate matter and NOx removal. In addition, plasma is also very promising for catalyst synthesis and treatment. Plasma catalysis clearly has benefits over ‘conventional’ catalysis, as outlined in the Introduction. However, a better insight into the underlying physical and chemical processes is crucial. This can be obtained by experiments applying diagnostics, studying both the chemical processes at the catalyst surface and the physicochemical mechanisms of plasma-catalyst interactions, as well as by computer modeling. The key challenge is to design cost-effective, highly active and stable catalysts tailored to the plasma environment. Therefore, insight from thermal catalysis as well as electro- and photocatalysis is crucial. All these aspects are covered in this Roadmap paper, written by specialists in their field, presenting the state-of-the-art, the current and future challenges, as well as the advances in science and technology needed to meet these challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000563194400001 Publication Date 2020-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes U.S. Department of Energy, DE-FE0031862 DE-FG02-06ER15830 ; U.S. Air Force Office of Scientific Research, FA9550-18-1-0157 ; University of Antwerp, 32249 ; JSPS KAKENSHI, JP18H01208 ; UK EPSRC Impact Acceleration Account; National Science Foundation, EEC-1647722 ; H2020 Marie Skłodowska-Curie Actions, 823745 ; Horizon 2020 Framework Programme, 810182 – SCOPE ERC Synergy pr ; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project). Approved Most recent IF: 3.4; 2020 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:171915 Serial 6408  
Permanent link to this record
 

 
Author Rubino, S.; Schattschneider, P.; Rusz, J.; Verbeeck, J.; Leifer, K. pdf  doi
openurl 
  Title Simulation of magnetic circular dichroism in the electron microscope Type A1 Journal article
  Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 43 Issue (up) 47 Pages 474005,1-474005,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As electron energy-loss spectroscopy (EELS) and x-ray absorption spectroscopy (XAS) probe the same transitions from coreshell states to unoccupied states above the Fermi energy, it should always be possible to apply the two techniques to the same physical phenomena, such as magnetic dichroism, and obtain the same information. Indeed, the similarity in the expression of the electron and x-ray cross-sections had been already exploited to prove the equivalence of x-ray magnetic linear dichroism and anisotropy in EELS, by noting that the polarization vector of a photon plays the same role as the momentum transfer in electron scattering. Recently, the same was proven true for x-ray magnetic circular dichroism (XMCD) by establishing a new TEM technique called EMCD (electron energy-loss magnetic chiral dichroism) (Schattschneider P et al 2006 Nature 441 4868), which makes use of special electron scattering conditions to force the absorption of a circularly polarized virtual photon. The intrinsic advantage of EMCD over XMCD is the high spatial resolution of electron microscopes, which are readily available. Among the particular obstacles in EMCD that do not exist for synchrotron radiation, is the notoriously low signal and the very particular scattering conditions necessary to observe a chiral dichroic signal. In spite of that, impressive progress has been made in recent years. The signal strength could be considerably increased, and some innovations such as using a convergent beam have been introduced. EMCD has evolved into several techniques, which make full use of the versatility of the TEM and energy filtering, spectroscopy or STEM conditions (Rubino S 2007 Magnetic circular dichroism in the transmission electron microscope PhD Thesis Vienna University of Technology, Vienna, Austria).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284099700006 Publication Date 2010-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.588; 2010 IF: 2.109  
  Call Number UA @ lucian @ c:irua:85808UA @ admin @ c:irua:85808 Serial 3012  
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Cryogenic etching of silicon with SF6 inductively coupled plasmas: a combined modelling and experimental study Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue (up) 48 Pages 155204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid Monte Carlofluid model is applied to simulate the wafer-temperature-dependent etching of silicon with SF6 inductively coupled plasmas (ICP). The bulk plasma within the ICP reactor volume as well as the surface reactions occurring at the wafer are self-consistently described. The calculated etch rates are validated by experiments. The calculations and experiments are performed at two different wafer temperatures, i.e. 300 and 173 K, resembling conventional etching and cryoetching, respectively. In the case of cryoetching, a physisorbed SFx layer (x = 06) is formed on the wafer, which is negligible at room temperature, because of fast thermal desorption, However, even in the case of cryoetching, this layer can easily be disintegrated by low-energy ions, so it does not affect the etch rates. In the investigated pressure range of 19 Pa, the etch rate is always slightly higher at cryogenic conditions, both in the experiments and in the model, and this could be explained in the model due to a local cooling of the gas above the wafer, making the gas denser and increasing the flux of reactive neutrals, like F and F2, towards the wafer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351856600009 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:124209 Serial 551  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in Ar/CF4 capacitively coupled plasmas Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue (up) 48 Pages 485204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is employed to investigate an Ar/CF4 capacitively coupled plasma, focusing on the phase-shift effect on the plasma characteristics at various frequencies and gas mixture ratios. When the discharge is sustained by a single frequency at 13.56 MHz in an Ar/CF4 mixture with a ratio of 0.9/0.1, no obvious difference is detected between the electron densities obtained in the so-called electrostatic model (with only the static electric fields taken into account) and the electromagnetic model (which includes the electromagnetic effects). However, as the frequency increases to 60 and 100 MHz, the difference becomes distinct, due to the significant influence of the electromagnetic effects. The phase-shift effect on the plasma radial uniformity has also been investigated in a dual frequency discharge, i.e. when the top driven source is switched on with a phase difference phiv ranging from 0 to π, in the frequency range 13.56100 MHz. At low concentration of CF4 (10%), Ar+ ions are the major positive ions in the entire range of frequencies. When the frequency is low, i.e. 13.56 MHz, the Ar+ density exhibits an off-axis peak at phiv = 0 due to the edge effect, and a better uniformity caused by the phase-shift modulation is obtained at phiv = π. At 60 MHz, the Ar+ density varies from edge-peaked at phiv = 0 to uniform (i.e. at phiv = 0.53π), and finally at phiv = π, a broad maximum is observed at the centre due to the standing-wave effect. As the frequency increases to 100 MHz, the best radial uniformity is reached at 0.25π, and the maximum moves again towards the radial wall in the reverse-phase case (phiv = π) due to the dominant skin effect. When the frequency is fixed at 100 MHz, the phase-shift control shows a different behaviour at a high concentration of CF4. For instance, the ${\rm CF}_3  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000311148300011 Publication Date 2012-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:101754 Serial 1232  
Permanent link to this record
 

 
Author Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A. pdf  url
doi  openurl
  Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue (up) 48 Pages 025202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000347980100011 Publication Date 2014-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:121335 Serial 2394  
Permanent link to this record
 

 
Author Van der Paal, J.; Verlackt, C.C.; Yusupov, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of the skin barrier by OH radicals : a reactive molecular dynamics study for plasma medicine Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue (up) 48 Pages 155202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351856600007 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number c:irua:124230 Serial 3242  
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects Type A1 Journal article
  Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 48 Issue (up) 48 Pages 435104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000365876300012 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 23 Open Access  
  Notes Approved Most recent IF: 2.588; 2015 IF: 2.721  
  Call Number UA @ lucian @ c:irua:130277 Serial 4153  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: