toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
  Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res  
  Volume 50 Issue (down) 50 Pages 796-804  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399859800016 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.268 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved Most recent IF: 20.268  
  Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561  
Permanent link to this record
 

 
Author Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; Graves, D.B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I.D.; Kortshagen, U.; Kushner, M.J.; Mason, N.J.; Mazouffre, S.; Thagard, S.M.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A.B.; Niemira, B.A.; Oehrlein, G.S.; Petrovic, Z.L.; Pitchford, L.C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M.M.; van de Sanden, M.C.M.; Vardelle, A. url  doi
openurl 
  Title The 2017 Plasma Roadmap: Low temperature plasma science and technology Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue (down) 50 Pages 323001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012

consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405553800001 Publication Date 2017-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 246 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:144626 Serial 4629  
Permanent link to this record
 

 
Author Martin, J.M.L.; Taylor, P.R.; François, J.P.; Gijbels, R. pdf  doi
openurl 
  Title Ab initio study of the spectroscopy, kinetics, and thermochemistry of the C2N and CN2 molecules Type A1 Journal article
  Year 1994 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 226 Issue (down) 5/6 Pages 475-483  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Several structures and electronic states of the C2N and CN2 molecules have been studied using complete active space SCF (CASSCF), multireference configuration interaction (MRCI), and coupled cluster (CCSD(T)) methods. Both molecules are very stable. Our best computed total atomization energies SIGMAD(e) are 288.6 +/- 2 kcal/mol for CN2, and 294.1 +/- 2 kcal/mol for C2N. The CNC and CCN structures for C2N are nearly isoenergetic. CNN(3PI) lies about 30 kcal/mol above NCN(3PI(g)), but has a high barrier towards interconversion and is therefore observed experimentally. Computed harmonic frequencies for CNN are sensitive to the correlation treatment: they are reproduced well using multireference methods as well as the CCSD(T) method. High spin contamination has a detrimental effect on computed harmonic frequencies at the CCSD(T) level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1994PE00500008 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 46 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10256 Serial 37  
Permanent link to this record
 

 
Author Cai, Z.L.; Martin, J.M.L.; François, J.P.; Gijbels, R. pdf  doi
openurl 
  Title Ab initio study of the X2\Sigma+ and A 2\Pi states of the SiN radical Type A1 Journal article
  Year 1996 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 252 Issue (down) 5/6 Pages 398-404  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The equilibrium bond length, harmonic frequency, first and second order anharmonicity constants, rotational and centrifugal distortion constants, as well as the rotation-vibrational and centrifugal coupling constants for the ground X(2) Sigma(+) and first excited A(2) Pi states of the SiN radical have been calculated at the complete active space SCF (CASSCF), multireference CI (MRCI) and coupled cluster (CCSD(T)) levels using Dunning's correlation-consistent basis sets. The excitation energy of the A(2) Pi State has also been computed at these theoretical levels. Dipole moments of SiN in the X(2) Sigma(+) and A(2) Pi states are given. Our study shows that core correlation must be considered in order to obtain satisfactory accuracy for the spectroscopic constants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UJ45000017 Publication Date 2003-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 28 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12328 Serial 40  
Permanent link to this record
 

 
Author Janssens, K.; Bogaerts, A.; van Grieken, R. doi  openurl
  Title Colloquium Spectroscopicum Internationale 34, Antwerp, Belgium, 4-9 September 2005: preface Type Editorial
  Year 2006 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta  
  Volume 70 Issue (down) 5 Pages 907-908  
  Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Oxford Editor  
  Language Wos 000242871900001 Publication Date 2006-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.162 Times cited Open Access  
  Notes Approved Most recent IF: 4.162; 2006 IF: 2.810  
  Call Number UA @ lucian @ c:irua:61094 Serial 392  
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.; url  doi
openurl 
  Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue (down) 5 Pages 13849  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000360909000001 Publication Date 2015-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 32 Open Access  
  Notes Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:127410 Serial 419  
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R. doi  openurl
  Title Comparative study of organic dyes with time-of-flight static secondary ion mass spectrometry and related techniques Type A1 Journal article
  Year 2005 Publication Journal of mass spectrometry Abbreviated Journal J Mass Spectrom  
  Volume 40 Issue (down) 5 Pages 615-627  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chichester Editor  
  Language Wos 000229355400006 Publication Date 2005-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1076-5174;1096-9888; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.422 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.422; 2005 IF: 3.574  
  Call Number UA @ lucian @ c:irua:60084 Serial 422  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Comparison of argon and neon as discharge gases in a direct current glow discharge: a mathematical simulation Type A1 Journal article
  Year 1997 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 52 Issue (down) 5 Pages 553-566  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1997XG74100002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 0038-6987 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.241; 1997 IF: 2.448  
  Call Number UA @ lucian @ c:irua:19601 Serial 426  
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L. doi  openurl
  Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
  Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 6 Issue (down) 5 Pages 295-307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000266471800003 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2009 IF: 4.037  
  Call Number UA @ lucian @ c:irua:76833 Serial 461  
Permanent link to this record
 

 
Author van Grieken, R.; Bogaerts, A.; Janssens, K. doi  openurl
  Title Editorial Type Editorial
  Year 2006 Publication Spectrochimica acta: part A: molecular spectroscopy Abbreviated Journal Spectrochim Acta A  
  Volume 64 Issue (down) 5 Pages 1089  
  Keywords Editorial; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000240093100001 Publication Date 2006-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-1425; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.536 Times cited Open Access  
  Notes Approved Most recent IF: 2.536; 2006 IF: 1.270  
  Call Number UA @ lucian @ c:irua:58915 Serial 788  
Permanent link to this record
 

 
Author de Witte, H.; de Gendt, S.; Douglas, M.; Conard, T.; Kenis, K.; Mertens, P.W.; Vandervorst, W.; Gijbels, R. doi  openurl
  Title Evaluation of time-of-flight secondary ion mass spectrometry for metal contamination monitoring on wafer surfaces Type A1 Journal article
  Year 2000 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 147 Issue (down) 5 Pages 13-17  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000087075200052 Publication Date 2002-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.259; 2000 IF: 2.293  
  Call Number UA @ lucian @ c:irua:34073 Serial 1089  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title First principles computation of thermo-chemical properties beyond the harmonic approximation: 2: application to the amino radical and its isotopomers Type A1 Journal article
  Year 1992 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 97 Issue (down) 5 Pages 3530-3536  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992JL37200072 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.952 Times cited 22 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:4197 Serial 1207  
Permanent link to this record
 

 
Author Chen, Z.; Kong, M.; Milošević, M.V.; Wu, Y. doi  openurl
  Title Ground state configurations of two-dimensional plasma crystals under long-range attractive particle interaction force Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 67 Issue (down) 5 Pages 439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000183154800014 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:57249 Serial 1385  
Permanent link to this record
 

 
Author Maeyens, A.; Tempère, J. openurl 
  Title How would a superconducting liquid flow in a magnetic field? Type A3 Journal article
  Year 2007 Publication Europhysics news Abbreviated Journal  
  Volume 38 Issue (down) 5 Pages 18  
  Keywords A3 Journal article; Theory of quantum systems and complex systems; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Petit-Lancy Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0531-7479 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:66156 Serial 1496  
Permanent link to this record
 

 
Author Yuan, X.; Yu, W.; Yu, M.Y.; Chen, Z.Y.; Liu, J.R.; Lu, P.X.; Li, R.X.; Qian, L.J.; Lu, B.D. pdf  doi
openurl 
  Title Long-distance channeling and focusing of lasers in plasmas Type A1 Journal article
  Year 2002 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 66 Issue (down) 5 Pages 381-384  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The propagation of a short laser beam in plasma is investigated analytically Relativistic ponderomotive force and space charge effects are included, and an equation describing the evolution of the laser spot size is derived. It is shown that self-consistent electron cavitation can lead to self channelling and thus long-distance self-focusing of the laser. The condition for the latter to occur is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000179465400008 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.28; 2002 IF: 0.748  
  Call Number UA @ lucian @ c:irua:95120 Serial 1835  
Permanent link to this record
 

 
Author Herrebout, D.; Bogaerts, A.; Yan, M.; Gijbels, R.; Goedheer, W.; Vanhulsel, A. doi  openurl
  Title Modeling of a capacitively coupled radio-frequency methane plasma: comparison between a one-dimensional and a two-dimensional fluid model Type A1 Journal article
  Year 2002 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 92 Issue (down) 5 Pages 2290-2295  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000177548500011 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.068; 2002 IF: 2.281  
  Call Number UA @ lucian @ c:irua:40188 Serial 2113  
Permanent link to this record
 

 
Author de Witte, H.; Vandervorst, W.; Gijbels, R. doi  openurl
  Title Modeling of bombardment induced oxidation of silicon Type A1 Journal article
  Year 2001 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 89 Issue (down) 5 Pages 3001-3011  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000167133000077 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 2001 IF: 2.128  
  Call Number UA @ lucian @ c:irua:37253 Serial 2119  
Permanent link to this record
 

 
Author Lenaerts, J.; Verlinden, G.; Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Geuens, I. doi  openurl
  Title Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS) Type A1 Journal article
  Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem  
  Volume 370 Issue (down) 5 Pages 654-662  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000170115200032 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37251 Serial 2135  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI) Type A1 Journal article
  Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue (down) 5 Pages 522-539  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling results are presented to gain a better insight in the properties of a SiH4/O2/Ar inductively coupled plasma (ICP) and how it interacts with a silicon substrate (wafer), as applied in the microelectronics industry for the fabrication of electronic devices. The SiH4/O2/Ar ICP is used for the filling of microtrenches with isolating material (SiO2), as applied in shallow trench isolation (STI). In this article, a detailed reaction set that describes the plasma chemistry of SiH4/O2/Ar discharges as well as surface processes, such as sputtering, oxidation, and deposition, is presented. Results are presented on the plasma properties during the plasma enhanced chemical vapor deposition process (PECVD) for different gas ratios, as well as on the shape of the filled trenches and the surface compositions of the deposited layers. For the operating conditions under study it is found that the most important species accounting for deposition are SiH2, SiH3O, SiH3 and SiH2O, while SiH+2, SiH+3, O+2 and Ar+ are the dominant species for sputtering of the surface. By diluting the precursor gas (SiH4) in the mixture, the deposition rate versus sputtering rate can be controlled for a desired trench filling process. From the calculation results it is clear that a high deposition rate will result in undesired void formation during the trench filling, while a small deposition rate will result in undesired trench bottom and mask damage by sputtering. By varying the SiH4/O2 ratio, the chemical composition of the deposited layer will be influenced. However, even at the highest SiH4/O2 ratio investigated (i.e., 3.2:1; low oxygen content), the bulk deposited layer consists mainly of SiO2, suggesting that low-volatile silane species deposit first and subsequently become oxidized instead of being oxidized first in the plasma before deposition. Finally, it was found that the top surface of the deposited layer contained less oxygen due to preferential sputtering of O atoms, making the top layer more Si-rich. However, this effect is negligible at a SiH4/O2 ratio of 2:1 or lower.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000303858100010 Publication Date 2012-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:99127 Serial 2142  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Monte Carlo model for the argon ions and fast argon atoms in a radio-frequency discharge Type A1 Journal article
  Year 1999 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume 27 Issue (down) 5 Pages 1406-1415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000083453000023 Publication Date 2002-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 15 Open Access  
  Notes Approved Most recent IF: 1.052; 1999 IF: 1.085  
  Call Number UA @ lucian @ c:irua:28321 Serial 2197  
Permanent link to this record
 

 
Author Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based dry reforming : improving the conversion and energy efficiency in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue (down) 5 Pages 29799-29808  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dry reforming of methane has gained significant interest over the years. A novel reforming technique with great potential is plasma technology. One of its drawbacks, however, is energy consumption. Therefore, we performed an extensive computational study, supported by experiments, aiming to identify the influence of the operating parameters (gas mixture, power, residence time and frequency) of a dielectric barrier discharge plasma on the conversion and energy efficiency, and to investigate which of these parameters lead to the most promising results and whether these are eventually sufficient for industrial implementation. The best results, in terms of both energy efficiency and conversion, are obtained at a specific energy input (SEI) of 100 J cm−3, a 1090 CH4CO2 ratio, 10 Hz, a residence time of 1 ms, resulting in a total conversion of 84% and an energy efficiency of 8.5%. In general, increasing the CO2 content in the gas mixture leads to a higher conversion and energy efficiency. The SEI couples the effect of the power and residence time, and increasing the SEI always results in a higher conversion, but somewhat lower energy efficiencies. The effect of the frequency is more complicated: we observed that the product of frequency (f) and residence time (τ), being a measure for the total number of micro-discharge filaments which the gas molecules experience when passing through the reactor, was critical. For most cases, a higher number of filaments yields higher values for conversion and energy efficiency. To benchmark our model predictions, we also give an overview of measured conversions and energy efficiencies reported in the literature, to indicate the potential for improvement compared to the state-of-the art. Finally, we identify the limitations as well as the benefits and future possibilities of plasma technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352789500026 Publication Date 2015-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 67 Open Access  
  Notes Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:132577 Serial 2629  
Permanent link to this record
 

 
Author Wendelen, W.; Autrique, D.; Bogaerts, A. pdf  doi
openurl 
  Title Space charge limited electron emission from a Cu surface under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue (down) 5 Pages 1-3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this theoretical study, the electron emission from a copper surface under ultrashort pulsed laser irradiation is investigated using a one-dimensional particle in cell model. Thermionic emission as well as multiphoton photoelectron emission were taken into account. The emitted electrons create a negative space charge above the target; consequently the generated electric field reduces the electron emission by several orders of magnitude. The simulations indicate that the space charge effect should be considered when investigating electron emission related phenomena in materials under ultrashort pulsed laser irradiation of metals.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000274319500021 Publication Date 2010-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80995 Serial 3059  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
openurl 
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue (down) 5 Pages 054002-54019  
  Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record  
  Impact Factor 2.588 Times cited Open Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:129798 Serial 4467  
Permanent link to this record
 

 
Author Navarrete, A.; Centi, G.; Bogaerts, A.; Mart?n,?ngel; York, A.; Stefanidis, G.D. pdf  url
doi  openurl
  Title Harvesting Renewable Energy for Carbon Dioxide Catalysis Type A1 Journal article
  Year 2017 Publication Energy technology Abbreviated Journal Energy Technol-Ger  
  Volume 5 Issue (down) 5 Pages 796-811  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of renewable energy (RE) to transform carbon dioxide into commodities (i.e., CO2 valorization) will pave the way towards a more sustainable economy in the coming years. But how can we efficiently use this energy (mostly available as electricity or solar light) to drive the necessary (catalytic) transformations? This paper presents a review of the technological advances in the transformation of carbon dioxide by means of RE. The socioeconomic implications and chemical basis of the transformation of carbon dioxide with RE are discussed. Then a general view of the use of RE to activate the (catalytic) transformations of carbon dioxide with microwaves, plasmas, and light is presented. The fundamental phenomena involved are introduced from a catalytic and reaction device perspective to present the advantages of this energy form as well as the inherent limitations of the present state-of-the-art. It is shown that efficient use of RE requires the redesign of current catalytic concepts. In this context, a new kind of reaction system, an energy-harvesting device, is proposed as a new conceptual approach for this endeavor. Finally, the challenges that lie ahead for the efficient and economical use of RE for carbon dioxide conversion are exposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451619500001 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.789 Times cited 15 Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, G.0254.14 N, G.0217.14 N and G.0383.16 N ; Spanish Ministry of Economy and Competitiveness, ENE2014-53459-R ; Approved Most recent IF: 2.789  
  Call Number PLASMANT @ plasmant @ c:irua:144217 Serial 4615  
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. url  doi
openurl 
  Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue (down) 5 Pages 053002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384715400001 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 460 Open Access  
  Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue (down) 5 Pages 055008  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432351700002 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title Thermal recrystallization of short-range ordered WS2 films Type A1 Journal article
  Year 2018 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 36 Issue (down) 5 Pages 05g501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The integration of van der Waals materials in nanoelectronic devices requires the deposition of few-layered MX2 films with excellent quality crystals covering a large area. In recent years, astonishing progress in the monolayer growth of WS2 and MoS2 was demonstrated, but multilayer growth resulted often in separated triangular or hexagonal islands. These polycrystalline films cannot fully employ the specific MX2 properties since they are not connected in-plane to the other domains. To coalesce separated islands, ultrahigh-temperature postdeposition anneals in H2S are applied, which are not compatible with bare silicon substrates. Starting from the deposition of stoichiometric short-ordered films, the present work studies different options for subsequent high-temperature annealing in an inert atmosphere to form crystalline films with large grains from stoichiometric films with small grains. The rapid thermal annealing, performed over a few seconds, is compared to excimer laser annealing in the nanosecond range, which are both able to crystallize the thin WS2. The WS2 recrystallization temperature can be lowered using metallic crystallization promoters (Co and Ni). The best result is obtained using a Co cap, due to the circumvention of Co and S binary phase formation below the eutectic temperature. The recrystallization above a critical temperature is accompanied by sulfur loss and 3D regrowth. These undesired effects can be suppressed by the application of a dielectric capping layer prior to annealing. A SiO2 cap can suppress the sulfur loss successfully during annealing and reveals improved material quality in comparison to noncapped films Published by the AVS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444033200002 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.374  
  Call Number UA @ lucian @ c:irua:153671 Serial 5134  
Permanent link to this record
 

 
Author Dhayalan, S.K.; Kujala, J.; Slotte, J.; Pourtois, G.; Simoen, E.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Loo, R.; Vandervorst, W. url  doi
openurl 
  Title On the evolution of strain and electrical properties in as-grown and annealed Si:P epitaxial films for source-drain stressor applications Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue (down) 5 Pages P228-P237  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Heavily P doped Si:P epitaxial layers have gained interest in recent times as a promising source-drain stressor material for n type FinFETs (Fin Field Effect Transistors). They are touted to provide excellent conductivity as well as tensile strain. Although the as-grown layers do provide tensile strain, their conductivity exhibits an unfavorable behavior. It reduces with increasing P concentration (P > 1E21 at/cm(3)), accompanied by a saturation in the active carrier concentration. Subjecting the layers to laser annealing increases the conductivity and activates a fraction of P atoms. However, there is also a concurrent reduction in tensile strain (<1%). Literature proposes the formation of local semiconducting Si3P4 complexes to explain the observed behaviors in Si:P [Z. Ye et al., ECS Trans., 50(9) 2013, p. 1007-10111. The development of tensile strain and the saturation in active carrier is attributed to the presence of local complexes while their dispersal on annealing is attributed to strain reduction and increase in active carrier density. However, the existence of such local complexes is not proven and a fundamental void exists in understanding the structure-property correlation in Si:P films. In this respect, our work investigates the reason behind the evolution of strain and electrical properties in the as-grown and annealed Si:P epitaxial layers using ab-initio techniques and corroborate the results with physical characterization techniques. It will be shown that the strain developed in Si:P films is not due to any specific complexes while the formation of Phosphorus-vacancy complexes will be shown responsible for the carrier saturation and the increase in resistivity in the as-grown films. Interstitial/precipitate formation is suggested to be a reason for the strain loss in the annealed films. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440834200010 Publication Date 2018-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153204 Serial 5122  
Permanent link to this record
 

 
Author Wang, L.; Wen, D.-Q.; Zhang, Q.-Z.; Song, Y.-H.; Zhang, Y.-R.; Wang, Y.-N. pdf  url
doi  openurl
  Title Disruption of self-organized striated structure induced by secondary electron emission in capacitive oxygen discharges Type A1 Journal article
  Year 2019 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 28 Issue (down) 5 Pages 055007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Self-organized striated structure has been observed experimentally and numerically in CF4 plasmas in radio-frequency capacitively coupled plasmas recently (Liu et al 2016 Phys. Rev. Lett. 116 255002). In this work, the striated structure is investigated in a capacitively coupled oxygen discharge with the introduction of the effect from the secondary electron emission, based on a particle-in-cell/Monte Carlo collision model. As we know, the transport of positive and negative ions plays a key role in the formation of striations in electronegative gases, for which, the electronegativity needs to be large enough. As the secondary electron emission increases, electrons in the sheaths gradually contribute more ionization to the discharge. Meanwhile, the increase of the electron density, especially in the plasma bulk, leads to an increased electrical conductivity and a reduced bulk electric field, which would shield the ions' mobility. These changes result in enlarged striation gaps. And then, with more emitted electrons, obvious disruption of the striations is observed accompanied with a transition of electron heating mode. Due to the weakened field, the impact ionization in the plasma bulk is attenuated, compared with the enhanced ionization caused by secondary electrons. This would lead to the electron heating mode transition from striated (STR) mode to gamma-mode. Besides, our investigation further reveals that gamma-mode is more likely to dominate the discharge under high gas pressures or driving voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467827800001 Publication Date 2019-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 2 Open Access Not_Open_Access: Available from 13.05.2020  
  Notes Approved Most recent IF: 3.302  
  Call Number UA @ admin @ c:irua:160365 Serial 5270  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion Type A1 Journal article
  Year 2020 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 10 Issue (down) 5 Pages 530  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work proposes to use core-shell structured spheres to evaluate whether it allows to individually optimize bulk and surface effects of a packing material, in order to optimize conversion and energy efficiency. Different core-shell materials have been prepared by spray coating, using dense spheres (as core) and powders (as shell) of SiO2, Al2O3, and BaTiO3. The materials are investigated for their performance in CO2 dissociation and compared against a benchmark consisting of a packed-bed reactor with the pure dense spheres, as well as an empty reactor. The results in terms of CO2 conversion and energy efficiency show various interactions between the core and shell material, depending on their combination. Al2O3 was found as the best core material under the applied conditions here, followed by BaTiO3 and SiO2, in agreement with their behaviour for the pure spheres. Applying a thin shell layer on the cores showed equal performance between the different shell materials. Increasing the layer thickness shifts this behaviour, and strong combination effects were observed depending on the specific material. Therefore, this method of core-shell spheres has the potential to allow tuning of the packing properties more closely to the application by designing an optimal combination of core and shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546007000092 Publication Date 2020-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access  
  Notes Interreg, Project EnOp ; Fonds Wetenschappelijk Onderzoek, G.0254.14N ; Universiteit Antwerpen, Project SynCO2Chem ; We want to thank Jasper Lefevre (VITO) for assistance in the development of the coating suspension for the core-shell spheres. Approved Most recent IF: 3.9; 2020 IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:169222 Serial 6364  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: