|   | 
Details
   web
Records
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Density-functional theory calculations of the electron energy-loss near-edge structure of Li-intercalated graphite Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue (down) 10 Pages 2501-2510
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the structural and electronic properties of lithium-intercalated graphite (LIG) for various Li content. Atomic relaxation shows that Li above the center of the carbon hexagon in a AAAA stacked graphite is the only stable Li configuration in stage 1 intercalated graphite. Lithium and Carbon 1s energy-loss near-edge structure (ELNES) calculations are performed on the Li-intercalated graphite using the core-excited density-functional theory formulation. Several features of the Li 1s ELNES are correlated with reported experimental features. The ELNES spectra of Li is found to be electron beam orientation sensitive and this property is used to assign the origin of the various Li 1s ELNES features. Information about core-hole screening by the valence electrons and charge transfer in the LIG systems is obtained from the C 1s ELNES and valence charge density difference calculations, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000268429000025 Publication Date 2009-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 12 Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:77973 Serial 638
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A.
Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 122 Issue (down) 10 Pages 106102
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461067700007 Publication Date 2019-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access OpenAccess
Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462
Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Ab initio based atomic scattering amplitudes and {002} electron structure factors of InxGa1-xAs/GaAs quantum wells Type A1 Journal article
Year 2010 Publication Journal of physics : conference series Abbreviated Journal
Volume 209 Issue (down) 1 Pages 012040,1-012040,6
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The atomic scattering amplitudes of the various atoms of the systems Ga1−xInxAs, GaAs1−xNx and InAs1−xNx are calculated using the density functional theory (DFT) approach. The scattering amplitudes of N, Ga, As and In in the model systems are compared with the frequently used Doyle and Turner values. Deviation from the latter values is found for small scattering vectors (s<0.3Å−1) and for these scattering vectors dependence on the orientation of the scattering vector and the chemical environment is reported. We suggest a parametrization of these modified scattering amplitudes (MASAs) for small scattering vectors (s<1.0Å−1). The MASAs are exploited within zero pressure classical Metropolis Monte Carlo (MC), finite temperature calculations to investigate the effect of quantum well size on the electron {002} structure factor (SF) of Ga1−xInxAs quantum wells.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000283739100040 Publication Date 2010-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85760 Serial 28
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D.
Title Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III-V and II-VI semiconductors Type A1 Journal article
Year 2009 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 65 Issue (down) 1 Pages 5-17
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We calculated the temperature dependence of the Debye-Waller factors for a variety of group IV, III-V and II-VI semiconductors from 0.1 to 1000 K. The approach used to fit the temperature dependence is described and resulting fit parameters are tabulated for each material. The Debye-Waller factors are deduced from generalized phonon densities of states which were derived from first principles using the WIEN2k and the ABINIT codes.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000261799500002 Publication Date 2008-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.725 Times cited 51 Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 5.725; 2009 IF: 49.926
Call Number UA @ lucian @ c:irua:72918 Serial 453
Permanent link to this record
 

 
Author Müller, K.; Schowalter, M.; Rosenauer, A.; Jansen, J.; Tsuda, K.; Titantah, J.T.; Lamoen, D.
Title Refinement of chemically sensitive structure factors using parallel and convergent beam electron nanodiffraction Type A1 Journal article
Year 2010 Publication Journal of physics : conference series Abbreviated Journal
Volume 209 Issue (down) 1 Pages 012025-012025,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce a new method to measure structure factors from parallel beam electron diffraction (PBED) patterns. Bloch wave refinement routines were developed which can minimise the difference between simulated and experimental Bragg intensities via variation of structure factors, Debye parameters, specimen thickness and -orientation. Due to plane wave illumination, the PBED refinement is highly efficient not only in computational respect, but also concerning the experimental effort since energy filtering is shown to have no significant effect on the refinement results. The PBED method was applied to simulated GaAs diffraction patterns to derive systematic errors and rules for the identification of plausible refinement results. The evaluation of experimental GaAs PBED patterns yields a 200 X-ray structure factor of -6.33±0.14. Additionally, we obtained -6.35±0.13 from two-dimensional convergent beam electron diffraction refinements. Both results confirm density functional theory calculations published by Rosenauer et al. and indicate the inaccuracy of isolated atom scattering data, which is crucial e.g. for the composition evaluation by lattice fringe analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos Publication Date 2010-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:85761 Serial 2855
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A.
Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
Year 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett
Volume 6 Issue (down) 1 Pages 84-92
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Abingdon Editor
Language Wos 000428141500013 Publication Date 2017-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access
Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773
Call Number UA @ lucian @ c:irua:150921 Serial 4973
Permanent link to this record
 

 
Author de Backer, A.; Martinez, G.T.; Rosenauer, A.; Van Aert, S.
Title Atom counting in HAADF STEM using a statistical model-based approach : methodology, possibilities, and inherent limitations Type A1 Journal article
Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 134 Issue (down) Pages 23-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000324474900005 Publication Date 2013-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 48 Open Access
Notes FWO; Esteem2; FP 2007-2013; esteem2_jra2 Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:109916 Serial 162
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue (down) Pages 5653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347227700003 Publication Date 2014-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 197 Open Access
Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D.
Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue (down) Pages 8-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700002 Publication Date 2012-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 67 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96558 Serial 518
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue (down) Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338402500011 Publication Date 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.
Title Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
Year 2005 Publication Microscopy of Semiconducting Materials Abbreviated Journal
Volume 107 Issue (down) Pages 303-306
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72914 Serial 1962
Permanent link to this record
 

 
Author Van den Broek, W.; Rosenauer, A.; Van Aert, S.; Sijbers, J.; van Dyck, D.
Title A memory efficient method for fully three-dimensional object reconstruction with HAADF STEM Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 141 Issue (down) Pages 22-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The conventional approach to object reconstruction through electron tomography is to reduce the three-dimensional problem to a series of independent two-dimensional slice-by-slice reconstructions. However, at atomic resolution the image of a single atom extends over many such slices and incorporating this image as prior knowledge in tomography or depth sectioning therefore requires a fully three-dimensional treatment. Unfortunately, the size of the three-dimensional projection operator scales highly unfavorably with object size and readily exceeds the available computer memory. In this paper, it is shown that for incoherent image formation the memory requirement can be reduced to the fundamental lower limit of the object size, both for tomography and depth sectioning. Furthermore, it is shown through multislice calculations that high angle annular dark field scanning transmission electron microscopy can be sufficiently incoherent for the reconstruction of single element nanocrystals, but that dynamical diffraction effects can cause classification problems if more than one element is present. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335766600004 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access
Notes ResearchFoundationFlanders(FWO;G.0393.11; G.0064.10;andG.0374.13); European Union Seventh Frame- workProgramme [FP7/2007-2013]under Grant agreement no. 312483 (ESTEEM2).; esteem2jra2; esteem2jra4 Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:117650 Serial 1992
Permanent link to this record
 

 
Author Martinez, G.T.; Rosenauer, A.; de Backer, A.; Verbeeck, J.; Van Aert, S.
Title Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 137 Issue (down) Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331092200003 Publication Date 2013-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 74 Open Access
Notes FWO; FP7; ERC Countatoms; ESTEEM2; esteem2_ta Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:111579UA @ admin @ c:irua:111579 Serial 2749
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kruse, P.; Gerthsen, D.
Title Ab initio computation of the mean inner Coulomb potential of technological important semiconductors Type A1 Journal article
Year 2005 Publication Abbreviated Journal
Volume 1007 Issue (down) Pages 233-236
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72915 Serial 32
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D.
Title Calculation of Debye-Waller temperature factors for GaAs Type A1 Journal article
Year 2008 Publication Springer proceedings in physics Abbreviated Journal
Volume 120 Issue (down) Pages 195-198
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:73966 Serial 266
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Effect of temperature on the 002 electron structure factor and its consequence for the quantification of ternary and quaternary III-V crystals Type A1 Journal article
Year 2008 Publication Springer proceedings in physics Abbreviated Journal
Volume 120 Issue (down) Pages 189-194
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:73965 Serial 839
Permanent link to this record
 

 
Author Rosenauer, A.; Schowalter, M.; Glas, F.; Lamoen, D.
Title First-principles calculations of 002 structure factors for electron scattering in strained InxGa1-xAs Type A1 Journal article
Year 2005 Publication Abbreviated Journal
Volume 107 Issue (down) Pages 151-154
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72916 Serial 1202
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D.
Title Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure Type A1 Journal article
Year 2009 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 65 Issue (down) Pages 227-231
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We computed Debye-Waller factors in the temperature range from 0.1 to 1000 K for AlN, GaN, InN, ZnO and CdO with the wurtzite-type structure. The Debye-Waller factors were derived from phonon densities of states obtained from Hellmann-Feynman forces computed within the density-functional-theory formalism. The temperature dependences of the Debye-Waller factors were fitted and fit parameters are given.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000264927100006 Publication Date 2009-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.725 Times cited 23 Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 5.725; 2009 IF: 49.926
Call Number UA @ lucian @ c:irua:74565 Serial 3497
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Mahr, C.; Zillmann, D.; Müller-Caspary, K.; Schowalter, M.; Rosenauer, A.
Title Optimization of NBED simulations for disc-detection measurements Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 181 Issue (down) Pages 50-60
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection – such as strain, surface morphology and compositional changes on the nanometer scale – are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of grad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000411170800006 Publication Date 2017-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 6 Open Access Not_Open_Access
Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. R02057/11-1, R02057/4-2 and MU3660/1-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:146725 Serial 4792
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
Year 2019 Publication Abbreviated Journal
Volume Issue (down) Pages
Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169114 Serial 6865
Permanent link to this record