|   | 
Details
   web
Records
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 6 Issue (down) 13 Pages 6956-6971
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001018266700001 Publication Date 2023-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author Abakumov, A.M.; d' Hondt, H.; Rossell, M.D.; Tsirlin, A.A.; Gutnikova, O.; Filimonov, D.S.; Schnelle, W.; Rosner, H.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.
Title Coupled anion and cation ordering in Sr3RFe4O10.5 (R=Y, Ho, Dy) anion-deficientperovskites Type A1 Journal article
Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 183 Issue (down) 12 Pages 2845-2854
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Sr3RFe4O10.5 (R=Y, Ho, Dy) anion-deficient perovskites were prepared using a solid-state reaction in evacuated sealed silica tubes. Transmission electron microscopy and 57Fe Mössbauer spectroscopy evidenced a complete A-cations and oxygen vacancies ordering. The structure model was further refined by ab initio structure relaxation, based on density functional theory calculations. The compounds crystallize in a tetragonal a≈2√2ap≈11.3 Å, с≈4сp≈16 Å unit cell (ap: parameter of the perovskite subcell) with the P42/mnm space group. Oxygen vacancies reside in the (FeO5/4□3/4) layers, comprising corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids, which are sandwiched between the layers of the FeO6 octahedra. Smaller R atoms occupy the 9-fold coordinated position, whereas the 10-fold coordinated positions are occupied by larger Sr atoms. The Fe sublattice is ordered aniferromagnetically up to at least 500 K, while the rare-earth sublattice remains disordered down to 2 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000285431100014 Publication Date 2010-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 8 Open Access
Notes Approved Most recent IF: 2.299; 2010 IF: 2.261
Call Number UA @ lucian @ c:irua:88071 Serial 533
Permanent link to this record
 

 
Author Prituzhalov, V.A.; Ardashnikova, E.I.; Vinogradov, A.A.; Dolgikh, V.A.; Videau, J.-J.; Fargin, E.; Abakumov, A.M.; Tarakina, N.V.; Van Tendeloo, G.
Title New anion-conducting solid solutions Bi1-xTex(O,F)2+\delta (x > 0.5) and glassceramic material on their base Type A1 Journal article
Year 2011 Publication Journal of fluorine chemistry Abbreviated Journal J Fluorine Chem
Volume 132 Issue (down) 12 Pages 1110-1116
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The anion-excess fluorite-like solid solutions with general composition Bi1−xTex(O,F)2+δ (x > 0.5) have been synthesized by a solid state reaction of TeO2, BiF3 and Bi2O3 at 873 K with following quenching. The homogeneity areas and polymorphism of the I ↔ IV Bi1−xTex(O,F)2+δ phases were investigated. The crystal structure of the low temperature IV-Bi1−xTex(O,F)2+δ phase has been solved using electron diffraction and X-ray powder diffraction (a = 11.53051(9) Å, S.G. Ia-3, RI = 0.046, RP = 0.041). Glass formation area in the Bi2O3BiF3TeO2 (10% TiO2) system was investigated. IVBi1−xTex(O,F)2+δ phase starts to crystallize at short-time (0.53 h) annealing of oxyfluoride glasses at temperatures above Tg (600615 K). The ionic conductivity of the crystalline Bi1−xTex(O,F)2+δ phase and corresponding glass-ceramics was investigated. Activation energy of conductivity Ea = 0.41(2) eV for the IV-Bi1−xTex(O,F)2+δ crystalline samples and Ea = 0.73 eV for the glass-ceramic samples were obtained. Investigation of the oxyfluoride samples with a constant cation ratio demonstrates essential influence of excess fluorine anions on the ionic conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000296936300011 Publication Date 2011-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1139; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.101 Times cited 2 Open Access
Notes Approved Most recent IF: 2.101; 2011 IF: 2.033
Call Number UA @ lucian @ c:irua:93687 Serial 2305
Permanent link to this record
 

 
Author Korneychik, O.E.; Batuk, M.; Abakumov, A.M.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.
Title Pb2.85Ba2.15Fe4SnO13 : a new member of the AnBnO3n-2 anion-deficient perovskite-based homologous series Type A1 Journal article
Year 2011 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 184 Issue (down) 12 Pages 3150-3157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pb2.85Ba2.15Fe4SnO13, a new n=5 member of the anion-deficient perovskite based AnBnO3n−2 (A=Pb, Ba, B=Fe, Sn) homologous series, was synthesized by the solid state method. The crystal structure of Pb2.85Ba2.15Fe4SnO13 was investigated using a combination of neutron powder diffraction, electron diffraction, high angle annular dark field scanning transmission electron microscopy and Mössbauer spectroscopy. It crystallizes in the Ammm space group with unit cell parameters a=5.7990(1) Å, b=4.04293(7) Å and c=26.9561(5) Å. The Pb2.85Ba2.15Fe4SnO13 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110](1̄01)p crystallographic shear (CS) planes. The corner-sharing FeO6 octahedra at the CS planes are transformed into edge-sharing FeO5 distorted tetragonal pyramids. The octahedral positions in the perovskite blocks between the CS planes are jointly taken up by Fe and Sn, with a preference of Sn towards the position at the center of the perovskite block. The chains of FeO5 pyramids and (Fe,Sn)O6 octahedra of the perovskite blocks delimit six-sided tunnels at the CS planes occupied by double chains of Pb atoms. The compound is antiferromagnetically ordered below TN=368±15 K.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000297662500003 Publication Date 2011-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 7 Open Access
Notes Approved Most recent IF: 2.299; 2011 IF: 2.159
Call Number UA @ lucian @ c:irua:94013 Serial 3550
Permanent link to this record
 

 
Author Kovba, M.L.; Skolis, Y.Y.; Abakumov, A.M.; Hadermann, J.; Sukhushina, I.S.
Title The synthesis and thermodynamic properties of strontium fluoromanganite Sr2.5Mn6O12.5-\deltaF2 Type A1 Journal article
Year 2010 Publication Russian journal of physical chemistry A Abbreviated Journal Russ J Phys Chem A+
Volume 84 Issue (down) 12 Pages 2033-2038
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The existence of the [SrF(0.8)O(0.1)](2.5)[Mn(6)O(12)] = Sr(2.5)Mn(6)O(12.5 – delta)F(2) compound was established in the SrO-Mn(2)O(3)-SrF(2) system at 900A degrees C and p(O(2)) = 1 atm. The crystal structure of strontium fluoromanganite was determined from the X-ray powder diffraction data, electron diffraction, and high-resolution electron microscopy. It can be described in the monoclynic system with four Miller hklm indices: hklm: H = h a* + k b* + l c (1) (*) + m q (1), q (1), q (1) = c (2) (*) = gamma c (1) (*) , gamma a parts per thousand 0.632, a a parts per thousand a a parts per thousand 9.72 , b a parts per thousand 9.55 , c (1) a parts per thousand 2.84 , c (2) a parts per thousand 4.49 , monoclinic angle gamma a parts per thousand 95.6A degrees. The electromotive force method with a solid fluorine ion electrolyte was used to refine the composition of fluoromanganite and determine the thermodynamic functions of its formation from phases neighboring in the phase diagram (SrMn(3)O(6), Mn(2)O(3), SrF(2), and oxygen), Delta GA degrees, kJ/mol = -(111.7 +/- 1.9) + (89.5 +/- 1.5) x 10(-3) T.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000284775000004 Publication Date 2011-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-0244;1531-863X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.581 Times cited 1 Open Access
Notes Approved Most recent IF: 0.581; 2010 IF: 0.503
Call Number UA @ lucian @ c:irua:99190 Serial 3601
Permanent link to this record
 

 
Author Batuk, D.; Hadermann, J.; Abakumov, A.; Vranken, T.; Hardy, A.; van Bael, M.; Van Tendeloo, G.
Title Layered perovskite-like Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of crystallographic shear planes Type A1 Journal article
Year 2011 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 50 Issue (down) 11 Pages 4978-4986
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Pb2Fe2O5 compound with a layered intergrowth structure has been prepared by a solid-state reaction at 700 °C. The incommensurate compound crystallizes in a tetragonal system with a = 3.9037(2) Å, c = 3.9996(4) Å, and q = 0.1186(4)c*, or when treated as a commensurate approximant, a = 3.9047(2) Å, c = 36.000(3) Å, space group I4/mmm. The crystal structure of Pb2Fe2O5 was resolved from transmission electron microscopy data. Atomic coordinates and occupancies of the cation positions were estimated from high-angle annular dark-field scanning transmission electron microscopy data. Direct visualization of the positions of the oxygen atoms was possible using annular bright-field scanning transmission electron microscopy. The structure can be represented as an intergrowth of perovskite blocks and partially disordered blocks with a structure similar to that of the Bi2O2 blocks in Aurivillius-type phases. The A-cation positions at the border of the perovskite block and the cation positions in the Aurivillius-type blocks are jointly occupied by Pb2+ and Fe3+ cations, resulting in a layer sequence along the c axis: PbOFeO2PbOFeO2Pb7/8Fe1/8O1xFe5/8Pb3/8O2Fe5/8Pb3/8. Upon heating, the layered Pb2Fe2O5 structure transforms into an anion-deficient perovskite modulated by periodically spaced crystallographic shear (CS) planes. Considering the layered Pb2Fe2O5 structure as a parent matrix for the nucleation and growth of CS planes allows an explanation of the specific microstructure observed for the CS structures in the PbFeO system.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000290978400038 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 16 Open Access
Notes Approved Most recent IF: 4.857; 2011 IF: 4.601
Call Number UA @ lucian @ c:irua:90141 Serial 1809
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G.
Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 17 Issue (down) 11 Pages 3004-3011
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000229656000030 Publication Date 2005-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved Most recent IF: 9.466; 2005 IF: 4.818
Call Number UA @ lucian @ c:irua:59053 Serial 3554
Permanent link to this record
 

 
Author Abakumov, M.A.; Nukolova, N.V.; Sokolsky-Papkov, M.; Shein, S.A.; Sandalova, T.O.; Vishwasrao, H.M.; Grinenko, N.F.; Gubsky, I.L.; Abakumov, A.M.; Kabanov, A.V.; Chekhonin, V.P.;
Title VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor Type A1 Journal article
Year 2015 Publication Nanomedicine: nanotechnology, biology and medicine Abbreviated Journal Nanomed-Nanotechnol
Volume 11 Issue (down) 11 Pages 825-833
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work is focused on synthesis and characterization of targeted magnetic nanoparticles as magnetic resonance imaging (MRI) agents for in vivo visualization of gliomas. Ferric oxide (Fe3O4) cores were synthesized by thermal decomposition and coated with bovine serum albumin (BSA) to form nanoparticles with D-eff of 53 +/- 9 nm. The BSA was further cross-linked to improve colloidal stability. Monoclonal antibodies against vascular endothelial growth factor (mAbVEGF) were covalently conjugated to BSA through a polyethyleneglycol linker. Here we demonstrate that 1) BSA coated nanoparticles are stable and non-toxic to different cells at concentration up to 2.5 mg/mL; 2) conjugation of monoclonal antibodies to nanoparticles promotes their binding to VEGF-positive glioma C6 cells in vitro; 3) targeted nanoparticles are effective in MRI visualization of the intracranial glioma. Thus, mAbVEGF-targeted BSA-coated magnetic nanoparticles are promising MRI contrast agents for glioma visualization. (C) 2015 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication S.l. Editor
Language Wos 000354559600004 Publication Date 2015-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9634; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.72 Times cited 62 Open Access
Notes Approved Most recent IF: 5.72; 2015 IF: 6.155
Call Number c:irua:126351 Serial 3838
Permanent link to this record
 

 
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M.
Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue (down) 11 Pages 3882-3893
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000435416600038 Publication Date 2018-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access
Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:151980 Serial 5016
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Abakumov, A.M.; Schnelle, W.; Hadermann, J.; Antipov, E.V.
Title Crystal structure and properties of the Na1-xRu2O4 phase Type A1 Journal article
Year 2006 Publication Russian chemical bulletin Abbreviated Journal Russ Chem B+
Volume 55 Issue (down) 10 Pages 1717-1722
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000245091400003 Publication Date 2007-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.529 Times cited 5 Open Access
Notes Approved Most recent IF: 0.529; 2006 IF: 0.505
Call Number UA @ lucian @ c:irua:63810 Serial 566
Permanent link to this record
 

 
Author Kirsanova, M.A.; Olenev, A.V.; Abakumov, A.M.; Bykov, M.A.; Shevelkov, A.V.
Title Extension of the clathrate family : the type X clathrate Ge79P29S18Te6 Type A1 Journal article
Year 2011 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 50 Issue (down) 10 Pages 2371-2374
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Now they are 10! The title compound displays a new type of crystal structure and is labeled clathrate X according to the general classification of clathrate structures. In contrast to typical clathrates, this compound has three-coordinate atoms within the framework and combines distorted 24-vertex polyhedra (see picture, green) centered around tellurium guest atoms with very irregular 10-vertex polyhedra around sulfur atoms (yellow).
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000288036300033 Publication Date 2011-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 23 Open Access
Notes Approved Most recent IF: 11.994; 2011 IF: 13.455
Call Number UA @ lucian @ c:irua:88793 Serial 1158
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A.
Title Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides : NaMnO2 polymorphism, redox potentials, and magnetism Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue (down) 10 Pages 3306-3315
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New polymorphs of NaMnO2 have been observed using transmission electron microscopy and synchrotron X-ray powder diffraction. Coherent twin planes confined to the (NaMnO2) layers, parallel to the (10 (1) over bar) crystallographic planes of the monoclinic layered rock-salt-type alpha-NaMnO2 (O3) structure, form quasi-periodic modulated sequences, with the known alpha-and beta-NaMnO2 polymorphs as the two limiting cases. The energy difference between the polymorphic forms, estimated using a DFT-based structure relaxation, is on the scale of the typical thermal energies that results in a high degree of stacking disorder in these compounds. The results unveil the remarkable effect of the twin planes on both the magnetic and electrochemical properties. The polymorphism drives the magnetic ground state from a quasi-1D spin system for the geometrically frustrated alpha-polymorph through a two-leg spin ladder for the intermediate stacking sequence toward a quasi-2D magnet for the beta-polymorph. A substantial increase of the equilibrium potential for Na deintercalation upon increasing the concentration of the twin planes is calculated, providing a possibility to tune the electrochemical potential of the layered rock-salt ABO(2) cathodes by engineering the materials with a controlled concentration of twins.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336637000036 Publication Date 2014-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 35 Open Access
Notes Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:117766 Serial 2232
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Mikheev, M.G.; Van Tendeloo, G.; Antipov, E.V.
Title Ca6.3Mn3Ga4.4Al1.3O18: a novel complex oxide with 3D tetrahedral framework Type A1 Journal article
Year 2005 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 178 Issue (down) 10 Pages 3137-3144
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000232418200022 Publication Date 2005-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 5 Open Access
Notes Iap V-1; Rfbr; Intas – Ysf Approved Most recent IF: 2.299; 2005 IF: 1.725
Call Number UA @ lucian @ c:irua:55030 Serial 3520
Permanent link to this record
 

 
Author Altantzis, T.; Coutino-Gonzalez, E.; Baekelant, W.; Martinez, G.T.; Abakumov, A.M.; Van Tendeloo, G.; Roeffaers, M.B.J.; Bals, S.; Hofkens, J.
Title Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites Type A1 Journal article
Year 2016 Publication ACS nano Abbreviated Journal Acs Nano
Volume 10 Issue (down) 10 Pages 7604-7611
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.
Address RIES, Hokkaido University , N20W10, Kita-Ward Sapporo 001-0020, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381959100043 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 57 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from the Belgian Federal government (Belspo through the IAP-VI/27 and IAP-VII/05 programs), the European Union’s Seventh Framework Programme (FP7/2007-2013 under grant agreement no. 310651 SACS and no. 312483-ESTEEM2), the Flemish government in the form of long-term structural funding “Methusalem” grant METH/15/04 CASAS2, the Hercules foundation (HER/11/14), the “Strategisch Initiatief Materialen” SoPPoM program, and the Fund for Scientific Research Flanders (FWO) grants G.0349.12 and G.0B39.15. S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). The authors thank Prof. S. Van Aert for helpful discussions, Dr. T. De Baerdemaeker for XRD measurements, Mr. B. Dieu for the preparation of graphical material, and UOP Antwerp for the kind donation of zeolite samples.; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
Call Number c:irua:134576 c:irua:134576 Serial 4102
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue (down) 10 Pages 3285-3293
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000433403800014 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 6 Open Access OpenAccess
Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author Karakulina, O.M.; Demortière, A.; Dachraoui, W.; Abakumov, A.M.; Hadermann, J.
Title In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue (down) 10 Pages 6286-6291
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that changes in the unit cell structure of lithium battery cathode materials during electrochemical cycling in liquid electrolyte can be determined for particles of just a few hundred nanometers in size using in situ transmission electron microscopy (TEM). The atomic coordinates, site occupancies (including lithium occupancy), and cell parameters of the materials can all be reliably quantified. This was achieved using electron diffraction tomography (EDT) in a sealed electrochemical cell with conventional liquid electrolyte (LP30) and LiFePO4 crystals, which have a well-documented charged structure to use as reference. In situ EDT in a liquid environment cell provides a viable alternative to in situ X-ray and neutron diffraction experiments due to the more local character of TEM, allowing for single crystal diffraction data to be obtained from multiphased powder samples and from submicrometer- to nanometer-sized particles. EDT is the first in situ TEM technique to provide information at the unit cell level in the liquid environment of a commercial TEM electrochemical cell. Its application to a wide range of electrochemical experiments in liquid environment cells and diverse types of crystalline materials can be envisaged.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000447355400024 Publication Date 2018-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access Not_Open_Access: Available from 08.09.2019
Notes O.M. Karakulina, A.M. Abakumov and J. Hadermann acknowledge support from FWO under grant G040116N. A. Demortière wants to thank the French network on the electrochemical energy storage (RS2E), the Store-Ex Labex, for the financial support. Finally, the Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for funding. Approved Most recent IF: 12.712
Call Number EMAT @ emat @c:irua:154750 Serial 5063
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E.
Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue (down) 10 Pages 4015-4025
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985970200001 Publication Date 2023-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access
Notes Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:197352 Serial 9013
Permanent link to this record
 

 
Author Stefan, M.; Nistor, S.V.; Mateescu, D.C.; Abakumov, A.M.
Title Growth of pure and doped Rb2ZnCl4and K2ZnCl4 single crystals by Czochralski technique Type A1 Journal article
Year 1999 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 200 Issue (down) 1-2 Pages 148-154
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-quality single crystals of Rb2ZnCl4 and K2ZnCl4, pure or doped with Cu, Mn, Cd, Tl, Sn, Pb and In cations, were grown by Czochralski technique in argon atmosphere, using an experimental setup that allows direct visual access to the whole growth zone. Slowly cooled crystals exhibit excellent cleavage properties. Fastly cooled crystals do cleave poorly. As shown by X-ray diffraction studies, such K2ZnCl4 samples exhibit inclusions of the high-temperature Pmcn phase with lattice parameters a = 7.263(2) Angstrom, b = 12.562(2) Angstrom and c = 8.960(4) Angstrom in the P2(1) cn room temperature stable phase. ESR and optical spectroscopy studies revealed the localization and valence state of the cation dopants. (C) 1999 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000079840600021 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 13 Open Access
Notes Approved Most recent IF: 1.751; 1999 IF: 1.492
Call Number UA @ lucian @ c:irua:102909 Serial 1395
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue (down) 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H.
Title Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue (down) 1 Pages 014429-014429,16
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293247400008 Publication Date 2011-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 47 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:91770 Serial 2588
Permanent link to this record
 

 
Author Dombrovski, E.N.; Serov, T.V.; Abakumov, A.M.; Ardashnikova, E.I.; Dolgikh, V.A.; Van Tendeloo, G.
Title The structural investigation of Ba4Bi3F17 Type A1 Journal article
Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 177 Issue (down) 1 Pages 312-318
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000188534800041 Publication Date 2003-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 9 Open Access
Notes Approved Most recent IF: 2.299; 2004 IF: 1.815
Call Number UA @ lucian @ c:irua:54717 Serial 3239
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Pavlyuk, B.P.; Lobanov, M.V.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.; Sheptyakov, D.V.; Balagurov, A.M.; Bourée, F.
Title Synthesis and crystal structure of novel layered manganese oxide Ca2MnGaO5+\delta Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 158 Issue (down) 1 Pages 100-111
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000168441500015 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 48 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54707 Serial 3425
Permanent link to this record
 

 
Author Kazin, P.E.; Abakumov, A.M.; Zaytsev, D.D.; Tretyakov, Y.D.; Khasanova, N.R.; Van Tendeloo, G.; Jansen, M.
Title Synthesis and crystal structure of Sr2ScBiO6 Type A1 Journal article
Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 162 Issue (down) 1 Pages 142-147
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000172586400019 Publication Date 2002-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 3 Open Access
Notes Approved Most recent IF: 2.299; 2001 IF: 1.614
Call Number UA @ lucian @ c:irua:54710 Serial 3426
Permanent link to this record
 

 
Author Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.
Title Transmission electron microscopy and structural phase transitions in anion-deficient perovskite-based oxides Type A1 Journal article
Year 2005 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 61 Issue (down) 1 Pages 77-92
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000225865500008 Publication Date 2004-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.725 Times cited 18 Open Access
Notes Approved Most recent IF: 5.725; 2005 IF: 1.791
Call Number UA @ lucian @ c:irua:51442 Serial 3706
Permanent link to this record
 

 
Author Tan, H.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G.
Title Oxidation state and chemical shift investigation in transition metal oxides by EELS Type A1 Journal article
Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue (down) Pages 24-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transition metal L2,3 electron energy-loss spectra for a wide range of V-, Mn- and Fe-based oxides were recorded and carefully analyzed for their correlation with the formal oxidation states of the transition metal ions. Special attention is paid to obtain an accurate energy scale which provides absolute energy positions for all core-loss edges. The white-line ratio method, chemical shift method, ELNES fitting method, two-parameter method and other methods are compared and their validity is discussed. Both the ELNES fitting method and the chemical shift method have the advantage of a wide application range and good consistency but require special attention to accurately measure the core-loss edge position. The obtained conclusions are of fundamental importance, e.g., for obtaining atomic resolution oxidation state information in modern experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700004 Publication Date 2012-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 413 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96959UA @ admin @ c:irua:96959 Serial 2541
Permanent link to this record
 

 
Author Zhukova, A.A.; Rumyantseva, M.N.; Zaytsev, V.B.; Zaytseva, A.V.; Abakumov, A.M.; Gaskov, A.M.
Title Pd nanoparticles on SnO2(Sb) whiskers : aggregation and reactivity in CO detection Type A1 Journal article
Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 565 Issue (down) Pages 6-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Single crystal antimony-doped SnO2 whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000317815300002 Publication Date 2013-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access
Notes Approved Most recent IF: 3.133; 2013 IF: 2.726
Call Number UA @ lucian @ c:irua:108424 Serial 2566
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Vorobyeva, N.A.; Giebelhaus, I.; Mathur, S.; Chizhov, A.S.; Khmelevsky, N.O.; Aksenenko, A.Y.; Kozlovsky, V.F.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Gaskov, A.M.
Title p -CoO x / n -SnO 2 nanostructures: New highly selective materials for H 2 S detection Type A1 Journal article
Year 2017 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem
Volume Issue (down) Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructures p-CoOx/n-SnO2 based on tin oxide nanowires have been prepared by two step CVD technique and characterized in detail by XRD, XRF, XPS, HAADF-STEM imaging and EDX-STEM mapping. Depending on the temperature of decomposition of cobalt complex during the second step of CVD synthesis of nanostructures cobalt oxide forms a coating and/or isolated nanoparticles on SnO2 nanowire surface. It was found that cobalt presents in +2 and +3 oxidation states. The measurements of gas sensor properties have been carried out during exposure to CO (14 ppm), NH3 (21 ppm), and H2S (2 ppm) in dry air. The opposite trends were observed in the effect of cobalt oxide on the SnO2 gas sensitivity when detecting CO or NH3 in comparison to H2S. The decrease of sensor signal toward CO and NH3 was attributed to high catalytic activity of Co3O4 in oxidation of these gases. Contrary, the significant increase of sensor signal in the presence of H2S was attributed to the formation of metallic cobalt sulfide and removal of the barrier between p-CoOx and n-SnO2. This effect provides an excellent selectivity of p-CoOx/n-SnO2 nanostructures in H2S detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414151800068 Publication Date 2017-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited 13 Open Access Not_Open_Access: Available from 10.10.2019
Notes ERA-Net.Plus, 096 FONSENS ; Approved Most recent IF: 5.401
Call Number EMAT @ emat @c:irua:145926 Serial 4710
Permanent link to this record
 

 
Author Charkin, D.O.; Plokhikh, I.V.; Kazakov, S.M.; Kalmykov, S.N.; Akinfiev, V.S.; Gorbachev, A.V.; Batuk, M.; Abakumov, A.M.; Teterin, Y.A.; Maslakov, K.I.; Teterin, A.Y.; Ivanov, K.E.
Title Synthesis and structural characterization of a novel Sillén – Aurivillius bismuth oxyhalide, PbBi3VO7.5Cl, and its derivatives Type A1 Journal article
Year 2018 Publication Solid state sciences Abbreviated Journal Solid State Sci
Volume 75 Issue (down) Pages 27-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new Sillen – Aurivillius family of layered bismuth oxyhalides has been designed and successfully constructed on the basis of PbBiO2X(X = halogen) synthetic perites and g-form of Bi2VO5.5 solid elec- trolyte. This demonstrates, for the first time, the ability of the latter to serve as a building block in construction of mixed-layer structures. The parent compound PbBi3VO7.5-dCl (d = 0.05) has been investigated by powder XRD, TEM, XPS methods and magnetic susceptibility measurements. An unexpected but important condition for the formation of the mixed-layer structure is partial (ca. 5%) reduction of VV into VIV which probably suppresses competitive formation of apatite-like Pb – Bi vanadates. This reduction also stabilizes the g polymorphic form of Bi2VO5.5 not only in the intergrowth structure, but in Bi2V1-xMxO5.5-y (M – Nb, Sb) solid solutions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418566200005 Publication Date 2017-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1293-2558 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.811 Times cited 1 Open Access Not_Open_Access
Notes The work was partially supported by M.V. Lomonosov Moscow State University Program of Development and Russian Science Foundation under Grant No.14-13-00738. We also thank Dr. K.V. Zakharov (MSU) for the magnetic measurements of the PbBi3- VO7.5Cl sample. Approved Most recent IF: 1.811
Call Number EMAT @ emat @c:irua:147239 Serial 4769
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue (down) Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Shpanchenko, R.V.; Oleinikov, P.N.; Antipov, E.V.
Title Anion ordering in fluorinated La2CuO4 Type A1 Journal article
Year 1999 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 142 Issue (down) Pages 311-322
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000078597400024 Publication Date 2002-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 20 Open Access
Notes Approved Most recent IF: 2.299; 1999 IF: 1.547
Call Number UA @ lucian @ c:irua:29277 Serial 121
Permanent link to this record