toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I. pdf  url
doi  openurl
  Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue (down) 28 Pages 9169-9180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391080900036 Publication Date 2016-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 80 Open Access OpenAccess  
  Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139513 Serial 4344  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Delabie, A.; Caymax, M.; Neyts, E.C.; Radu, I.; Huyghebaert, C.; De Gendt, S. pdf  url
doi  openurl
  Title Two-dimensional WS2 nanoribbon deposition by conversion of pre-patterned amorphous silicon Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue (down) 28 Pages 04LT01  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a method for area selective deposition of 2D WS2 nanoribbons with tunable thickness on a dielectric substrate. The process is based on a complete conversion of a prepatterned, H-terminated Si layer to metallic W by WF6, followed by in situ sulfidation by H2S. The reaction process, performed at 450 degrees C, yields nanoribbons with lateral dimension down to 20 nm and with random basal plane orientation. The thickness of the nanoribbons is accurately controlled by the thickness of the pre-deposited Si layer. Upon rapid thermal annealing at 900 degrees C under inert gas, the WS2 basal planes align parallel to the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000391445100001 Publication Date 2016-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 13 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:140382 Serial 4471  
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue (down) 28 Pages 185202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000399273800001 Publication Date 2017-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 7 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:143639 Serial 4607  
Permanent link to this record
 

 
Author Vets, C.; Neyts, E.C. doi  openurl
  Title Stabilities of bimetallic nanoparticles for chirality-selective carbon nanotube growth and the effect of carbon interstitials Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue (down) 28 Pages 15430-15436  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Bimetallic nanoparticles play a crucial role in various applications. A better understanding of their properties would facilitate these applications and possibly even enable chirality-specific growth of carbon nanotubes (CNTs). We here examine the stabilities of NiFe, NiGa, and FeGa nanoparticles and the effect of carbon dissolved in NiFe nanoparticles through density functional theory (DFT) calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. We establish that nanoparticles with more Fe in the core and more Ga on the surface are more stable and compare these results with well-known properties such as surface energy and atom size. Furthermore, we find that the nanoparticles become more stable with increasing carbon content, both at 0 K and at 700 K. These results provide a basis for further research into the chirality-specific growth of CNT's.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000406355700050 Publication Date 2017-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:145206 Serial 4725  
Permanent link to this record
 

 
Author Nakhaee, M.; Yagmurcukardes, M.; Ketabi, S.A.; Peeters, F.M. pdf  doi
openurl 
  Title Single-layer structures of a100- and b010-Gallenene : a tight-binding approach Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue (down) 28 Pages 15798-15804  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a(100)- and b(010)-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a(100)-Gallenene can be very well explained with an orthogonal basis set, while for b(010)-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b(010)-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a(100)-Gallenene nanoribbons are metallic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476603700057 Publication Date 2019-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work is supported by the Methusalem program of the Flemish government and the FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M. Y.). M. N. is partially supported by BFO (Uantwerpen). ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161881 Serial 5427  
Permanent link to this record
 

 
Author Li, J.; Zhu, W.; Dong, H.; Yang, Z.; Zhang, P.; Qiang, Z. pdf  doi
openurl 
  Title Impact of carrier on ammonia and organics removal from zero-discharge marine recirculating aquaculture system with sequencing batch biofilm reactor (SBBR) Type A1 Journal article
  Year 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 27 Issue (down) 28 Pages 34614-34623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Marine recirculating aquaculture system (MRAS) is an effective technology that provides sustainable farming of food fish globally. However, dissolved organics material (chemical oxygen demand, COD) and especially ammonia are produced from uneaten feed and metabolic wastes of fish. To purify the MRAS water, this study adopted a sequencing biofilm batch reactor (SBBR) and comparatively investigated the performances of four different carriers on ammonia and COD removal. Results indicated that the NH4+-N removal rates were 0.045 +/- 0.05, 0.065 +/- 0.008, 0.089 +/- 0.005, and 0.093 +/- 0.003 kg/(m(3)center dot d), and the COD removal rates were 0.019 +/- 0.010, 0.213 +/- 0.010, 0.255 +/- 0.015, and 0.322 +/- 0.010 kg/(m(3)center dot d) in the SBBRs packed with porous plastic, bamboo ring, maifan stone, and ceramsite carriers, respectively. Among the four carriers, ceramsite exhibited the best performance for both NH4+-N (80%) and COD (33%) removal after the SBBR reached the steady-state operation conditions. For all carriers studied, the NH4+-N removal kinetics could be well simulated by the first-order model, and the NH4+-N and COD removal rates were logarithmically correlated with the carrier's specific surface area. Due to its high ammonia removal, stable performance and easy operation, the ceramsite-packed SBBR is feasible for MRAS water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565020300005 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741  
  Call Number UA @ admin @ c:irua:171932 Serial 6542  
Permanent link to this record
 

 
Author Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P. url  doi
openurl 
  Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
  Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 9 Issue (down) 28 Pages 15704-15713  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671839200001 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 18 Open Access OpenAccess  
  Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867  
  Call Number EMAT @ emat @c:irua:179791 Serial 6802  
Permanent link to this record
 

 
Author Peng, X.; Peng, H.; Zhao, K.; Zhang, Y.; Xia, F.; Lyu, J.; Van Tendeloo, G.; Sun, C.; Wu, J. pdf  doi
openurl 
  Title Direct visualization of atomic-scale heterogeneous structure dynamics in MnO₂ nanowires Type A1 Journal article
  Year 2021 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 13 Issue (down) 28 Pages 33644-33651  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Manganese oxides are attracting great interest owing to their rich polymorphism and multiple valent states, which give rise to a wide range of applications in catalysis, capacitors, ion batteries, and so forth. Most of their functionalities are connected to transitions among the various polymorphisms and Mn valences. However, their atomic-scale dynamics is still a great challenge. Herein, we discovered a strong heterogeneity in the crystalline structure and defects, as well as in the Mn valence state. The transitions are studied by in situ transmission electron microscopy (TEM), and they involve a complex ordering of [MnO6] octahedra as the basic building tunnels. MnO2 nanowires synthesized using solution-based hydrothermal methods usually exhibit a large number of multiple polymorphism impurities with different tunnel sizes. Upon heating, MnO2 nanowires undergo a series of stoichiometric polymorphism changes, followed by oxygen release toward an oxygen-deficient spinel and rock-salt phase. The impurity polymorphism exhibits an abnormally high stability with interesting small-large-small tunnel size transition, which is attributed to a preferential stabilizer (K+) concentration, as well as a strong competition of kinetics and thermodynamics. Our results unveil the complicated intergrowth of polymorphism impurities in MnO2, which provide insights into the heterogeneous kinetics, thermodynamics, and transport properties of the tunnel-based building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000677540900101 Publication Date 2021-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:180450 Serial 6861  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Molaei, F.; Hieu, N.N.; Qian, P.; Ghergherehchi, M.; Gogova, D. url  doi
openurl 
  Title Surface modification of titanium carbide MXene monolayers (Ti₂C and Ti₃C₂) via chalcogenide and halogenide atoms Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue (down) 28 Pages 15319-15328  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Inspired by the recent successful growth of Ti2C and Ti3C2 monolayers, here, we investigate the structural, electronic, and mechanical properties of functionalized Ti2C and Ti3C2 monolayers by means of density functional theory calculations. The results reveal that monolayers of Ti2C and Ti3C2 are dynamically stable metals. Phonon band dispersion calculations demonstrate that two-surface functionalization of Ti2C and Ti(3)C(2)via chalcogenides (S, Se, and Te), halides (F, Cl, Br, and I), and oxygen atoms results in dynamically stable novel functionalized monolayer materials. Electronic band dispersions and density of states calculations reveal that all functionalized monolayer structures preserve the metallic nature of both Ti2C and Ti3C2 except Ti2C-O-2, which possesses the behavior of an indirect semiconductor via full-surface oxygen passivation. In addition, it is shown that although halide passivated Ti3C2 structures are still metallic, there exist multiple Dirac-like cones around the Fermi energy level, which indicates that semi-metallic behavior can be obtained upon external effects by tuning the energy of the Dirac cones. In addition, the computed linear-elastic parameters prove that functionalization is a powerful tool in tuning the mechanical properties of stiff monolayers of bare Ti2C and Ti3C2. Our study discloses that the electronic and structural properties of Ti2C and Ti3C2 MXene monolayers are suitable for surface modification, which is highly desirable for material property engineering and device integration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672406800001 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179809 Serial 7027  
Permanent link to this record
 

 
Author Bafekry, A.; Karbasizadeh, S.; Stampfl, C.; Faraji, M.; Hoat, D.M.; Sarsari, I.A.; Feghhi, S.A.H.; Ghergherehchi, M. url  doi
openurl 
  Title Two-dimensional Janus semiconductor BiTeCl and BiTeBr monolayers : a first-principles study on their tunable electronic properties via an electric field and mechanical strain Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue (down) 28 Pages 15216-15223  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of highly crystalline ultrathin BiTeCl and BiTeBr layered sheets [Debarati Hajra et al., ACS Nano, 2020, 14, 15626], herein for the first time, we carry out a comprehensive study on the structural and electronic properties of BiTeCl and BiTeBr Janus monolayers using density functional theory (DFT) calculations. Different structural and electronic parameters including the lattice constant, bond lengths, layer thickness in the z-direction, different interatomic angles, work function, charge density difference, cohesive energy and Rashba coefficients are determined to acquire a deep understanding of these monolayers. The calculations show good stability of the studied single layers. BiTeCl and BiTeBr monolayers are semiconductors with electronic bandgaps of 0.83 and 0.80 eV, respectively. The results also show that the semiconductor-metal transformation can be induced by increasing the number of layers. In addition, the engineering of the electronic structure is also studied by applying an electric field, and mechanical uniaxial and biaxial strain. The results show a significant change of the bandgaps and that an indirect-direct band-gap transition can be induced. This study highlights the positive prospect for the application of BiTeCl and BiTeBr layered sheets in novel electronic and energy conversion systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670553900001 Publication Date 2021-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179827 Serial 7042  
Permanent link to this record
 

 
Author Vandewalle, L.A.; Gonzalez-Quiroga, A.; Perreault, P.; Van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title Process intensification in a gas–solid vortex unit : computational fluid dynamics model based analysis and design Type A1 Journal article
  Year 2019 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 58 Issue (down) 28 Pages 12751-12765  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The process intensification abilities of gas–solid vortex units (GSVU) are very promising for gas–solid processes. By working in a centrifugal force field, much higher gas–solid slip velocities can be obtained compared to gravitational fluidized beds, resulting in a significant increase in heat and mass transfer rates. In this work, local azimuthal and radial particle velocities for an experimental GSVU are simulated using the Euler–Euler framework in OpenFOAM and compared with particle image velocimetry measurements. With the validated model, the effect of the particle diameter, number of inlet slots and reactor length on the bed hydrodynamics is assessed. Starting from 1g-Geldart-B type particles, increasing the particle diameter or density, increasing the number of inlet slots or increasing the gas injection velocity leads to an increased bed stability and uniformity. However, a trade-off has to be made since increased bed stability and uniformity lead to higher shear stresses and attrition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476686000027 Publication Date 2019-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162122 Serial 8416  
Permanent link to this record
 

 
Author Kirsanova, M.A.; De Sloovere, D.; Karakulina, O.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.; Abakumov, A.M. pdf  url
doi  openurl
  Title Toward unlocking the Mn3+/Mn2+ redox pair in alluaudite-type Na2+2zMn2-z(SO4)3-x(SeO4)x cathodes for sodium-ion batteries Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 277 Issue (down) 277 Pages 804-810  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In polyanion cathodes, the inductive effect alters the potential of a M(n+1)+/Mn+ redox couple (M – transition metal) according to the electronegativity of the X cation in the polyanion groups (XO4m+). To manipulate the operating potential, we synthesized a series of mixed sulfate-selenate alluaudites, with structure formulas Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) and Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57). Their crystal structure was determined from powder X-ray diffraction data, revealing that the Mn-based alluaudites form solid solutions with the same crystal structure for x = 0.75; 1.125 and 1.5. Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57) is isostructural to the Mn-based alluaudites. Although the Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) compound with the highest selenium content demonstrates a reversible discharge capacity of 60 mAh g(-1), only a small part of this electrochemical activity can be ascribed to the Mn3+/Mn2+ redox couple. The redox potential of the Mn3+/Mn2+ pair in Na2+2zMn2-z(SO4)(3-)x(SeO4)(x) decreases with increasing values of x, in agreement with the lower electronegativity of Se compared to that of S.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000481726300103 Publication Date 2019-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.299 Times cited Open Access  
  Notes ; The authors thank the Russian Foundation for Basic Research for financial support (grant 17-03-00370), in addition to Research Foundation-Flanders (project No G040116). ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:162852 Serial 5401  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Stabilisation of magnetic ordering in La3Ni2-xCuxB'O9(B'=Sb,Ta,Nb) by the introduction of Cu2+ Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 276 Issue (down) 276 Pages 164-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3Ni2-xCuxB'O-9 (x = 0.25; B' = Sb, Ta, Nb: x = 0.5; B' = Nb) have been synthesized and characterised by transmission electron microscopy, neutron diffraction and magnetometry. Each adopts a perovskite-like structure (space group P2(1)/n) with two crystallographically-distinct six-coordinate sites, one occupied by a disordered arrangement of Ni2+ and Cu2+ and the other by a disordered similar to 1:2 distribution of Ni2+ and B'(5+), although some Cu2+ is found on the latter site when x = 0.5. Each composition undergoes a magnetic transition in the range 90 <= T/K <= 130 and shows a spontaneous magnetisation at 5 K; the transition temperature always exceeds that of the x = 0 composition by >= 30 K. A long-range ordered G-type ferrimagnetic structure is present in each composition, but small relaxor domains are also present. This contrasts with the pure relaxor and spin-glass behaviour of x = 0, B' = Ta, Nb, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473372400023 Publication Date 2019-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 2 Open Access  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:161199 Serial 5396  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 271 Issue (down) 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Sóti, V.; Lenaerts, S.; Cornet, I. pdf  url
doi  openurl
  Title Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes Type A1 Journal article
  Year 2018 Publication Journal of biotechnology Abbreviated Journal J Biotechnol  
  Volume 270 Issue (down) 270 Pages 70-76  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 10831087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427556400009 Publication Date 2018-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1656 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 6 Open Access  
  Notes ; This research is financed by the University of Antwerp [project number 15 FA100 002]. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:149006 Serial 5974  
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M. doi  openurl
  Title Electron-vortex interaction in a quantum dot Type A1 Journal article
  Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 16th International Conference on High Magnetic Fields in Semiconductor, Physics, AUG 02-06, 2004, Florida State Univ, NHMFL, Tallahassee, FL Abbreviated Journal Int J Mod Phys B  
  Volume 18 Issue (down) 27-29 Pages 3633-3636  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Small numbers N < 5 of two-dimensional Coulomb-interacting electrons trapped in a parabolic potential placed in a perpendicular magnetic field are investigated. The reduced wave function of this system, which is obtained by fixing the positions of N-1 electrons, exhibits strong correlations between the electrons and the zeros. These zeros axe often called vortices. An exact-diagonalization scheme is used to obtain the wave functions and the results are compared with results obtained from the recently proposed rotating electron molecule (REM) theory. We find that the vortices gather around the fixed electrons and repel each other, which is to a much lesser extend so for the REM results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000227140200035 Publication Date 2005-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.736 Times cited Open Access  
  Notes Approved Most recent IF: 0.736; 2004 IF: 0.361  
  Call Number UA @ lucian @ c:irua:102749 Serial 992  
Permanent link to this record
 

 
Author Wang, X.F.; Vasilopoulos, P.; Peeters, F.M. doi  openurl
  Title Influence of spin-orbit interaction on the magnetotransport of a periodically modulated two-dimensional electron gas Type A1 Journal article
  Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 16th International Conference on High Magnetic Fields in Semiconductor, Physics, AUG 02-06, 2004, Florida State Univ, NHMFL, Tallahassee, FL Abbreviated Journal Int J Mod Phys B  
  Volume 18 Issue (down) 27-29 Pages 3653-3656  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties of a two-dimensional electron gas (2DEG) are studied in the presence of a normal magnetic field B, of a weak one-dimensional (1D) periodic potential modulation V(x) = V(0)cos(Kx), and of the Rashba spin-orbit interaction (SOI) of strength a. For V(x) = 0 the SOI mixes the up and down spin states of neighboring Landau levels into two, unequally spaced energy branches. For V(x) not equal 0 these levels broaden into bands and their bandwidths oscillate with B. The n-th level bandwidth of each series vanishes at different values of B. Relative to the ID-modulated 2DEG without SOI and one flat-band condition, there are two flat-band conditions that depend on a and the transport coefficients can change considerably. For weak a the Weiss oscillations show beating patterns while for strong a the Shubnikov-de Haas ones axe split in two.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000227140200040 Publication Date 2005-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.736 Times cited Open Access  
  Notes Approved Most recent IF: 0.736; 2004 IF: 0.361  
  Call Number UA @ lucian @ c:irua:103199 Serial 1633  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Molnar, B.; Peeters, F.M. doi  openurl
  Title Magnetoconductance through a chain of rings in the presence of spin-orbit interaction Type A1 Journal article
  Year 2004 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics Abbreviated Journal Int J Mod Phys B  
  Volume 18 Issue (down) 27-29 Pages 3661-3664  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic electron transport through a finite chain of quantum circular rings is studied in the presence of the Rashba coupling, of strength a, and of a perpendicular magnetic field B. The transmission and reflection coefficients for a single ring, obtained analytically, help obtain the conductance through a chain of rings as a function of the strength a, the field B, and of the wave vector k of the incident electron. Due to destructive spin interferences caused by the Rashba coupling the chain can be totally opaque for certain ranges of k the width of which depends on values of a and B. Outside these ranges the conductance oscillates with high values between e(2)/h and 2e(2)/h. The effect of a periodic modulation of a or B on the conductance gaps is investigated. A periodic, square-wave conductance pattern, pertinent to the development of the spin transistor, results within wide stripes in the parameter space spanned by k, a, and B. Finite temperatures smoothen the square-wave profile of the conductance but do not alter its periodic character.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000227140200042 Publication Date 2005-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.736 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.736; 2004 IF: 0.361  
  Call Number UA @ lucian @ c:irua:94787 Serial 1914  
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A. pdf  url
doi  openurl
  Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 5161-5169  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359499100003 Publication Date 2015-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 39 Open Access OpenAccess  
  Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127758 Serial 3977  
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 8032-8040  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366223200023 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 18 Open Access OpenAccess  
  Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129598 c:irua:129598 Serial 3972  
Permanent link to this record
 

 
Author Pizzochero, M.; Leenaerts, O.; Partoens, B.; Martinazzo, R.; Peeters, F.M. pdf  url
doi  openurl
  Title Hydrogen adsorption on nitrogen and boron doped graphene Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue (down) 27 Pages 425502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen adsorption on boron and nitrogen doped graphene is investigated in detail by means of first-principles calculations. A comprehensive study is performed of the structural, electronic, and magnetic properties of chemisorbed hydrogen atoms and atom pairs near the dopant sites. The main effect of the substitutional atoms is charge doping which is found to greatly affect the adsorption process by increasing the binding energy at the sites closest to the substitutional species. It is also found that doping does not induce magnetism despite the odd number of electrons per atom introduced by the foreign species, and that it quenches the paramagnetic response of chemisorbed H atoms on graphene. Overall, the effects are similar for B and N doping, with only minor differences in the adsorption energetics due to different sizes of the dopant atoms and the accompanying lattice distortions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362573500008 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 20 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl). MP gratefully acknowledges the Condensed Matter Theory group at Universiteit Antwerpen for the hospitality during his stay. Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:128759 Serial 3971  
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A. pdf  doi
openurl 
  Title Kinetic modelling for an atmospheric pressure argon plasma jet in humid air Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 46 Issue (down) 27 Pages 275201-275253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as 'long living' species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000320854700009 Publication Date 2013-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 115 Open Access  
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521  
  Call Number UA @ lucian @ c:irua:108725 Serial 1758  
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 2946-2956  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353865800028 Publication Date 2015-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:126060 Serial 1807  
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 621-628  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348618400028 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 119 Open Access OpenAccess  
  Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125291 Serial 1858  
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Herregods, S.J.F.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P. pdf  doi
openurl 
  Title New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis Type A1 Journal article
  Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue (down) 27 Pages 4234-4240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Zeolitic growth is often absent or occurs in separate phases when synthetic strategies based on the combination of zeolite templates and mesopore templating agents are applied. In this work, zeolitic growth and mesopore formation have been investigated at different temperatures by applying a one-pot templating approach, based on a TS-1 zeolite synthesis whereby part of the microtemplate (tetrapropylammonium hydroxide, TPAOH) is replaced by a mesotemplate (hexadecyltrimethylammonium bromide, CTMABr). Moreover, the synthesis duration and the molar ratio of the microtemplate/mesotemplate have also been studied. The different syntheses clearly show the inherent competitive mechanism between zeolitic growth and mesopore formation. These insights have led to the conclusion that by following a one-pot templating strategy with standard, nonexotic commercial templates, i.e. CTMABr and TPAOH, it is not possible to develop a true hierarchical mesoporous zeolite, meaning a mesoporous siliceous material with highly crystalline zeolitic walls. The resultant materials are instead combined zeolitic/mesoporous composite structures with, however, highly tuneable and controllable porosity characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000296143500014 Publication Date 2011-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 7 Open Access  
  Notes Fwo Approved Most recent IF: 2.444; 2011 IF: 3.049  
  Call Number UA @ lucian @ c:irua:91574 Serial 2315  
Permanent link to this record
 

 
Author McCalla, E.; Abakumov, A.; Rousse, G.; Reynaud, M.; Sougrati, M.T.; Budic, B.; Mahmoud, A.; Dominko, R.; Van Tendeloo, G.; Hermann, R.P.; Tarascon, J.M.; doi  openurl
  Title Novel complex stacking of fully-ordered transition metal layers in Li4FeSbO6 materials Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 1699-1708  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As part of a broad project to explore Li4MM'O-6 materials (with M and M' being selected from a wide variety of metals) as positive electrode materials for Li-ion batteries, the structures of Li4FeSbO6 materials with both stoichiometric and slightly deficient lithium contents are studied here. For lithium content varying from 3.8 to 4.0, the color changes from yellow to black and extra superstructure peaks are seen in the XRD patterns. These extra peaks appear as satellites around the four superstructure peaks affected by the stacking of the transition metal atoms. Refinements of both XRD and neutron scattering patterns show a nearly perfect ordering of Li, Fe, and Sb in the transition metal layers of all samples, although these refinements must take the stacking faults into account in order to extract information about the structure of the TM layers. The structure of the most lithium rich sample, where the satellite superstructure peaks are seen, was determined with the help of HRTEM, XRD, and neutron scattering. The satellites arise due to a new stacking sequence where not all transition metal layers are identical but instead two slightly different compositions stack in an AABB sequence giving a unit cell that is four times larger than normal for such monoclinic layered materials. The more lithium deficient samples are found to contain metal site vacancies based on elemental analysis and Mossbauer spectroscopy results. The significant changes in physical properties are attributed to the presence of these vacancies. This study illustrates the great importance of carefully determining the final compositions in these materials, as very small differences in compositions may have large impacts on structures and properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350919000032 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 22 Open Access  
  Notes Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125469 Serial 2373  
Permanent link to this record
 

 
Author Chen, Y.; Hong-Yu, W.; Peeters, F.M.; Shanenko, A.A. pdf  doi
openurl 
  Title Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core Type A1 Journal article
  Year 2015 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 27 Issue (down) 27 Pages 125701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000351294700018 Publication Date 2015-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grant No. NSFC-11304134, the Flemish Science Foundation (FWO-Vl), and the Methusalem program. AAS acknowledges the support of the Brazilian agencies CNPq (grants 307552/2012-8 and 141911/2012-3) and FACEPE (APQ-0589-1.05/08). WHY acknowledges the support of Scientific Research Fund of Zhejiang Provincial Education Department (Y201120994). ; Approved Most recent IF: 2.649; 2015 IF: 2.346  
  Call Number c:irua:125460 Serial 2787  
Permanent link to this record
 

 
Author van der Stam, W.; Akkerman, Q.A.; Ke, X.; van Huis, M.A.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title Solution-processable ultrathin size- and shape-controlled colloidal Cu2-xS nanosheets Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 283-291  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin two-dimensional (2D) nanosheets (NSs) possess extraordinary properties that are attractive for both fundamental studies and technological devices. Solution-based bottom-up methods are emerging as promising routes to produce free-standing NSs, but the synthesis of colloidal NSs with well-defined size and shape has remained a major challenge. In this work, we report a novel method that yields 2 nm thick colloidal Cu2-xS NSs with well-defined shape (triangular or hexagonal) and size (100 nm to 3 mu m). The key feature of our approach is the use of a synergistic interaction between halides (Br or Cl) and copper-thiolate metal-organic frameworks to create a template that imposes 2D constraints on the Cu-catalyzed C-S thermolysis, resulting in nucleation and growth of colloidal 2D Cu2-xS NSs. Moreover, the NS composition can be postsynthetically tailored by exploiting topotactic cation exchange reactions. This is illustrated by converting the Cu2-xS NSs into ZnS and CdS NSs while preserving their size and shape. The method presented here thus holds great promise as a route to solution-processable compositionally diverse ultrathin colloidal NSs with well-defined shape and size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348085300036 Publication Date 2014-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 68 Open Access OpenAccess  
  Notes 335078 Colouratom; 246791 Countatoms; 312483 Esteem2; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:123865 c:irua:123865 Serial 3052  
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E. url  doi
openurl 
  Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 6771-6778  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362920700037 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 50 Open Access OpenAccess  
  Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950  
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J. pdf  url
doi  openurl
  Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue (down) 27 Pages 5519-5530  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360323700011 Publication Date 2015-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 26 Open Access  
  Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:127244 Serial 3537  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: