toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue (down) Pages 2002124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author Akamine, H.; Mitsuhara, M.; Nishida, M.; Samaee, V.; Schryvers, D.; Tsukamoto, G.; Kunieda, T.; Fujii, H. pdf  url
doi  openurl
  Title Precipitation behaviors in Ti-2.3 Wt Pct Cu alloy during isothermal and two-step aging Type A1 Journal article
  Year 2021 Publication Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science Abbreviated Journal Metall Mater Trans A  
  Volume 52 Issue (down) Pages 2760-2772  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Time evolution of precipitates related to age-hardening in Ti-2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the alpha phase: (10 (3) over bar)//(0001)(alpha) and [0 (1) over bar0]//respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening. (C) The Minerals, Metals & Materials Society and ASM International 2021  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644823000001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-5623 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.874 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.874  
  Call Number UA @ admin @ c:irua:178222 Serial 6786  
Permanent link to this record
 

 
Author Liang, Q.; Yang, D.; Xia, F.; Bai, H.; Peng, H.; Yu, R.; Yan, Y.; He, D.; Cao, S.; Van Tendeloo, G.; Li, G.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Phase-transformation-induced giant deformation in thermoelectric Ag₂Se semiconductor Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue (down) Pages 2106938  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In most semiconducting metal chalcogenides, a large deformation is usually accompanied by a phase transformation, while the deformation mechanism remains largely unexplored. Herein, a phase-transformation-induced deformation in Ag2Se is investigated by in situ transmission electron microscopy, and a new ordered high-temperature phase (named as alpha '-Ag2Se) is identified. The Se-Se bonds are folded when the Ag+-ion vacancies are ordered and become stretched when these vacancies are disordered. Such a stretch/fold of the Se-Se bonds enables a fast and large deformation occurring during the phase transition. Meanwhile, the different Se-Se bonding states in alpha-, alpha '-, beta-Ag2Se phases lead to the formation of a large number of nanoslabs and the high concentration of dislocations at the interface, which flexibly accommodate the strain caused by the phase transformation. This study reveals the atomic mechanism of the deformation in Ag2Se inorganic semiconductors during the phase transition, which also provides inspiration for understanding the phase transition process in other functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695142800001 Publication Date 2021-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:181527 Serial 6879  
Permanent link to this record
 

 
Author Meng, X.; Chen, S.; Peng, H.; Bai, H.; Zhang, S.; Su, X.; Tan, G.; Van Tendeloo, G.; Sun, Z.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Ferroelectric engineering : enhanced thermoelectric performance by local structural heterogeneity Type A1 Journal article
  Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although traditional ferroelectric materials are usually dielectric and nonconductive, GeTe is a typical ferroelectric semiconductor, possessing both ferroelectric and semiconducting properties. GeTe is also a widely studied thermoelectric material, whose performance has been optimized by doping with various elements. However, the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents. Herein, based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals, we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls, exposed to an electric field and temperature. Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb3+ dopant and the Ge-vacancies, leading to the increased number of charged domain walls and a much improved thermoelectric performance. This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000749973500001 Publication Date 2022-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:186429 Serial 6959  
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q. pdf  doi
openurl 
  Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
  Year 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue (down) Pages 2102161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000751742300001 Publication Date 2022-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:186421 Serial 6960  
Permanent link to this record
 

 
Author Juneja, R.; Thebaud, S.; Pandey, T.; Polanco, C.A.; Moseley, D.H.; Manley, M.E.; Cheng, Y.Q.; Winn, B.; Abernathy, D.L.; Hermann, R.P.; Lindsay, L. url  doi
openurl 
  Title Quasiparticle twist dynamics in non-symmorphic materials Type A1 Journal article
  Year 2021 Publication Materials Today Physics Abbreviated Journal  
  Volume 21 Issue (down) Pages 100548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiparticle physics underlies our understanding of the microscopic dynamical behaviors of materials that govern a vast array of properties, including structural stability, excited states and interactions, dynamical structure factors, and electron and phonon conductivities. Thus, understanding band structures and quasiparticle interactions is foundational to the study of condensed matter. Here we advance a 'twist' dynamical description of quasiparticles (including phonons and Bloch electrons) in nonsymmorphic chiral and achiral materials. Such materials often have structural complexity, strong thermal resistance, and efficient thermoelectric performance for waste heat capture and clean refrigeration technologies. The twist dynamics presented here provides a novel perspective of quasiparticle behaviors in such complex materials, in particular highlighting how non-symmorphic symmetries determine band crossings and anti-crossings, topological behaviors, quasiparticle interactions that govern transport, and observables in scattering experiments. We provide specific context via neutron scattering measurements and first-principles calculations of phonons and electrons in chiral tellurium dioxide. Building twist symmetries into the quasiparticle dynamics of non-symmorphic materials offers intuition into quasi particle behaviors, materials properties, and guides improved experimental designs to probe them. More specifically, insights into the phonon and electron quasiparticle physics presented here will enable materials design strategies to control interactions and transport for enhanced thermoelectric and thermal management applications. (C) 2021 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708226400009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184040 Serial 7016  
Permanent link to this record
 

 
Author Hoat, D.M.; Nguyen, D.K.; Bafekry, A.; Van On, V.; Ul Haq, B.; Rivas-Silva, J.F.; Cocoletzi, G.H. pdf  doi
openurl 
  Title Strain-driven modulation of the electronic, optical and thermoelectric properties of beta-antimonene monolayer : a hybrid functional study Type A1 Journal article
  Year 2021 Publication Materials Science In Semiconductor Processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 131 Issue (down) Pages 105878  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic, optical, and thermoelectric properties of the beta-antimonene (beta-Sb) monolayer under the external biaxial strain effects are fully investigated through the first-principles calculations. The studied two-dimensional (2D) system is dynamically and structurally stable as examined via phonon spectrum and cohesive energy. At equilibrium, the beta-Sb single layer exhibits an indirect band gap of 1.310 and 1.786 eV as predicted by the PBE and HSE06 functionals, respectively. Applying external strain may induce the indirect-direct gap transition and significant variation of the energy gap. The calculated optical spectra indicate the enhancement of the optical absorption in a wide energy range from infrared to ultraviolet as induced by the applied strain. In the visible and ultraviolet regime, the absorption coefficient can reach values as large as 82.700 (10(4)/cm) and 91.458 (10(4)/cm). Results suggest that the thermoelectric performance may be improved considerably by applying proper external strain with the figure of merit reaching a value of 0.665. Our work demonstrates that the external biaxial strains may be an effective method to make the beta-Sb monolayer prospective 2D material for optoelectronic and thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663422800002 Publication Date 2021-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.359  
  Call Number UA @ admin @ c:irua:179565 Serial 7021  
Permanent link to this record
 

 
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. pdf  url
doi  openurl
  Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume Issue (down) Pages 015018  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722020100001 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.937 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:183053 Serial 7036  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R. pdf  url
doi  openurl
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact  
  Volume 178 Issue (down) Pages 111234  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752582700001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.714  
  Call Number UA @ admin @ c:irua:186509 Serial 7061  
Permanent link to this record
 

 
Author Sun, C.; Street, M.; Zhang, C.; Van Tendeloo, G.; Zhao, W.; Zhang, Q. pdf  url
doi  openurl
  Title Boron structure evolution in magnetic Cr₂O₃ thin films Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 27 Issue (down) Pages 100753-100757  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract B substituting O in antiferromagnetic Cr2O3 is known to increase the Ne ' el temperature, whereas the actual B dopant site and the corresponding functionality remains unclear due to the complicated local structure. Herein, A combination of electron energy loss spectroscopy and first-principles calculations were used to unveil B local structures in B doped Cr2O3 thin films. B was found to form either magnetic active BCr4 tetrahedra or various inactive BO3 triangles in the Cr2O3 lattice, with a* and z* bonds exhibiting unique spectral features. Identification of BO3 triangles was achieved by changing the electron momentum transfer to manipulate the differential cross section for the 1s-z* and 1s-a* transitions. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental z* / a* ratios for 15-42% of the B occupying the active BCr4 structure. This result is further supported by first-principles based thermodynamic calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000827323200003 Publication Date 2022-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:189660 Serial 7078  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
  Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 565 Issue (down) Pages 153727-16  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799256300004 Publication Date 2022-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:188609 Serial 7086  
Permanent link to this record
 

 
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C. pdf  url
doi  openurl
  Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
  Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater  
  Volume 350 Issue (down) Pages 128859-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000848227000001 Publication Date 2022-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:189820 Serial 7128  
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinović, M.J.; Van Renterghem, W.; Bosch, R.-W.; Schryvers, D.; Somville, F. pdf  url
doi  openurl
  Title Characterization of IASCC crack tips extracted from neutron-irradiated flux thimble tube specimens in view of a probabilistic fracture model Type A1 Journal article
  Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 571 Issue (down) Pages 154015-154016  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study reports the properties of irradiation assisted stress corrosion crack tips extracted by means of focused-ion beam from 60 to 80 dpa neutron-irradiated O-ring specimens tested under straining conditions under a pressurized-water reactor environment. Various crack tip morphologies and surrounding deformation features were analyzed as a function of applied stress, surface oxidation state and loading form – constant versus cyclic. All investigated cracks exhibit grain boundary oxidation in front of the crack tip, with the extent of oxidation being proportional to applied stress. These findings clearly demonstrate that, under the subcritical crack propagation regime, the grain boundary oxide grows faster than the crack. On the other hand, crack tips appertaining to specimens with removed oxide layer at the outer surface show comparatively less oxidation at the crack tip, which could indicate towards crack initiation from regions that exemplify lower stress, such as the O-ring inner surface. Cyclic loading is found to have a more pronounced effect on the crack tip microstructure, demonstrating increased deformation twinning and -martensitic transformation, which signifies towards an increased susceptibility to intergranular failure. Still, the extent of crack tip grain boundary oxidation in this case agrees well with expected values for maximum stress applied during cyclic loading. All results are interpreted based on the probabilistic subcritical crack propagation mechanism and provide strong support to a stress-driven internal oxidation model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000872389200009 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:190375 Serial 7135  
Permanent link to this record
 

 
Author Dobrota, A.S.; Vlahovic, J.; V. Skorodumova, N.; Pasti, I.A. pdf  doi
openurl 
  Title First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons – from adatom bonding to various Type A1 Journal article
  Year 2022 Publication Materials Today Communications Abbreviated Journal  
  Volume 31 Issue (down) Pages 103388-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000820987400002 Publication Date 2022-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-4928 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189563 Serial 7163  
Permanent link to this record
 

 
Author Guo, A.; Bai, H.; Liang, Q.; Feng, L.; Su, X.; Van Tendeloo, G.; Wu, J. pdf  doi
openurl 
  Title Resistive switching in Ag₂Te semiconductor modulated by Ag+-ion diffusion and phase transition Type A1 Journal article
  Year 2022 Publication Advanced Electronic Materials Abbreviated Journal Adv Electron Mater  
  Volume Issue (down) Pages 2200850-2200858  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic alpha-Ag2Te into the face-centered cubic beta-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry alpha-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic beta-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855728500001 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.2  
  Call Number UA @ admin @ c:irua:190582 Serial 7203  
Permanent link to this record
 

 
Author Morsdorf, L.; Kashiwar, A.; Kübel, C.; Tasan, C.C. pdf  doi
openurl 
  Title Carbon segregation and cementite precipitation at grain boundaries in quenched and tempered lath martensite Type A1 Journal article
  Year 2023 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal  
  Volume 862 Issue (down) Pages 144369-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tempering is widely applied to make carbon atoms beneficially rearrange in high strength steel microstructures after quenching; though the nano-scale interaction of carbon atoms with crystallographic defects is hard to experimentally observe. To improve, we investigate the redistribution of carbon atoms along martensite grain boundaries in a quenched and tempered low carbon steel. We observe the tempering-induced microstructural evolution by in-situ heating in a transmission electron microscope (TEM) and by compositional analysis through atom probe tomography (APT). Probe volumes for APT originate from a single martensite packet but in different tempering conditions, which is achieved via a sequential lift-out with in-between tempering treatments. The complementary use of TEM and APT provides crystallographic as well as chemical information on carbon segregation and subsequent carbide precipitation at martensite grain boundaries. The results show that the amount of carbon segregation to martensite grain boundaries is influenced by the boundary type, e.g. low-angle lath or high-angle block boundaries. Also, the growth behavior of cementite precipitates from grain boundary nucleation sites into neighboring martensite grains differs at low- and high-angle grain boundaries. This is due to the crystallographic constraints arising from the semi-coherent orientation relationship between cementite and adjacent martensite. We also show that slower quenching stabilizes thin retained austenite films between martensite grains because of enhanced carbon segregation during cooling. Finally, we demonstrate the effect of carbon redistribution along martensite grain boundaries on the mechanical properties. Here, we compare micro-scale Vickers hardness results from boundary-containing probe volumes to nanoindentation results from pure bulk martensite (boundary-free) probe volumes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000905165700001 Publication Date 2022-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: 3.094  
  Call Number UA @ admin @ c:irua:192279 Serial 7285  
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A. pdf  url
doi  openurl
  Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 200 Issue (down) Pages 112886-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977059100001 Publication Date 2023-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:195598 Serial 7291  
Permanent link to this record
 

 
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M. url  doi
openurl 
  Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
  Year 2022 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 221 Issue (down) Pages 110972-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886072100004 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4  
  Call Number UA @ admin @ c:irua:192194 Serial 7299  
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H. pdf  doi
openurl 
  Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
  Year 2022 Publication Materials Today Nano Abbreviated Journal  
  Volume 20 Issue (down) Pages 100275-5  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906548600002 Publication Date 2022-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.3  
  Call Number UA @ admin @ c:irua:193477 Serial 7324  
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X. pdf  url
doi  openurl
  Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue (down) Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903664200001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:193500 Serial 7328  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 28 Issue (down) Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author Yang, C.-Q.; Zhi, R.; Rothmann, M.U.; Xu, Y.-Y.; Li, L.-Q.; Hu, Z.-Y.; Pang, S.; Cheng, Y.-B.; Van Tendeloo, G.; Li, W. pdf  doi
openurl 
  Title Unveiling the intrinsic structure and intragrain defects of organic-inorganic hybrid perovskites by ultralow dose transmission electron microscopy Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume Issue (down) Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is a powerful tool for unveiling the structural, compositional, and electronic properties of organic-inorganic hybrid perovskites (OIHPs) at the atomic to micrometer length scales. However, the structural and compositional instability of OIHPs under electron beam radiation results in misunderstandings of the microscopic structure-property-performance relationship in OIHP devices. Here, ultralow dose TEM is utilized to identify the mechanism of the electron-beam-induced changes in OHIPs and clarify the cumulative electron dose thresholds (critical dose) of different commercially interesting state-of-the-art OIHPs, including methylammonium lead iodide (MAPbI(3)), formamidinium lead iodide (FAPbI(3)), FA(0.83)Cs(0.17)PbI(3), FA(0.15)Cs(0.85)PbI(3), and MAPb(0.5)Sn(0.5)I(3). The critical dose is related to the composition of the OIHPs, with FA(0.15)Cs(0.85)PbI(3) having the highest critical dose of approximate to 84 e angstrom(-2) and FA(0.83)Cs(0.17)PbI(3) having the lowest critical dose of approximate to 4.2 e angstrom(-2). The electron beam irradiation results in the formation of a superstructure with ordered I and FA vacancies along (c), as identified from the three major crystal axes in cubic FAPbI(3), (c), (c), and (c). The intragrain planar defects in FAPbI(3) are stable, while an obvious modification is observed in FA(0.83)Cs(0.17)PbI(3) under continuous electron beam exposure. This information can serve as a guide for ensuring a reliable understanding of the microstructure of OIHP optoelectronic devices by TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950461600001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 29.4; 2023 IF: 19.791  
  Call Number UA @ admin @ c:irua:195116 Serial 7349  
Permanent link to this record
 

 
Author da Costa, L.F.; de Barros, A.G.; de Figueiredo Lopes Lucena, L.C.; de Figueiredo Lopes Lucena, A.E. doi  openurl
  Title Asphalt mixture reinforced with banana fibres Type A1 Journal article
  Year 2020 Publication Road Materials And Pavement Design Abbreviated Journal Road Mater Pavement  
  Volume Issue (down) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Stone Matrix Asphalt (SMA) is a gap-graded mixture which requires high contents of asphalt binder. To prevent draindown, natural or synthetic fibres and polymer-modified asphalt binders are conventionally used in SMA. Banana agribusiness is one of the major sources of post-harvest residue in Brazil. Amongst those residues, fibres extracted from the pseudostem of the banana plant are resistant and used in diverse purposes. The present study assesses the incorporation of fibres from the pseudostem of the banana plant in an SMA mixture. The fibre contents and lengths capable to prevent binder draindown were evaluated from draindown tests. Mechanical properties of an SMA mixture stabilised with different banana fibre lengths were analysed through the tests of Marshall stability, modified Lottman, Indirect Tensile Strength and Cantabro. The results indicated that the fibres studied are a viable alternative for SMA, stabilising draindown and improving its mechanical performance, especially at the length of 20 mm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508499900001 Publication Date 2020-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-0629; 2164-7402 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 1.401  
  Call Number UA @ admin @ c:irua:178727 Serial 7495  
Permanent link to this record
 

 
Author Uzonyi, I.; Szöör, G.; Rozsa, P.; Vekemans, B.; Vincze, L.; Adams, F.; Drakopoulos, M.; Somogyi, A.; Kiss, Á.Z. doi  openurl
  Title Characterization of impact materials around Barringer meteor crater by micro-PIXE nd micro-SRXRF techniques Type A1 Journal article
  Year 2004 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal  
  Volume 219/220 Issue (down) Pages 555-560  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000221895800104 Publication Date 2004-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:46507 Serial 7622  
Permanent link to this record
 

 
Author Velimirovic, M.; Carniato, L.; Simons, Q.; Schoups, G.; Seuntjens, P.; Bastiaens, L. pdf  doi
openurl 
  Title Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements Type A1 Journal article
  Year 2014 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 270 Issue (down) Pages 18-26  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZV1 particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (R-SA) and reaction rate constants (K-SA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZV1 particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH-) on the iron corrosion rate. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000335109200003 Publication Date 2014-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:117179 Serial 7738  
Permanent link to this record
 

 
Author Yorulmaz, B.; Ozden, A.; Sar, H.; Ay, F.; Sevik, C.; Perkgoz, N.K. doi  openurl
  Title CVD growth of monolayer WS2 through controlled seed formation and vapor density Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal  
  Volume 93 Issue (down) Pages 158-163  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large area, single layer WS2 has a high potential for use in optoelectrical devices with its high photo-luminescence intensity and low response time. In this work, we demonstrate a systematic study of controlled tungsten disulfide (WS2) monolayer growth using chemical vapor deposition (CVD) technique. With a detailed investigation of process parameters such as H-2 gas inclusion into the main carrier gas, growth temperature and duration, we have gained insight into two-dimensional (2D) WS2 synthesis through controlling the seed formations and the radical vapor density associated with WO3. We confirm that H-2 gas, when included to the carrier gas, is directly involved in WO3 reduction due to its reductive reagent nature, which provides a more effective sulfurization and monolayer formation process. Additionally, by changing the CVD growth configuration, hence, increasing the tungsten related vapor density and confining the reactant radicals, we succeed in realizing larger WS(2 )monolayers, which is still a technological challenge in order to utilize these structures for practical applications. Further optimization of the growth procedure is demonstrated by tuning the growth duration to prevent the excess seed formations and additional layers which will possibly limit the device performance of the monolayer flakes or films when applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457727300018 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193782 Serial 7748  
Permanent link to this record
 

 
Author Pinera, I.; Cruz, C.M.; Abreu, Y.; Leyva, A.; van Espen, P.; Diaz, A.; Cabal, A.E.; Van Remortel, N. pdf  doi
openurl 
  Title Gamma induced atom displacements in LYSO and LuYAP crystals as used in medical imaging applications Type A1 Journal article
  Year 2015 Publication Interactions With Materials And Atoms Abbreviated Journal  
  Volume 356 Issue (down) Pages 46-52  
  Keywords A1 Journal article; Engineering sciences. Technology; Particle Physics Group; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The radiation damage, in terms of atom displacements, induced by gamma irradiation in LYSO and LuYAP crystals is presented. Sc-44, Na-22 and V-48 are used as gamma sources for this study. The energy of gammas from the electron positron annihilation processes (511 keV) is also included in the study. The atom displacements distributions inside each material are calculated following the Monte Carlo assisted Classical Method introduced by the authors. This procedure also allows to study the atom displacements in-depth distributions inside each crystal. The atom displacements damage in LYSO crystals is found to be higher than in LuYAP crystals, mainly provoked by the displacements of silicon and oxygen atoms. But the difference between atom displacements produced in LYSO and LuYAP decreases when more energetic sources are used. On the other hand, the correlation between the atom displacements and energy deposition in-depth distributions is excellent. The atom displacements to energy deposition ratio is found to increases with more energetic photon sources. LYSO crystals are then more liable to the atom displacements damage than LuYAP crystals. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356990400008 Publication Date 2015-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127012 Serial 7987  
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M. url  doi
openurl 
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 41 Issue (down) Pages 69-107  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000685118300009 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178744 Serial 8045  
Permanent link to this record
 

 
Author Pinera, I.; Cruz, C.M.; Leyva, A.; Abreu, Y.; Cabal, A.E.; van Espen, P.; Van Remortel, N. doi  openurl
  Title Improved calculation of displacements per atom cross section in solids by gamma and electron irradiation Type A1 Journal article
  Year 2014 Publication Interactions With Materials And Atoms Abbreviated Journal  
  Volume 339 Issue (down) Pages 1-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Particle Physics Group; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10-90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5-50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20-70%) with respect to the previous studies. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343785500001 Publication Date 2014-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:121161 Serial 8069  
Permanent link to this record
 

 
Author Schalm, O.; Anaf, W.; Callier, J.; Leyva Pernia, D. url  doi
openurl 
  Title New generation monitoring devices for heritage guardians to detect multiple events and hazards Type P1 Proceeding
  Year 2018 Publication IOP conference series : materials science and engineering Abbreviated Journal  
  Volume 364 Issue (down) Pages Unsp 012056-9  
  Keywords P1 Proceeding; Engineering sciences. Technology; Art; History; Antwerp Systems and software Modelling (AnSyMo); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Environmental parameters such as temperature, relative humidity, visible light, UV radiation and pollution influence the deterioration rate of heritage items. To judge on the environmental appropriateness for heritage conservation, it is therefore important to monitor the environment. Often, an incomplete set of environmental parameters is measured, or sporadic or time-averaged measurements are performed. As a result, a wide range of undesirable situations and hazards remain unnoticed. This might lead to an underestimation of environmental dangers (i.e., inaccurate judgement) or to inappropriate mitigation measures (i.e., inaccurate decision making). We present an innovative and user-friendly monitoring device that simultaneously and continuously measures (1) environmental parameters and (2) material behavior. An extended combination of off-the-shelf sensors for temperature, relative humidity, air speed, CO2, NO2, O-3 and particulate matter are connected to a multipurpose datalogger. In-house developed sensors for the shrinkage and expansion behavior of wood, as well as sensors for metal corrosion rates are connected to the same datalogger. Such extended monitoring shows the identification of a wider range of undesirable situations, and it facilitates the search for correlations between such situations and the sources that cause them, i.e., the hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452025100056 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-8981; 1757-899x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151825 Serial 8298  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: