|   | 
Details
   web
Records
Author Neek-Amal, M.; Peeters, F.M.
Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 23 Pages 11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279336000001 Publication Date 2010-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83857 Serial 1820
Permanent link to this record
 

 
Author Grigorieva, I.V.; Geim, A.K.; Dubonos, S.V.; Novoselov, K.S.; Vodolazov, D.Y.; Peeters, F.M.; Kes, P.H.; Hesselberth, M.
Title Long-range nonlocal flow of vortices in narrow superconducting channels Type A1 Journal article
Year 2004 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 92 Issue (up) 23 Pages 237001,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000221961900045 Publication Date 2004-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes Approved Most recent IF: 8.462; 2004 IF: 7.218
Call Number UA @ lucian @ c:irua:69419 Serial 1838
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Vandenberghe, W.
Title Low-field mobility in ultrathin silicon nanowire junctionless transistors Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 99 Issue (up) 23 Pages 233509-233509,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the phonon, surface roughness and ionized impurity limited low-field mobility of ultrathin silicon n-type nanowire junctionless transistors in the long channel approximation with wire radii ranging from 2 to 5 nm, as function of gate voltage. We show that surface roughness scattering is negligible as long as the wire radius is not too small and ionized impurity scattering is the dominant scattering mechanism. We also show that there exists an optimal radius where the ionized impurity limited mobility exhibits a maximum.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000298006100095 Publication Date 2011-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes ; This work is supported by the EU project SQWIRE (FP7-ICT-STREP nr. 257111). William Vandenberghe gratefully acknowledges the Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:92865 Serial 1850
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 23 Pages 235421,1-235421,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278710800003 Publication Date 2010-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 108 Open Access
Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83093 Serial 2259
Permanent link to this record
 

 
Author Saniz, R.; Norman, M.R.; Freeman, A.J.
Title Orbital mixing and nesting in the bilayer manganites La2-2xSr1+2xMn2O7 Type A1 Journal article
Year 2008 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 101 Issue (up) 23 Pages 236402-236404
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A first principles study of La(2-2x)Sr(1+2x)Mn(2)O(7) compounds for doping levels 0.3 <= x <= 0.5 shows that the low energy electronic structure of the majority spin carriers is determined by strong momentum-dependent interactions between the Mn e(g) d(x)(2)-y(2) and d(3z)(2)-r(2) orbitals, which, in addition to an x-dependent Jahn-Teller distortion, differ in the ferromagnetic and antiferromagnetic phases. The Fermi surface exhibits nesting behavior that is reflected by peaks in the static susceptibility, whose positions as a function of momentum have a nontrivial dependence on x.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000261431200045 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 14 Open Access
Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ c:irua:102602 Serial 2498
Permanent link to this record
 

 
Author Costamagna, S.; Schulz, A.; Covaci, L.; Peeters, F.
Title Partially unzipped carbon nanotubes as magnetic field sensors Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue (up) 23 Pages 232104-232104,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The conductance through graphene nanoribbons (GNR) connected to a partially unzipped carbon nanotube (CNT) is studied in the presence of an external magnetic field applied parallel to the long axis of the tube by means of non-equilibrium Green's function technique. We consider CNTs that are partially unzipped to form armchair-GNR/zigzag-CNT/armchair-GNR or zigzag-GNR/armchair-CNT/zigzag-GNR junctions. We find that the inclusion of a longitudinal magnetic field affects the electronic states only in the CNT region, leading to the suppression of the conductance at low energies. We demonstrate that both types of junctions can be used as magnetic field sensors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726039]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000305089900038 Publication Date 2012-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 10 Open Access
Notes ; L.C. acknowledges support from the Flemish Science Foundation (FWO-Vl) and S.C. from the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE Project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:99083 Serial 2556
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zeng, Z.; Lu, T.C.; Peeters, F.M.
Title Quantum and transport conductivities in monolayer graphene Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue (up) 23 Pages 235402,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000257289500092 Publication Date 2008-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69637 Serial 2771
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C.
Title Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue (up) 23 Pages 233312-233314
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report quenching of the Hall effect with increasing magnetic field confined in a micron-sized spot. Such fields were created by placing tall ferromagnetic pillars on top of a two-dimensional electron gas, which allowed us to achieve the field strength up to 0.4 T under the pillars in the absence of external field. The quenching is accompanied by an anomalous increase in resistance and occurs when the cyclotron diameter matches the size of the magnetic spot. The results are explained by a rapid increase in the number of electrons that are scattered or quasilocalized by the magnetic region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176767900029 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103349 Serial 2949
Permanent link to this record
 

 
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M.
Title Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue (up) 23 Pages 235303,1-235303,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500073 Publication Date 2009-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77691 Serial 2969
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 103 Issue (up) 23 Pages 233502-233504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000328634900090 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 15 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2013 IF: 3.515
Call Number UA @ lucian @ c:irua:113710 Serial 3074
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Stark shift in single and vertically coupled type-I and type-II quantum dots Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue (up) 23 Pages 233301,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000176767900018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 43 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:62431 Serial 3150
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M.
Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue (up) 23 Pages 235433,1-235433,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262245400119 Publication Date 2008-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 35 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76006 Serial 3613
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D.
Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue (up) 23 Pages 235210-235217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000321061000003 Publication Date 2013-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109596 Serial 3835
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue (up) 23 Pages 235440,1-235440,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500147 Publication Date 2009-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 292 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77693 Serial 3904
Permanent link to this record
 

 
Author Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F.M.
Title Phase transition and field effect topological quantum transistor made of monolayer MoS2 Type A1 Journal article
Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 30 Issue (up) 23 Pages 235303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q(2)) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q(2) diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q(2) diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000432821600001 Publication Date 2018-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 2.649
Call Number UA @ lucian @ c:irua:151457UA @ admin @ c:irua:151457 Serial 5035
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
Title First-principles study of the stability and edge stress of nitrogen-decorated graphene nanoribbons Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue (up) 23 Pages 235436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Edge functionalization of graphene nanoribbons with nitrogen atoms for various adatom configurations at armchair and zigzag edges are investigated. We provide comprehensive information on the electronic and magnetic properties and investigate the stability of the various systems. Two types of rippling of the nanoribbons, namely edge and bulk rippling depending on the sign of edge stress induced at the edge, are found. They are found to play the decisive role for the stability of the structures. We also propose a type of edge decoration in which every third nitrogen adatom at the zigzag edges is replaced by an oxygen atom. In this way, the electron count is compatible with a full aromatic structure, leading to additional stability and a disappearance of magnetism that is usually associated with zigzag nanoribbons.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000436192300006 Publication Date 2018-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:152478UA @ admin @ c:irua:152478 Serial 5104
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.
Title Excitonic complexes in anisotropic atomically thin two-dimensional materials : black phosphorus and TiS3 Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue (up) 23 Pages 235401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of anisotropy in the energy spectrum on the binding energy and structural properties of excitons, trions, and biexcitons is investigated. To this end we employ the stochastic variational method with a correlated Gaussian basis. We present results for the binding energy of different excitonic complexes in black phosphorus (bP) and TiS3 and compare them with recent results in the literature when available, for which we find good agreement. The binding energies of excitonic complexes in bP are larger than those in TiS3. We calculate the different average interparticle distances in bP and TiS3 and show that excitonic complexes in bP are strongly anisotropic whereas in TiS3 they are almost isotropic, even though the constituent particles have an anisotropic energy spectrum. This is also confirmed by the correlation functions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000452003400009 Publication Date 2018-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:156247 Serial 5211
Permanent link to this record
 

 
Author De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A.
Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 30 Issue (up) 23 Pages 8521-8527
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453489300014 Publication Date 2018-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 7 Open Access
Notes ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466
Call Number UA @ admin @ c:irua:156235 Serial 5227
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M.
Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue (up) 23 Pages 235303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471983500006 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161329 Serial 5425
Permanent link to this record
 

 
Author Shekarforoush, S.; Jalali, H.; Yagmurcukardes, M.; Milošević, M.V.; Neek-Amal, M.
Title Optoelectronic properties of confined water in angstrom-scale slits Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue (up) 23 Pages 235406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The optoelectronic properties of confined water form one of the most active research areas in the past few years. Here we present the multiscale methodology to discern the out-of-plane electronic and dipolar dielectric constants (epsilon(el)(perpendicular to) and epsilon(diP)(perpendicular to)) of strongly confined water. We reveal that epsilon(perpendicular to el) and epsilon(diP)(perpendicular to) become comparable for water confined in angstrom-scale channels (with a height of less than 15 angstrom) within graphene (GE) and hexagonal boron nitride (hBN) bilayers. Channel height (h) associated with a minimum in both epsilon(e)(l)(perpendicular to) and epsilon(dip)(perpendicular to) is linked to the formation of the ordered structure of ice for h approximate to (7 -7.5) angstrom. The recently measured total dielectric constant epsilon(T)(perpendicular to) of nanoconfined water [L. Fumagalli et al., Science 360, 1339 (2018)] is corroborated by our results. Furthermore, we evaluate the contribution from the encapsulating membranes to the dielectric properties, as a function of the interlayer spacing, i.e., the height of the confining channel for water. Finally, we conduct analysis of the optical properties of both confined water and GE membranes, and show that the electron energy loss function of confined water strongly differs from that of bulk water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000595856100004 Publication Date 2020-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO). M.Y. gratefully acknowledges his FWO postdoctoral mandate. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:175051 Serial 6695
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M.
Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue (up) 23 Pages 235406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000657129800006 Publication Date 2021-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179109 Serial 6996
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Mortazavi, B.; Ziabari, A.A.; Khatibani, A.B.; Nguyen, C., V; Ghergherehchi, M.; Gogova, D.
Title Point defects in a two-dimensional ZnSnN₂ nanosheet : a first-principles study on the electronic and magnetic properties Type A1 Journal article
Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 125 Issue (up) 23 Pages 13067-13075
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The reduction of dimensionality is a very effective way to achieve appealing properties in two-dimensional materials (2DMs). First-principles calculations can greatly facilitate the prediction of 2DM properties and find possible approaches to enhance their performance. We employed first-principles calculations to gain insight into the impact of different types of point defects (vacancies and substitutional dopants) on the electronic and magnetic properties of a ZnSnN2 (ZSN) monolayer. We show that Zn, Sn, and N + Zn vacancy-defected structures are p-type conducting, while the defected ZSN with a N vacancy is n-type conducting. For substitutional dopants, we found that all doped structures are thermally and energetically stable. The most stable structure is found to be B-doping at the Zn site. The highest work function value (5.0 eV) has been obtained for Be substitution at the Sn site. Li-doping (at the Zn site) and Be-doping (at the Sn site) are p-type conducting, while B-doping (at the Zn site) is n-type conducting. We found that the considered ZSN monolayer-based structures with point defects are magnetic, except those with the N vacancy defects and Be-doped structures. The ab initio molecular dynamics simulations confirm that all substitutionally doped and defected structures are thermally stable. Thus, our results highlight the possibility of tuning the magnetism in ZnSnN2 monolayers through defect engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000664312500063 Publication Date 2021-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:179741 Serial 7012
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.; Barry, D.; Xin, B.; Huang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Photoaccelerated water dissociation across one-atom-thick electrodes Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue (up) 23 Pages 9566-9570
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892112200001 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:192759 Serial 7330
Permanent link to this record
 

 
Author Wozniak, T.; Faria, P.E., Jr.; Seifert, G.; Chaves, A.; Kunstmann, J.
Title Exciton g factors of van der Waals heterostructures from first-principles calculations Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue (up) 23 Pages 235408-235411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows us to assign measured g factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537315100009 Publication Date 2020-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:170219 Serial 7944
Permanent link to this record
 

 
Author de Sousa, A.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Braess paradox at the mesoscopic scale Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 24 Pages 245417-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328680500011 Publication Date 2013-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 17 Open Access
Notes ; This work was financially supported by PRONEX/CNPq/FUNCAP and the bilateral project CNPq-FWO. Discussions with J. S. Andrade, Jr. are gratefully acknowledged. A. A. S. has been financially supported by CAPES, under PDSE Contract No. BEX 7177/13-5. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113705 Serial 253
Permanent link to this record
 

 
Author Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S.
Title Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue (up) 24 Pages 245310,1-245310,15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278606100003 Publication Date 2010-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83095 Serial 379
Permanent link to this record
 

 
Author Nguyen, N.T.T.; Peeters, F.M.
Title Cyclotron resonance of a magnetic quantum dot Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue (up) 24 Pages 245311,1-245311,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy spectrum of a one-electron quantum dot doped with a single magnetic ion is studied in the presence of an external magnetic field. The allowed cyclotron resonance (CR) transitions are obtained together with their oscillator strength as a function of the magnetic field, the position of the magnetic ion, and the quantum dot confinement strength. With increasing magnetic field a ferromagnetic-antiferromagnetic transition is found, which results in clear signatures in the CR absorption. It leads to discontinuities in the transition energies and the oscillator strengths and to an increase in the number of allowed transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262246400055 Publication Date 2008-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76011 Serial 602
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
Title Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue (up) 24 Pages 245403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Transition metal dichalcogenides (TMDs) are considered as promising candidates for next generation of electronic and optoelectronic devices. To make use of these materials, for instance in field effect transistor applications, it is mandatory to know the detailed properties of contacts of such TMDs with metal electrodes. Here, we investigate the role of the contact structure on the electronic and transport properties of metal-MoSe2 interfaces. Two different contact types, namely face and edge contacts, are studied. We consider both low (Sc) and high (Au) work function metals in order to thoroughly elucidate the role of the metal work function and the type of metal. First principles plane wave calculations and transport calculations based on nonequilibrium Green's function formalism reveal that the contact type has a large impact on the electronic and transport properties of metal-MoSe2 interfaces. For the Sc electrode, the Schottky barrier heights are around 0.25 eV for face contact and bigger than 0.6 eV for edge contact. For the Au case, we calculate very similar barrier heights for both contact types with an average value of 0.5 eV. Furthermore, while the face contact is found to be highly advantageous as compared to the edge contact for the Sc electrode, the latter contact becomes a better choice for the Au electrode. Our findings provide guidelines for the fabrication of TMD-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000336917700004 Publication Date 2014-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 39 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:117750 Serial 644
Permanent link to this record
 

 
Author Zarenia, M.; Partoens, B.; Chakraborty, T.; Peeters, F.M.
Title Electron-electron interactions in bilayer graphene quantum dots Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue (up) 24 Pages 245432-245435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A parabolic quantum dot (QD) as realized by biasing nanostructured gates on bilayer graphene is investigated in the presence of electron-electron interaction. The energy spectrum and the phase diagram reveal unexpected transitions as a function of a magnetic field. For example, in contrast to semiconductor QDs, we find a valley transition rather than only the usual singlet-triplet transition in the ground state of the interacting system. The origin of these features can be traced to the valley degree of freedom in bilayer graphene. These transitions have important consequences for cyclotron resonance experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328688600010 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), and the Methusalem foundation of the Flemish Government. T. C. is supported by the Canada Research Chairs program of the Government of Canada. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:113698 Serial 926
Permanent link to this record
 

 
Author Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Energy levels of triangular and hexagonal graphene quantum dots : a comparative study between the tight-binding and Dirac equation approach Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue (up) 24 Pages 245403-245403,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Dirac equation is solved for triangular and hexagonal graphene quantum dots for different boundary conditions in the presence of a perpendicular magnetic field. We analyze the influence of the dot size and its geometry on their energy spectrum. A comparison between the results obtained for graphene dots with zigzag and armchair edges, as well as for infinite-mass boundary condition, is presented and our results show that the type of graphene dot edge and the choice of the appropriate boundary conditions have a very important influence on the energy spectrum. The single-particle energy levels are calculated as a function of an external perpendicular magnetic field that lifts degeneracies. Comparing the energy spectra obtained from the tight-binding approximation to those obtained from the continuum Dirac equation approach, we verify that the behavior of the energies as a function of the dot size or the applied magnetic field are qualitatively similar, but in some cases quantitative differences can exist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297767800008 Publication Date 2011-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 145 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE (project CONGRAN), the Bilateral program between Flanders and Brazil, CAPES and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93961 Serial 1040
Permanent link to this record