|   | 
Details
   web
Records
Author Blandy, J.N.; Abakumov, A.M.; Christensen, K.E.; Hadermann, J.; Adamson, P.; Cassidy, S.J.; Ramos, S.; Free, D.G.; Cohen, H.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J.;
Title Soft chemical control of the crystal and magnetic structure of a layered mixed valent manganite oxide sulfide Type A1 Journal article
Year 2015 Publication APL materials Abbreviated Journal Apl Mater
Volume 3 Issue (up) 3 Pages 041520
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oxidative deintercalation of copper ions from the sulfide layers of the layered mixed-valent manganite oxide sulfide Sr2MnO2Cu1.5S2 results in control of the copper-vacancy modulated superstructure and the ordered arrangement of magnetic moments carried by the manganese ions. This soft chemistry enables control of the structures and properties of these complex materials which complement mixed-valent perovskite and perovskite-related transition metal oxides. (C) 2015 Author(s).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353828400027 Publication Date 2015-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 5 Open Access
Notes Approved Most recent IF: 4.335; 2015 IF: NA
Call Number c:irua:126021 Serial 3049
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.
Title Synthesis and crystal structure of new titanyl phosphate Sr2TiO(PO4)2 Type A1 Journal article
Year 2008 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+
Volume 57 Issue (up) 3 Pages 552-556
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New strontium titanyl phosphate Sr2TiO(PO4)2 (1) was synthesized and characterized by X-ray powder diffraction, electron diffraction, high-resolution electron microscopy, and band structure calculations. Titanyl phosphate 1 is isostructural with vanadyl phosphate Sr2VO(PO4)2 and has a layered structure. The titanium atoms are shifted from the centers of the TiO6 octahedra and form short (1.74 Å) titanyl bonds. The structure of 1 is an unusual example of the disordered orientation of the chains formed by TiO6 octahedra in complex titanium phosphates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000263566900015 Publication Date 2009-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.529 Times cited 2 Open Access
Notes Approved Most recent IF: 0.529; 2008 IF: 0.469
Call Number UA @ lucian @ c:irua:73712 Serial 3423
Permanent link to this record
 

 
Author Ryabova, A.S.; Bonnefont, A.; Zagrebin, P.; Poux, T.; Sena, R.P.; Hadermann, J.; Abakumov, A.M.; Kerangueven, G.; Istomin, S.Y.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.
Title Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism Type A1 Journal article
Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem
Volume 3 Issue (up) 3 Pages 1667-1677
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hydrogen peroxide has been detected as a reaction intermediate in the electrochemical oxygen reduction reaction (ORR) on transition-metal oxides and other electrode materials. In this work, we studied the electrocatalytic and catalytic reactions of hydrogen peroxide on a set of Mn oxides, Mn2O3, MnOOH, LaMnO3, MnO2, and Mn3O4, that adopt different crystal structures to shed light on the mechanism of the ORR on these materials. We then combined experiment with kinetic modeling with the objective to correlate the differences in the ORR activity to the kinetics of the elementary reaction steps, and we uncovered the importance of structural and compositional factors in the catalytic activity of the Mn oxides. We concluded that the exceptional activity of Mn2O3 in the ORR is due to its high catalytic activity both in the reduction of oxygen to hydrogen peroxide and in the decomposition of the latter, and furthermore, we proposed a tentative link between crystal structure and reactivity.
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Place of publication unknown Editor
Language Wos 000388377200019 Publication Date 2016-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.136 Times cited 20 Open Access
Notes Approved Most recent IF: 4.136
Call Number UA @ lucian @ c:irua:139202 Serial 4449
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 18 Issue (up) 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M.
Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
Year 2019 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 7 Issue (up) 3 Pages 509-522
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458780300004 Publication Date 2018-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 1 Open Access Not_Open_Access
Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256
Call Number UA @ admin @ c:irua:157564 Serial 5264
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Adkin, J.J.; Hayward, M.A.
Title Topotactic reduction as a route to new close-packed anion deficient perovskites: structure and magnetism of 4H-BaMnO2+x Type A1 Journal article
Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 131 Issue (up) 30 Pages 10598-10604
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The anion-deficient perovskite 4H-BaMnO2+x has been obtained by a topotactic reduction, with LiH, of the hexagonal perovskite 4H-BaMnO3−x. The crystal structure of 4H-BaMnO2+x was solved using electron diffraction and X-ray powder diffraction and further refined using neutron powder diffraction (S.G. Pnma, a = 10.375(2) Å, b = 9.466(2) Å, c = 11.276(3) Å, at 373 K). The orthorhombic superstructure arises from the ordering of oxygen vacancies within a 4H (chch) stacking of close packed c-type BaO2.5 and h-type BaO1.5 layers. The ordering of the oxygen vacancies transforms the Mn2O9 units of face-sharing MnO6 octahedra into Mn2O7 (two corner-sharing tetrahedra) and Mn2O6 (two edge-sharing tetrahedra) groups. The Mn2O7 and Mn2O6 groups are linked by corner-sharing into a three-dimensional framework. The structures of the BaO2.5 and BaO1.5 layers are different from those observed previously in anion-deficient perovskites providing a new type of order pattern of oxygen atoms and vacancies in close packed structures. Magnetization measurements and neutron diffraction data reveal 4H-BaMnO2+x adopts an antiferromagnetically ordered state below TN ≈ 350 K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000268644400056 Publication Date 2009-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 25 Open Access
Notes Approved Most recent IF: 13.858; 2009 IF: 8.580
Call Number UA @ lucian @ c:irua:77928 Serial 3681
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Bercx, M.; Karakulina, O.M.; Kirsanova, M.A.; Lamoen, D.; Hadermann, J.; Abakumov, A.M.; Van Bael, M.K.; Hardy, A.
Title An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries Type A1 Journal article
Year 2020 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 49 Issue (up) 30 Pages 10486-10497
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Layered Li-rich/Mn-rich NMC (LMR-NMC) is characterized by high initial specific capacities of more than 250 mA h g(-1), lower cost due to a lower Co content and higher thermal stability than LiCoO2. However, its commercialisation is currently still hampered by significant voltage fade, which is caused by irreversible transition metal ion migration to emptied Li positionsviatetrahedral interstices upon electrochemical cycling. This structural change is strongly correlated with anionic redox chemistry of the oxygen sublattice and has a detrimental effect on electrochemical performance. In a fully charged state, up to 4.8 Vvs.Li/Li+, Mn4+ is prone to migrate to the Li layer. The replacement of Mn4+ for an isovalent cation such as Sn4+ which does not tend to adopt tetrahedral coordination and shows a higher metal-oxygen bond strength is considered to be a viable strategy to stabilize the layered structure upon extended electrochemical cycling, hereby decreasing voltage fade. The influence of Sn4+ on the voltage fade in partially charged LMR-NMC is not yet reported in the literature, and therefore, we have investigated the structure and the corresponding electrochemical properties of LMR-NMC with different Sn concentrations. We determined the substitution limit of Sn4+ in Li1.2Ni0.13Co0.13Mn0.54-xSnxO2 by powder X-ray diffraction and transmission electron microscopy to be x approximate to 0.045. The limited solubility of Sn is subsequently confirmed by density functional theory calculations. Voltage fade for x= 0 andx= 0.027 has been comparatively assessed within the 3.00 V-4.55 V (vs.Li/Li+) potential window, from which it is concluded that replacing Mn4+ by Sn4+ cannot be considered as a viable strategy to inhibit voltage fade within this window, at least with the given restricted doping level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000555330900018 Publication Date 2020-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited Open Access OpenAccess
Notes ; The authors acknowledge Research Foundation Flanders (FWO) project number G040116N for funding. The authors are grateful to Dr Ken Elen and Greet Cuyvers (imo-imomec, UHasselt and imec) for respectively preliminary PXRD measurements and performing ICP-AES on the monometal precursors. Dr Dmitry Rupasov (Skolkovo Institute of Science and Technology) is acknowledged for performing TGA measurements on the metal sulfate precursors. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. ; Approved Most recent IF: 4; 2020 IF: 4.029
Call Number UA @ admin @ c:irua:171149 Serial 6450
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J.
Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue (up) 31 Pages 10-12385
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000841943600001 Publication Date 2022-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:190007 Serial 7215
Permanent link to this record
 

 
Author Li, M.R.; Walker, D.; Retuerto, M.; Sarkar, T.; Hadermann, J.; Stephens, P.W.; Croft, M.; Ignatov, A.; Grams, C.P.; Hemberger, J.; Nowik, I.; Halasyamani, P.S.; Tran, T.T.; Mukherjee, S.; Dasgupta, T.S.; Greenblatt, M.;
Title Polar and magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-type structure : high-pressure synthesis Type A1 Journal article
Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 52 Issue (up) 32 Pages 8406-8410
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000322631600044 Publication Date 2013-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 53 Open Access
Notes Approved Most recent IF: 11.994; 2013 IF: 11.336
Call Number UA @ lucian @ c:irua:110749 Serial 2657
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
Year 2016 Publication Dental Materials Abbreviated Journal Dent Mater
Volume 32 Issue (up) 32 Pages e327-e337
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.
Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000389516400003 Publication Date 2016-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.07 Times cited Open Access
Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07
Call Number EMAT @ emat @ c:irua:136821 Serial 4313
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V.
Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 6 Issue (up) 33 Pages 8941-8949
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443279300007 Publication Date 2018-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256
Call Number UA @ lucian @ c:irua:153647 Serial 5080
Permanent link to this record
 

 
Author Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J.
Title Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations Type A1 Journal article
Year 2015 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc
Volume 35 Issue (up) 35 Pages 741-750
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of 0.25, 2 and 5 wt.% alumina addition on the mechanical properties and low temperature degradation (LTD) of 3, 2.5 and 2 mol% yttria-stabilized TZP ceramics was investigated. The amount of alumina addition was observed to have a crucial impact on the degradation of Y-TZP ceramics. Independent on the yttria stabilizer content, 0.25 wt.% alumina had a higher degradation retarding effect to Y-TZP ceramics than 2 and 5 wt.% of alumina addition, which had a comparable effect. The apparent activation energy for the degradation process was increased by adding alumina, but it was the same for 0.255 wt.% alumina doped 3Y-TZP ceramics. For Y-TZPs containing a small amount of alumina addition, only the segregated Al3+ at the grain boundaries of the zirconia grains was effective to retard the degradation of Y-TZPs. The secondary phase Al2O3 grains increased the degradation kinetics, which might be attributed to the residual stresses.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000345201700032 Publication Date 2014-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 37 Open Access
Notes Fwo G043110n Approved Most recent IF: 3.411; 2015 IF: 2.947
Call Number c:irua:121328 Serial 544
Permanent link to this record
 

 
Author Frolov, A.S.; Callaert, C.; Batuk, M.; Hadermann, J.; Volykhov, A.A.; Sirotina, A.P.; Amati, M.; Gregoratti, L.; Yashina, L.V.
Title Nanoscale phase separation in the oxide layer at GeTe (111) surfaces Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue (up) 35 Pages 12918-12927
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As a semiconductor ferroelectric, GeTe has become a focus of renewed attention due to the recent discovery of giant Rashba splitting. It already has a wide range of applications, from thermoelectricity to data storage. Its stability in ambient air, as well as the structure and properties of an oxide layer, define the processing media for device production and operation. Here, we studied a reaction between the GeTe (111) surface and molecular oxygen for crystals having solely inversion domains. We evaluated the reaction kinetics both ex situ and in situ using NAP XPS. The structure of the oxide layer is extensively discussed, where, according to HAADF-STEM and STEM-EDX, nanoscale phase separation of GeO2 and Te is observed, which is unusual for semiconductors. We believe that such behaviour is closely related to the ferroelectric properties and the domain structure of GeTe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000847743300001 Publication Date 2022-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:190665 Serial 7181
Permanent link to this record
 

 
Author Hyett, G.; Barrier, N.; Clarke, S.J.; Hadermann, J.
Title Topotactic oxidative and reductive control of the structures and properties of layered manganese oxychalcogenides Type A1 Journal article
Year 2007 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 129 Issue (up) 36 Pages 11192-11201
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000249372400055 Publication Date 2007-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 12 Open Access
Notes Approved Most recent IF: 13.858; 2007 IF: 7.885
Call Number UA @ lucian @ c:irua:65592 Serial 3680
Permanent link to this record
 

 
Author Lopez-Garcia, C.; Canossa, S.; Hadermann, J.; Gorni, G.; Oropeza, F.E.; de la Pena O'Shea, V.A.; Iglesias, M.; Monge, M.A.; Gutierrez-Puebla, E.; Gandara, F.
Title Heterometallic molecular complexes act as messenger building units to encode desired metal-atom combinations to multivariate metal-organic frameworks Type A1 Journal article
Year 2022 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 144 Issue (up) 36 Pages 16262-16266
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their origina l l y encoded atomic combination. Thus, through the use of heterometalli c ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000841435900001 Publication Date 2022-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15
Call Number UA @ admin @ c:irua:190023 Serial 7169
Permanent link to this record
 

 
Author Batuk, M.; Turner, S.; Abakumov, A.M.; Batuk, D.; Hadermann, J.; Van Tendeloo, G.
Title Atomic structure of defects in anion-deficient perovskite-based ferrites with a crystallographic shear structure Type A1 Journal article
Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 53 Issue (up) 4 Pages 2171-2180
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystallographic shear (CS) planes provide a new structure-generation mechanism in the anion-deficient perovskites containing lone-pair cations. Pb2Sr2Bi2Fe6O16, a new n = 6 representative of the AnBnO3n2 homologous series of the perovskite-based ferrites with the CS structure, has been synthesized using the solid-state technique. The structure is built of perovskite blocks with a thickness of four FeO6 octahedra spaced by double columns of FeO5 edge-sharing distorted tetragonal pyramids, forming 1/2[110](101)p CS planes (space group Pnma, a = 5.6690(2) Å, b = 3.9108(1) Å, c = 32.643(1) Å). Pb2Sr2Bi2Fe6O16 features a wealth of microstructural phenomena caused by the flexibility of the CS planes due to the variable ratio and length of the constituting fragments with {101}p and {001}p orientation. This leads to the formation of waves, hairpins, Γ-shaped defects, and inclusions of the hitherto unknown layered anion-deficient perovskites Bi2(Sr,Pb)Fe3O8.5 and Bi3(Sr,Pb)Fe4O11.5. Using a combination of diffraction, imaging, and spectroscopic transmission electron microscopy techniques this complex microstructure was fully characterized, including direct determination of positions, chemical composition, and coordination number of individual atomic species. The complex defect structure makes these perovskites particularly similar to the CS structures in ReO3-type oxides. The flexibility of the CS planes appears to be a specific feature of the Sr-based system, related to the geometric match between the SrO perovskite layers and the {100}p segments of the CS planes.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000332144100039 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access
Notes Countatoms; FWO Approved Most recent IF: 4.857; 2014 IF: 4.762
Call Number UA @ lucian @ c:irua:113507 Serial 198
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.;
Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
Year 2014 Publication Chemical science Abbreviated Journal Chem Sci
Volume 5 Issue (up) 4 Pages 1599-1610
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Royal Society of Chemistry Place of Publication Cambridge Editor
Language Wos 000332467400044 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 24 Open Access
Notes Approved Most recent IF: 8.668; 2014 IF: 9.211
Call Number UA @ lucian @ c:irua:117064 Serial 1045
Permanent link to this record
 

 
Author Sullivan, E.; Gillie, L.J.; Hadermann, J.; Greaves, C.
Title Fluorine intercalation in the n=1 and n=2 layered manganites Sr2MnO3.5+x and Sr3Mn2O6 Type A1 Journal article
Year 2013 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 48 Issue (up) 4 Pages 1598-1605
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Fluorine insertion into the oxygen defect superstructure manganite Sr2MnO3.5+x has been shown by transmission electron microscopy (TEM) to result in two levels of fluorination. In the higher fluorine content sections, the fluorine anions displace oxygen anions from their apical positions into the equatorial vacancies, thus destroying the superstructure and reverting to a K2NiF4-type structure (a = 3.8210(1) angstrom and c = 12.686(1) angstrom). Conversely, lower fluorine content sections retain the Sr2MnO3.5+x defect superstructure, crystallising in the P2(1)/c space group. Fluorine intercalation into the reduced double-layer manganite Sr3Mn2O6 occurs in a step-wise fashion according to the general formula Sr3Mn2O6Fy with y = 1, 2, and 3. It is proposed that the y = 1 phase (a = 3.815(1)angstrom, c = 20.29(2) angstrom) is produced by the filling of all the equatorial oxygen vacancies by fluorine atoms whilst the y = 2 phase (a = 3.8222(2) angstrom, c = 21.2435(3)angstrom) has a random distribution of fluorine anions throughout both interstitial rocksalt and equatorial sites. Neutron powder diffraction data suggest that the fully fluorinated y = 3 phase (a = 3.8157(6) angstrom, c = 23.666(4) angstrom) corresponds to the complete occupation of all the equatorial oxygen vacancies and the interstitial sites by intercalated fluorine. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000317544600040 Publication Date 2013-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited 4 Open Access
Notes Approved Most recent IF: 2.446; 2013 IF: 1.968
Call Number UA @ lucian @ c:irua:108485 Serial 1238
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Rozova, M.G.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G.
Title Homologous series of layered perovskites An+1BnO3n-1Cl : crystal and magnetic structure of a new oxychloride Pb4BiFe4O11Cl Type A1 Journal article
Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 52 Issue (up) 4 Pages 2208-2218
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The nuclear and magnetic structure of a novel oxychloride Pb4BiFe4O11Cl has been studied over the temperature range 1.5700 K using a combination of transmission electron microscopy and synchrotron and neutron powder diffraction [space group P4/mbm, a = 5.5311(1) Å, c = 19.586(1) Å, T = 300 K]. Pb4BiFe4O11Cl is built of truncated (Pb,Bi)3Fe4O11 quadruple perovskite blocks separated by CsCl-type (Pb,Bi)2Cl slabs. The perovskite blocks consist of two layers of FeO6 octahedra located between two layers of FeO5 tetragonal pyramids. The FeO6 octahedra rotate about the c axis, resulting in a √2ap × √2ap × c superstructure. Below TN = 595(17) K, Pb4BiFe4O11Cl adopts a G-type antiferromagnetic structure with the iron magnetic moments confined to the ab plane. The ordered magnetic moments at 1.5 K are 3.93(3) and 3.62(4) μB on the octahedral and square-pyramidal iron sites, respectively. Pb4BiFe4O11Cl can be considered a member of the perovskite-based An+1BnO3n1Cl homologous series (A = Pb/Bi; B = Fe) with n = 4. The formation of a subsequent member of the series with n = 5 is also demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000315255200067 Publication Date 2013-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 6 Open Access
Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794
Call Number UA @ lucian @ c:irua:106185 Serial 1486
Permanent link to this record
 

 
Author Mazo, G.N.; Savvin, S.N.; Abakumov, A.M.; Hadermann, J.; Dobrovol'skii, Y.A.; Leonova, L.S.
Title Lanthanum-strontium cuprate as a promising cathodic matreila for solid oxide fuel cells Type A1 Journal article
Year 2007 Publication Russian journal of electrochemistry Abbreviated Journal Russ J Electrochem+
Volume 43 Issue (up) 4 Pages 436-442
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246338500010 Publication Date 2007-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1023-1935;1608-3342; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.828 Times cited 8 Open Access
Notes Approved Most recent IF: 0.828; 2007 IF: 0.263
Call Number UA @ lucian @ c:irua:62062 Serial 1777
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Local structure of perovskite-based “Pb2Fe2O5 Type A1 Journal article
Year 2008 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 10 Issue (up) 4 Pages 382-389
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000256200200003 Publication Date 2008-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 29 Open Access
Notes Approved Most recent IF: 1.811; 2008 IF: 1.742
Call Number UA @ lucian @ c:irua:69289 Serial 1832
Permanent link to this record
 

 
Author Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J.
Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume 25 Issue (up) 4 Pages 1254-1261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000341871700015 Publication Date 2014-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Approved Most recent IF: 2.659; 2014 IF: 2.638
Call Number UA @ lucian @ c:irua:119896 Serial 1977
Permanent link to this record
 

 
Author Kalyuzhnaya, A.S.; Abakumov, A.M.; Rozova, M.G.; d' Hondt, H.; Hadermann, J.; Antipov, E.V.
Title Synthesis and crystal structure of the new complex oxide Ca7Mn2.14Ga5.86O17.93 Type A1 Journal article
Year 2010 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+
Volume 59 Issue (up) 4 Pages 706-711
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The complex oxide Ca7Mn2.14Ga5.86O17.93 was synthesized by the solid-state reaction in a sealed evacuated quartz tube at 1000 °C. Its crystal structure was determined by electron diffraction and X-ray powder diffraction. The structure can be represented as a tetrahedral framework, viz., the polyanion [(Mn0.285Ga0.715)15O29.86]19- stabilized by the incorporated cation [Ca14GaO6]19+. The polycation consists of the GaO6 octahedra surrounded by the Ca atoms, which are arranged to form a cube capped at all places. The tetrahedral framework is partially disordered due to the presence of tetrahedra with two possible orientations in the positions (0, 0, 0) and (x, x, x) with x ≈ 0.15 and 0.17. The relationship between the Ca7Mn2.14Ga5.86O17.93 structures and related ordered phases with the symmetry F23, as well as the influence of the oxygen content on the ordering in the tetrahedral framework, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283302000006 Publication Date 2010-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.529 Times cited 1 Open Access
Notes Approved Most recent IF: 0.529; 2010 IF: 0.629
Call Number UA @ lucian @ c:irua:85675 Serial 3427
Permanent link to this record
 

 
Author Callaert, C.; Bercx, M.; Lamoen, D.; Hadermann, J.
Title Interstitial defects in the van der Waals gap of Bi2Se3 Type A1 Journal article
Year 2019 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B
Volume 75 Issue (up) 4 Pages 717-732
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Bi<sub>2</sub>Se<sub>3</sub>is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi<sub>2</sub>Se<sub>3</sub>is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600024 Publication Date 2019-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.032 Times cited Open Access
Notes University of Antwerp, 31445 ; Acknowledgements We thank Artem M. Abakumov for providing the original Bi2Se3 sample and are also very grateful to Christophe Vandevelde for trying repeatedly to get good single crystal X-ray diffraction data out of each of our failed attempts at making an undeformed single crystal. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 2.032
Call Number EMAT @ emat @c:irua:161847 Serial 5295
Permanent link to this record
 

 
Author Hadermann, J.; Palatinus, L.
Title Introducton to the special issue on electron crystallography Type Editorial
Year 2019 Publication And Materials Abbreviated Journal
Volume 75 Issue (up) 4 Pages 462-462
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600028 Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161845 Serial 5389
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.
Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
Year 2019 Publication And Materials Abbreviated Journal
Volume 75 Issue (up) 4 Pages 485-494
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600002 Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:161846 Serial 5397
Permanent link to this record
 

 
Author Saveleva, V.A.; Wang, L.; Kasian, O.; Batuk, M.; Hadermann, J.; Gallet, J.-j.; Bournel, F.; Alonso-Vante, N.; Ozouf, G.; Beauger, C.; Mayrhofer, K.J.J.; Cherevko, S.; Gago, A.S.; Friedrich, K.A.; Zafeiratos, S.; Savinova, E.R.
Title Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers Type A1 Journal article
Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 10 Issue (up) 4 Pages 2508-2516
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of high amounts of iridium in industrial proton exchange membrane water electrolysers (PEMWE) could hinder their widespread use for the decarbonisation of society with hydrogen. Non-thermally oxidised Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 %, while enhancing the electro-catalytic activity and stability. To date the origin of these benefits remains unknown. Here we present clear evidence on the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The mechanisms that lead to the high activity and stability of Ir catalyst supported on SnO2:Sb aerogel for PEMWE are thus unveiled.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516887400011 Publication Date 2020-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology (FCH JU) Initiative under Grant No. 621237 (INSIDE). In addition, A.S.G. and C.B. thank the European Union’s Horizon 2020 research and innovation programme for funding the project PRETZEL under grant agreement No 779478 and it is supported by FCH JU. Solvay is acknowledged for providing Aquivion membrane and ionomer. Approved Most recent IF: 12.9; 2020 IF: 10.614
Call Number EMAT @ emat @c:irua:167147 Serial 6341
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Bals, S.; Nikolaev, I.V.; Antipov, E.V.; Van Tendeloo, G.
Title Crystallographic shear structures as a route to anion-deficient perovskites Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue (up) 40 Pages 6697-6700
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000241474500022 Publication Date 2006-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 62 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:61689 Serial 589
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue (up) 40 Pages 23402-23408
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000343016800067 Publication Date 2014-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Morozov, V.A.; Posokhova, S.M.; Deyneko, D., V; Savina, A.A.; Morozov, A., V; Tyablikov, O.A.; Redkin, B.S.; Spassky, D.A.; Hadermann, J.; Lazoryak, B., I
Title Influence of annealing conditions on the structure and luminescence properties of KGd1-xEux(MoO4)2(0\leq x\leq1) Type A1 Journal article
Year 2019 Publication CrystEngComm Abbreviated Journal Crystengcomm
Volume 21 Issue (up) 42 Pages 6460-6471
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study describes the influence of annealing temperature on the structure and luminescence properties of KGd1-xEux(MoO4)(2) (0 <= x <= 1). Compounds with the general formula (A ', A '')(n)[(W, Mo)O-4](m) are investigated as luminescent materials for photonic applications such as phosphor-converted LEDs (light-emitting diodes). Herein, the KGd0.8Eu0.2(MoO4)(2) light-rose crystal was grown by the Czochralski technique. Moreover, three polymorphs of KGd1-xEux(MoO4)(2) were present in the 923-1223 K range of annealing temperatures under ambient pressure: a triclinic alpha-phase, a disproportionately modulated monoclinic beta-phase and an orthorhombic gamma-phase with a KY(MoO4)(2)-type structure. The different behaviors of KGd(MoO4)(2) and KEu(MoO4)(2) were revealed by DSC studies. The number and the character of phase transitions for KGd1-xEux(MoO4)(2) depended on the elemental composition. The formation of a continuous range of solid solutions with the triclinic alpha-KEu(MoO4)(2)-type structure and ordering of K+ and Eu3+/Gd3+ cations were observed only for alpha-KGd1-xEux(MoO4)(2) (0 <= x <= 1) prepared at 923 K. The structures of gamma-KGd1-xEux(MoO4)(2) (x = 0 and 0.2) were studied using electron diffraction and refined using the powder X-ray diffraction data. The luminescence properties of KGd1-xEux(MoO4)(2) prepared at different annealing temperatures were studied and related to their different structures. The maxima of the D-5(0) -> F-7(2) integral emission intensities were found under excitation at lambda(ex) = 300 nm and lambda(ex) = 395 nm for triclinic scheelite-type alpha-KGd0.6Eu0.4(MoO4)(2) and monoclinic scheelite-type beta-KGd0.4Eu0.6(MoO4)(2) prepared at 1173 K, respectively. The latter shows the brightest red light emission among the KGd1-xEux(MoO4)(2) phosphors. The maximum and integral emission intensity of beta-KGd0.4Eu0.6(MoO4)(2) in the D-5(0) -> F-7(2) transition region is similar to 20% higher than that of the commercially used red phosphor Gd2O2S:Eu3+. Thus, beta-KGd0.4Eu0.6(MoO4)(2) is very attractive for application as a near-UV convertible red-emitting phosphor for LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493072200015 Publication Date 2019-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.474 Times cited Open Access
Notes Approved Most recent IF: 3.474
Call Number UA @ admin @ c:irua:164603 Serial 6304
Permanent link to this record