toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Salje, E.K.H.; Zhang, H.; Idrissi, H.; Schryvers, D.; Carpenter, M.A.; Moya, X.; Planes, A. url  doi
openurl 
  Title Mechanical resonance of the austenite/martensite interface and the pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type A1 Journal article
  Year 2009 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 80 Issue (down) 13 Pages 134114,1-1134114,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246 and 232 K under heating and cooling, respectively. The phase fronts between the austenite and martensite regions of the sample are weakly mobile with a power-law resonance under external stress fields. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and cannot be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was studied by dynamical mechanical analysis (DMA) and resonant ultrasound spectroscopy. The remnant strain, storage modulus, and internal friction were recorded simultaneously for different applied forces in DMA. With increasing forces, the remnant strain increases monotonously while the internal friction peak height shows a minimum at 300 mN. Transmission electron microscopy shows that the pinning is generated by dislocations which are inherited from the austenite phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000271351300033 Publication Date 2009-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Multimat Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:78542 Serial 1975  
Permanent link to this record
 

 
Author Bittencourt, C.; Felten, A.; Douhard, B.; Colomer, J.-F.; Van Tendeloo, G.; Drube, W.; Ghijsen, J.; Pireaux, J.-J. pdf  doi
openurl 
  Title Metallic nanoparticles on plasma treated carbon nanotubes : $Nano2hybrids$ Type A1 Journal article
  Year 2007 Publication Surface science : a journal devoted to the physics and chemistry of interfaces T2 – International Conference on NANO-Structures Self Assembling, JUL 02-06, 2006, Aix en Provence, FRANCE Abbreviated Journal Surf Sci  
  Volume 601 Issue (down) 13 Pages 2800-2804  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multi-wall carbon nanotubes (MWCNTs) were decorated with metal clusters by thermal evaporation. Transmission electron microscopy (TEM) shows that the nature and extent of metal coverage can be varied by plasma treating the MWCNT surface. The metal clusters on oxygen plasma treated arc-discharge MWCNTs have a more dense distribution than the clusters evaporated on as-synthesized are-discharge MWCNTs. In contrast, the plasma treatment did not affect the cluster distribution on CVD MWCNTs. Analyses of the valence band and the core levels by X-ray photoelectron spectroscopy suggest poor charge transfer between gold clusters and MWCNTs; on the contrary suggest good charge transfer between Ni clusters and MWCNTs. (c) 2007 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000248030100055 Publication Date 2006-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.062 Times cited 44 Open Access  
  Notes Pai-V 1 Approved Most recent IF: 2.062; 2007 IF: 1.855  
  Call Number UA @ lucian @ c:irua:102663 Serial 2011  
Permanent link to this record
 

 
Author Rotaru, G.-M.; Tirry, W.; Sittner, P.; van Humbeeck, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructural study of equiatomic PtTi martensite and the discovery of a new long-period structure Type A1 Journal article
  Year 2007 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 55 Issue (down) 13 Pages 4447-4454  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000248436400021 Publication Date 2007-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 7 Open Access  
  Notes Fwo G.0465.05; Multimat Approved Most recent IF: 5.301; 2007 IF: 3.624  
  Call Number UA @ lucian @ c:irua:65849 Serial 2047  
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
  Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 58 Issue (down) 13 Pages 4503-4515  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000279787100020 Publication Date 2010-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 110 Open Access  
  Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791  
  Call Number UA @ lucian @ c:irua:83279 Serial 2062  
Permanent link to this record
 

 
Author Vast, L.; Carpentier, L.; Lallemand, F.; Colomer, J.-F.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.; Mekhalif, Z.; Delhalle, J. pdf  doi
openurl 
  Title Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Youngs modulus Type A1 Journal article
  Year 2009 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 44 Issue (down) 13 Pages 3476-3482  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sylgard®184/multiwalled carbon nanotube (MWNT) composites have been prepared by in situ polymerization using purified and functionalized multiwalled carbon nanotubes (f-MWNTs) as fillers. Surface modification of the MWNTs has been carried out by silanization with 7-octenyltrichlorosilane (7OTCS) and n-octyltrichlorosilane (nOTCS). The modification and dispersion of the carbon nanotubes in composites were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), and high-resolution transmission electron spectroscopy (HRTEM). Youngs modulus results were derived from indentation testing. It is shown that the terminal-vinyl group of 7OTCS molecules plays an essential role for both the dispersion of the f-MWNTs in the composite and its mechanical properties. At loading as low as 0.2 wt%, the Youngs modulus is shown to increase up to 50%. This is interpreted as resulting from a combination of the good compatibility in the forming silicone matrix of the MWNTs coated with a siloxane network, on the one hand, and the covalent links created between the terminal-vinyl groups and the host matrix in formation, on the other hand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000267153200022 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 16 Open Access  
  Notes Iuap Approved Most recent IF: 2.599; 2009 IF: 1.471  
  Call Number UA @ lucian @ c:irua:77844 Serial 2245  
Permanent link to this record
 

 
Author Yang, X.-Y.; Li, Y.; Van Tendeloo, G.; Xiao, F.-S.; Su, B.-L. pdf  doi
openurl 
  Title One-pot synthesis of catalytically stable and active nanoreactors: encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ordered mesoporous shell system Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue (down) 13 Pages 1368-1372  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size-controlled, catalytically active nanoparticles are successfully encapsulated in a one-pot synthesis to form novel hierarchical macroporous core@mesoporous shell structures, where macroporous cores are connected by uniform and ordered mesoporous channels. Most importantly, the encapsulated nanoparticles can be used as nanoreactors, with high activities and excellent long-term recycling stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000265432700011 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 61 Open Access  
  Notes Iap Approved Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:77316 Serial 2466  
Permanent link to this record
 

 
Author da Pieve, F.; Di Matteo, S.; Rangel, T.; Giantomassi, M.; Lamoen, D.; Rignanese, G.-M.; Gonze, X. url  doi
openurl 
  Title Origin of magnetism and quasiparticles properties in Cr-doped TiO2 Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue (down) 13 Pages 136402-136405  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Combining the local spin density approximation (LSDA)+U and an analysis of superexchange interactions beyond density functional theory, we describe the magnetic ground state of Cr-doped TiO2, an intensively studied and debated dilute magnetic oxide. In parallel, we correct our LSDA+U (+ superexchange) ground state through GW corrections (GW@LSDA+U) that reproduce the position of the impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a (nonrobust) ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange. The interplay between structural defects and vacancies in contributing to the superexchange is also unveiled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000316683500014 Publication Date 2013-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 15 Open Access  
  Notes Goa; Iwt Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:107281 Serial 2524  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue (down) 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author Kalkert, C.; Krisponeit, J.-O.; Esseling, M.; Lebedev, O.I.; Moshnyaga, V.; Damaschke, B.; Van Tendeloo, G.; Samwer, K. pdf  doi
openurl 
  Title Resistive switching at manganite/manganite interfaces Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue (down) 13 Pages 132512-132512,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report bipolar resistive switching between the interfaces of manganite nanocolumns. La0.7Sr0.3MnO3 films were prepared on Al2O3 substrates, where the films grow in nanocolumns from the substrate to the surface. Conductive atomic force microscopy directly detects that the resistive switching is located at the boundaries of the grains. Furthermore, mesoscopic transport measurements reveal a tunnel magnetoresistance. In combination with the resistive switching, this leads to a total of four different resistive states.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000295618000052 Publication Date 2011-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:91884 Serial 2881  
Permanent link to this record
 

 
Author Santiso, J.; Pardo, J.A.; Solis, C.; Garcia, G.; Figueras, A.; Rossell, M.D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Strain relaxation and oxygen superstructure modulation in epitaxial Sr4Fe6O13\pm\delta films Type A1 Journal article
  Year 2005 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 86 Issue (down) 13 Pages 132105,1-3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000228422600050 Publication Date 2005-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Iap V-1 Approved Most recent IF: 3.411; 2005 IF: 4.127  
  Call Number UA @ lucian @ c:irua:54806 Serial 3172  
Permanent link to this record
 

 
Author Lobanov, M.V.; Balagurov, A.M.; Pomjakushin, V.J.; Fischer, P.; Gutmann, M.; Abakumov, A.M.; D'yachenko, O.G.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G. doi  openurl
  Title Structural and magnetic properties of the colossal magnetoresistance perovskite La0.85Ca0.15MnO3 Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 61 Issue (down) 13 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000086597400059 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.836; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:54735 Serial 3197  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Gutnikova, O.Y.; Drozhzhin, O.A.; Leonova, L.S.; Dobrovolsky, Y.A.; Istomin, S.Y.; Van Tendeloo, G.; Antipov, E.V. pdf  doi
openurl 
  Title Superspace description, crystal structures, and electric conductiof the Ba4In6-xMgxO13-x/2 solid solutions Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue (down) 13 Pages 4457-4467  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000257279200041 Publication Date 2008-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 15 Open Access  
  Notes Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:70141 Serial 3383  
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue (down) 13 Pages 7287-7300  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425508900064 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @c:irua:149513 Serial 4905  
Permanent link to this record
 

 
Author Feld, A.; Weimer, A.; Kornowski, A.; Winckelmans, N.; Merkl, J.-P.; Kloust, H.; Zierold, R.; Schmidtke, C.; Schotten, T.; Riedner, M.; Bals, S.; Weller, P.D., Horst url  doi
openurl 
  Title Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation Type A1 Journal article
  Year 2018 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (down) 13 Pages 152-162  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein we demonstrate that meticulous and in-depth analysis of the reaction mechanisms of nanoparticle formation is rewarded by full control of size, shape and crystal structure of superparamagnetic iron oxide nanocrystals during synthesis. Starting from two iron sources – iron(II)- and iron(III) carbonate -a strict separation of oleate formation from the generation of reactive pyrolysis products and concomitant nucleation of iron oxide nanoparticles was achieved. This protocol enabled us to analyze each step of nanoparticle formation independently in depth. Progress of the entire reaction was monitored via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and gas chromatography (GC) gaining insight into the formation of various iron oleate species prior to nucleation. Interestingly, due to the intrinsic strongly reductive pyrolysis conditions of the oleate intermediates and redox process in early stages of the synthesis, pristine iron oxide nuclei were composed exclusively from wustite, irrespective of the oxidation state of the iron source. Controlling the reaction conditions provided a very broad range of size- and shape defined monodisperse iron oxide nanoparticles. Curiously, after nucleation star shaped nanocrystals were obtained, which underwent metamorphism towards cubic shaped particles. EELS tomography revealed ex post oxidation of the primary wustite nanocrystal providing a full 3D image of Fe2+ and Fe3+ distribution within. Overall, we developed a highly flexible synthesis, yielding multigram amounts of well-defined iron oxide nanocrystals of different sizes and morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456749900017 Publication Date 2018-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 54 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 192346071 – SFB 986 and the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale’ (by grant EXC 1074) S.B. and N.W. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the Research Foundation Flanders (FWO, Belgium) through Project fundings G038116N. Dr. Volker Sauerland for his support in calibrating the MALDI-TOF spectra. Almut Bark for measuring XRD (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:155716UA @ admin @ c:irua:155716 Serial 5073  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (down) 13 Pages 4424-4435  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466052900067 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 100 Open Access OpenAccess  
  Notes ; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160417 Serial 5246  
Permanent link to this record
 

 
Author Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J.D.; Skrabalak, S.E.; Bals, S. url  doi
openurl 
  Title Thermal Stability of Gold/Palladium Octopods Studied in Situ in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (down) 13 Pages 6522-6530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, 8-branched nanocrystals with Oh symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 ◦C. Furthermore, we study the influence of the composition, morphology and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473248300038 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 46 Open Access OpenAccess  
  Notes W. A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. H. V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). J. D. S. and S.E.S acknowledge funding from the US National Science Foundation (award number: CHE-1602476). The authors acknowledge funding from the European Commission Grant (EUSMI E180600101 to S. B. and S. E. S.) and European Research Council (ERC Starting Grant #335078-COLOURATOMS). Realnano 815128; sygma Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:161356 Serial 5285  
Permanent link to this record
 

 
Author Skorikov, A.; Albrecht, W.; Bladt, E.; Xie, X.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (down) 13 Pages 13421-13429  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Anisotropic bimetallic nanoparticles are promising candidates for plasmonic and catalytic applications. Their catalytic performance and plasmonic properties are closely linked to the distribution of the two metals, which can change during applications in which the particles are exposed to heat. Due to this fact, correlating the thermal stability of complex heterogeneous nanoparticles to their microstructural properties is of high interest for the practical applications of such materials. Here, we employ quantitative electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADFSTEM) mode to measure the 3D elemental diffusion dynamics in individual anisotropic Au−Ag nanoparticles upon heating in situ. This approach allows us to study the elemental redistribution in complex, asymmetric nanoparticles on a single particle level, which has been inaccessible to other techniques so far. In this work, we apply the proposed method to compare the alloying dynamics of Au−Ag nanoparticles with different shapes and compositions and find that the shape of the nanoparticle does not exhibit a significant effect on the alloying speed whereas the composition does. Finally, comparing the experimental results to diffusion simulations allows us to estimate the diffusion coefficients of the metals for individual nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000115 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 29 Open Access OpenAccess  
  Notes This project has received funding from the European Commission (grant 731019, EUSMI) and European Research Council (ERC Consolidator Grants 815128, REALNANO; 770887, PICOMETRICS; 648991, 3MC; and ERC Advanced Grant 291667, HierarSACol). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 823717, ESTEEM3. W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). X.X. acknowledges financial support from the EU H2020-MSCAITN-2015 project 676045, MULTIMAT. The authors also acknowledge financial support by the Research Foundation Flanders (FWO grants G038116N, G026718N, and G036915N).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:164061 Serial 5379  
Permanent link to this record
 

 
Author Hinterding, S.O.M.; Berends, A.C.; Kurttepeli, M.; Moret, M.-E.; Meeldijk, J.D.; Bals, S.; van der Stam, W.; de Donega, C.M. url  doi
openurl 
  Title Tailoring Cu+ for Ga3+ cation exchange in Cu2-xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (down) 13 Pages 12880-12893  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S-2 nanocrystals, which increases the photoluminescence quantum yield 10 -fold, while blue -shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000061 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 27 Open Access OpenAccess  
  Notes ; S.O.M.H., W.v.d.S., A.C.B., and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Nos. ECHO.712.012.0001 and ECHO.712.014.001. S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant No. 815128-REALNANO). S.O.M.H. is supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. DFT calculations were carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. This work was sponsored by NWO Physical Sciences for the use of supercomputer facilities. The authors thank Jessi van der Hoeven for EDS and TEM measurements. ; sygma Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:165149 Serial 6324  
Permanent link to this record
 

 
Author Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue (down) 13 Pages 133105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577126100001 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 8 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number EMAT @ emat @c:irua:172461 Serial 6415  
Permanent link to this record
 

 
Author Coeck, R.; Meeprasert, J.; Li, G.; Altantzis, T.; Bals, S.; Pidko, E.A.; De Vos, D.E. pdf  url
doi  openurl
  Title Gold and silver-catalyzed reductive amination of aromatic carboxylic acids to benzylic amines Type A1 Journal article
  Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 11 Issue (down) 13 Pages 7672-7684  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The reductive amination of benzoic acid and its derivatives would be an effective addition to current synthesis methods for benzylamine. However, with current technology it is very difficult to keep the aromaticity intact when starting from benzoic acid, and salt wastes are often generated in the process. Here, we report a heterogeneous catalytic system for such a reductive amination, requiring solely H-2 and NH3 as the reactants. The Ag/TiO2 or Au/TiO2 catalysts can be used multiple times, and very little noble metal is required, only 0.025 mol % Au. The catalysts are bifunctional: the support catalyzes the dehydration of both the ammonium carboxylate to the amide and of the amide to the nitrile, while the sites at the metal-support interface promote the hydrogenation of the in situ generated nitrile. Yields of up to 92% benzylamine were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670659900005 Publication Date 2021-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 16 Open Access OpenAccess  
  Notes R.C. thanks the FWO for his SB PhD fellowship. D.E.D.V. acknowledges FWO for research project funding, as well as KU Leuven for funding in the Metusalem program Casas. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO). T.A. acknowledges funding from the University of Antwerp Research fund (BOF). E.A.P. acknowledges the support from the European Research Council (ERC Consolidator grant #725686 DeliCAT). J.M. acknowledges financial support through the Royal Thai Government Scholarship. DFT calculations on SURFsara supercomputer facilities were performed with support from the Netherlands Organization for Scientific Research (NWO).; sygmaSB Approved Most recent IF: 10.614  
  Call Number UA @ admin @ c:irua:179851 Serial 6840  
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J. doi  openurl
  Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue (down) 13 Pages 2269-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000824547500001 Publication Date 2022-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:189591 Serial 7098  
Permanent link to this record
 

 
Author Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
  Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 6 Issue (down) 13 Pages 6956-6971  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018266700001 Publication Date 2023-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023  
  Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA  
  Call Number EMAT @ emat @c:irua:198160 Serial 8809  
Permanent link to this record
 

 
Author De Beule, C.; Saniz, R.; Partoens, B. pdf  doi
openurl 
  Title Crystalline topological states at a topological insulator junction Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 128 Issue (down) 128 Pages 144-151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We consider an interface between two strong time-reversal invariant topological insulators having surface states with opposite spin chirality, or equivalently, opposite mirror Chern number. We show that such an interface supports gapless modes that are protected by mirror symmetry. The interface states are investigated with a continuum model for the Bi2Se3 class of topological insulators that takes into account terms up to third order in the crystal momentum, which ensures that the model has the correct symmetry. The model parameters are obtained from ab initio calculations. Finally, we consider the effect of rotational mismatch at the interface, which breaks the mirror symmetry and opens a gap in the interface spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472693100013 Publication Date 2018-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.059 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 2.059  
  Call Number UA @ admin @ c:irua:161391 Serial 5385  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue (down) 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author van der Rest, A.; Idrissi, H.; Henry, F.; Favache, A.; Schryvers, D.; Proost, J.; Raskin, J.-P.; Van Overmeere, Q.; Pardoen, T. pdf  url
doi  openurl
  Title Mechanical behavior of ultrathin sputter deposited porous amorphous Al2O3 films Type A1 Journal article
  Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 125 Issue (down) 125 Pages 27-37  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the mechanical properties of porous amorphous Al2O3 thin films is essential to address reliability issues in wear-resistant, optical and electronic coating applications. Testing the mechanical properties of Al2O3 films thinner than 200 nm is challenging, and the link between the mechanical behavior and the microstructure of such films is largely unknown. Herein, we report on the elastic and viscoplastic mechanical properties of amorphous Al2O3 thin films synthesized by reactive magnetron sputtering using a combination of internal stress, nanoindentation, and on-chip uniaxial tensile testing, together with mechanical homogenization models to separate the effect of porosity from intrinsic variations of the response of the sound material. The porosity is made of voids with 2e30 nm diameter. The Young's modulus and hardness of the films decrease by a factor of two when the deposition pressure increases from 1.2 to 8 mTorr. The contribution of porosity was found to be small, and a change in the atomic structure of the amorphous Al2O3 matrix is hypothesized to be the main contributing factor. The activation volume associated to the viscoplastic deformation mechanism is around 100 Å3. Differences in the atomic structure of the films could not be revealed by electron diffraction, pointing to a minute effect of atomic arrangement on the elastic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394201500003 Publication Date 2016-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 5 Open Access OpenAccess  
  Notes This work has been funded by the Belgian Science Policy through the IAP 7/21 project. The support of the ‘Fonds Belge pour la Recherche dans l’Industrie et l’Agriculture (FRIA)’ for A.v.d.R. is also gratefully acknowledged, as well as the support of FNRS through the grant PDR T.0122.13 “Mecano”. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @ c:irua:138990 Serial 4330  
Permanent link to this record
 

 
Author Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T. pdf  url
doi  openurl
  Title Bifunctional nickel-nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue (down) 124 Pages 1369-1381  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bifunctionality is a key feature of many industrial catalysts, supported metal clusters and particles in particular, and the development of such catalysts for the CO2 reduction reaction (CO2RR) to hydrocarbons and alcohols is gaining traction in light of recent advancements in the field. Carbon-supported Cu nanoparticles are suitable candidates for integration in the state-of-the-art reaction interfaces, and here, we propose, synthesize, and evaluate a bifunctional Ni–N-doped-C-supported Cu electrocatalyst, in which the support possesses active sites for selective CO2 conversion to CO and Cu nanoparticles catalyze either the direct CO2 or CO reduction to hydrocarbons. In this work, we introduce the scientific rationale behind the concept, its applicability, and the challenges with regard to the catalyst. From the practical aspect, the deposition of Cu nanoparticles onto carbon black and Ni–N–C supports via an ammonia-driven deposition precipitation method is reported and explored in more detail using X-ray diffraction, thermogravimetric analysis, and hydrogen temperature-programmed reduction. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS) give further evidence of the presence of Cu-containing nanoparticles on the Ni–N–C supports while revealing an additional relationship between the nanoparticle’s composition and the electrode’s electrocatalytic performance. Compared to the benchmark carbon black-supported Cu catalysts, Ni–N–C-supported Cu delivers up to a 2-fold increase in the partial C2H4 current density at −1.05 VRHE (C1/C2 = 0.67) and a concomitant 10-fold increase of the CO partial current density. The enhanced ethylene production metrics, obtained by virtue of the higher intrinsic activity of the Ni–N–C support, point out toward a synergistic action between the two catalytic functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508467700015 Publication Date 2020-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access OpenAccess  
  Notes ; N.D. acknowledges sponsoring from the research foundation of Flanders (FWO) in the frame of a postdoctoral grant (12Y3919N N.D.). J.H. greatly acknowledges the Research Foundation Flanders (FWO) for support through a postdoctoral fellowship (28761). T.V.E. and P.C. acknowledge financial support from the EU-Partial-PGMs project (H2020NMP-686086). The authors also acknowledge financial support from the university research fund (BOF-GOA PS ID No. 33928). ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:165326 Serial 6286  
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M. pdf  doi
openurl 
  Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
  Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids  
  Volume 123 Issue (down) 123 Pages 54-71  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000365367500006 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.313 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.313; 2015 IF: 1.619  
  Call Number UA @ lucian @ c:irua:130200 Serial 4236  
Permanent link to this record
 

 
Author Geenen, F.A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C. pdf  url
doi  openurl
  Title Controlling the formation and stability of ultra-thin nickel silicides : an alloying strategy for preventing agglomeration Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 123 Issue (down) 123 Pages 075303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t(c) = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 degrees C, thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of “thickness gradients,” which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness t(c). The results are discussed in the framework of classical nucleation theory. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000425807400018 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 23 Open Access OpenAccess  
  Notes ; The authors acknowledge the FWO Vlaanderen, the Hercules Foundation, and BOF-UGent (GOA 01G01513) for providing financial support for this work. This research used resources of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. ; Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:149912UA @ admin @ c:irua:149912 Serial 4929  
Permanent link to this record
 

 
Author Papageorgiou, D.G.; Filippousi, M.; Pavlidou, E.; Chrissafis, K.; Van Tendeloo, G.; Bikiaris, D. pdf  url
doi  openurl
  Title Effect of clay modification on structureproperty relationships and thermal degradation kinetics of \beta-polypropylene/clay composite materials Type A1 Journal article
  Year 2015 Publication Journal of thermal analysis and calorimetry Abbreviated Journal J Therm Anal Calorim  
  Volume 122 Issue (down) 122 Pages 393-406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of neat and organically modified montmorillonite on the structureproperty relationships of a β-nucleated polypropylene matrix has been thoroughly investigated. High-angle annular dark field scanning transmission electron microscopy revealed that the organic modification of clay facilitated the dispersion of the clay, while X-ray diffractograms showed the α-nucleating effect of the clays on the β-nucleated matrix. The results from tensile tests showed that the organic modification of MMT affected profoundly only the tensile strength at yield and at break. The effect of the organic modification of the clay on the thermal stability of the composites was finally evaluated by thermogravimetric analysis, where the samples filled with oMMT decomposed faster than the ones filled with neat MMT, due to the decomposition of the organic salts that were initially used for the modification of MMT. A kinetics study of the thermal degradation of the composites was also performed, in order to export additional conclusions on the activation energy of the samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000361431200042 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-6150;1588-2926; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.953 Times cited 7 Open Access  
  Notes 262348 Esmi Approved Most recent IF: 1.953; 2015 IF: 2.042  
  Call Number c:irua:127492 Serial 805  
Permanent link to this record
 

 
Author Schalm, O.; Crabbé, A.; Storme, P.; Wiesinger, R.; Gambirasi, A.; Grieten, E.; Tack, P.; Bauters, S.; Kleber, C.; Favaro, M.; Schryvers, D.; Vincze, L.; Terryn, H.; Patelli, A. pdf  url
doi  openurl
  Title The corrosion process of sterling silver exposed to a Na2S solution: monitoring and characterizing the complex surface evolution using a multi-analytical approach Type A1 Journal article
  Year 2016 Publication Applied Physics A-Materials Science & Processing Abbreviated Journal Appl Phys A-Mater  
  Volume 122 Issue (down) 122 Pages 903  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract Many historical ‘silver’ objects are composed of sterling silver, a silver alloy containing small amounts of copper. Besides the dramatic impact of copper on the corrosion process, the chemical composition of the corrosion layer evolves continuously. The evolution of the surface during the exposure to a Na2S solution was monitored by means of visual observation at macroscopic level, chemical analysis at microscopic level and analysis at the nanoscopic level. The corrosion process starts with the preferential oxidation of copper, forming mixtures of oxides and sulphides while voids are being created beneath the corrosion layer. Only at a later stage, the silver below the corrosion layer is consumed. This results in the formation of jalpaite and at a later stage of acanthite. The acanthite is found inside the corrosion layer at the boundaries of jalpaite grains and as individual grains between the jalpaite grains but also as a thin film on top of the corrosion layer. The corrosion process could be described as a sequence of 5 subsequent surface states with transitions between these states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384753800033 Publication Date 2016-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links  
  Impact Factor 1.455 Times cited 9 Open Access  
  Notes The authors are grateful for the financial support by the EU-FP7 Grant PANNA No. 282998 and for the opportunity to perform SR-XPS measurements at the NanoESCA beamline of the Elettra storage ring, under the approval of the advisory Committee (Proposal No. 20135164), as well as the opportunity to perform XANES measurements at the DUBBLE beamline of the ESRF storage ring (Proposal No. 26-01-990). The authors are grateful for the financial support by the STIMPRO Project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. Grant of the Agency for Innovation by Science and Technology (IWT). We would also like to thank Peter Van den Haute for the XRD measurements that were performed at the University of Ghent. Approved Most recent IF: 1.455  
  Call Number EMAT @ emat @ Serial 4331  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: