toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue (down) Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 86 Issue (down) Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 96 Issue (down) Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Ying, J.; Yang, X.-Y.; Hu, Z.-Y.; Mu, S.-C.; Janiak, C.; Geng, W.; Pan, M.; Ke, X.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title One particle@one cell : highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction Type A1 Journal article
  Year 2014 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 8 Issue (down) Pages 214-222  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Highly monodispersed platinum-based nanoalloys are the best-known catalysts for the oxygen reduction reaction. Although certainly promising, the durability and stability are among the main requirements for commercializing fuel cell electrocatalysts in practical applications. Herein, we synthesize highly stable, durable and catalytic active monodispersed PtPd nano-particles encapsulated in a unique one particle@one cell structure by adjusting the viscosity of solvents using mesocellular foam. PtPd nanoparticles in mesocellular carbon foam exhibit an excellent electrocatalytic activity (over 4 times mass and specific activities than the commercial Pt/C catalyst). Most importantly, this nanocatalyst shows no obvious change of structure and only a 29.5% loss in electrochemically active surface area after 5000 potential sweeps between 0.6 and 1.1 V versus reversible hydrogen electrode cycles. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000340981700026 Publication Date 2014-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 40 Open Access  
  Notes Approved Most recent IF: 12.343; 2014 IF: 10.325  
  Call Number UA @ lucian @ c:irua:119255 Serial 2465  
Permanent link to this record
 

 
Author Yan, X.F.; Chen, Q.; Li, L.L.; Guo, H.Z.; Peng, J.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title High performance piezotronic spin transistors using molybdenum disulfide nanoribbon Type A1 Journal article
  Year 2020 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 75 Issue (down) Pages 104953  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials are promising candidates for atomic-scale piezotronics and piezophototronics. Quantum edge states show fascinating fundamental physics such as nontrivial topological behavior and hold promising practical applications for low-power electronic devices. Here, using the tight-binding approach and quantum transport simulations, we investigate the piezotronic effect on the spin polarization of edge states in a zigzag-terminated monolayer MoS2 nanoribbon. We find that the strain-induced piezoelectric potential induces a phase transition of edge states from metal to semiconductor. However, in the presence of exchange field, edge states become semi-metallic with significant spin splitting and polarization that can be tuned by external strain. We show that quantum transport conductance exhibits a 100% spin polarization over a wide range of strain magnitudes. This effect is used in a propose prototype of piezotronic spin transistor. Our results provide a fundamental understanding of the piezotronic effect on edge states in zigzag monolayer MoS2 nanoribbons and are relevant for designing high-performance piezotronic spin devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560729200011 Publication Date 2020-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.6 Times cited 20 Open Access  
  Notes ; This work was supported by Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2078), Scientific Research Fund of Hunan Provincial Education Department (19A106), and the Funeral Service Foundation (FWO-VI). ; Approved Most recent IF: 17.6; 2020 IF: 12.343  
  Call Number UA @ admin @ c:irua:171123 Serial 6535  
Permanent link to this record
 

 
Author Nabavi-Pelesaraei, A.; Azadi, H.; Van Passel, S.; Saber, Z.; Hosseini-Fashami, F.; Mostashari-Rad, F.; Ghasemi-Mobtaker, H. pdf  url
doi  openurl
  Title Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment Type A1 Journal article
  Year 2021 Publication Energy Abbreviated Journal Energy  
  Volume 223 Issue (down) Pages 120117  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The aim of this study is determination of exergoenvironmental efficiency for using solar technologies in sunflower oil production in Iran. Accordingly, the applications of photovoltaic and photovoltaic/thermal systems were evaluated for both agricultural and industrial phases of sunflower oil production. Energy results reveal that 1 ton of sunflower oil consumes and produces about 180,354 and 39,400 MJ energy, respectively. About 86% of total energy consumption belongs to agricultural phase and electricity with 32%, has the highest share of total energy consumption. IMPACT 2002+ method and cumulative energy demand of life cycle assessment are applied to 3 defined scenarios including Present, photovoltaic and photovoltaic/thermal. Results indicate that total amounts of climate change in Present scenarios is 24537.53 kg CO2 eq.. The highest share of human health (90%), ecosystem quality (90%) and climate change (50%) in all scenarios belongs to direct emissions. Results also illustrates that total cumulative energy demand of Present, photovoltaic and photovoltaic/thermal scenarios are about 177,538, 99,054 and 132,158 MJ 1TSO(-1), respectively. Furthermore, the most contribution of non-renewable resources and fossil fuels belongs to electricity (37%), nitrogen (52%) and photovoltaic/thermal panels (39%) in Present, photovoltaic and photovoltaic/thermal scenarios, respectively. Finally the photovoltaic scenario is the best environmental-friendly scenario. (c) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637964000003 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:178193 Serial 6940  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor : experimental assessment of the ignition front propagation velocity Type A1 Journal article
  Year 2021 Publication Energy Abbreviated Journal Energy  
  Volume 220 Issue (down) Pages 119702-119710  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Co-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623087300003 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:175861 Serial 8664  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: