|   | 
Details
   web
Records
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 247401
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000377802200009 Publication Date 2016-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Roy, P.; Torun, E.; de Groot, R.A.
Title Effect of doping and elastic properties in (Mn,Fe)2(Si,P) Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 094110
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)(2)(Si,P), which is established as one of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)(2)(Si,P) materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance, the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical stability of the (Mn,Fe)(2)(Si,P) system increases significantly by doping with boron without affecting the magnetic properties. Insights of the influence of doping enable future studies to understand and predict bettermagnetocaloric materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372712100001 Publication Date 2016-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work is part of an Industrial Partnership Programme (IPP I28) of Fundamenteel Onderzoek der Materie (FOM) (The Netherlands) and co-financed by BASF New Business. The authors would like to thank Phuong Thao Nguyen and Dr. Gilles A. de Wijs for very useful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133192 Serial 4164
Permanent link to this record
 

 
Author Bakalov, P.; Esfahani, D.N.; Covaci, L.; Peeters, F.M.; Tempere, J.; Locquet, J.-P.
Title Electric-field-driven Mott metal-insulator transition in correlated thin films : an inhomogeneous dynamical mean-field theory approach Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 165112
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n, quasiparticle residue Z, and spectral weight at the Fermi level A(ω=0) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A(ω=0). The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000373572700002 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; This work was partially funded by the Flemish Fund for Scientific Research (FWO Belgium) under FWO Grant No. G.0520.10 and the joint FWF (Austria)-FWO Grant No. GOG6616N, and by the SITOGA FP7 project. Most of the calculations were performed on KU Leuven's ThinKing HPC cluster provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132872 Serial 4167
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V.
Title Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 155417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373760900004 Publication Date 2016-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133260 Serial 4171
Permanent link to this record
 

 
Author Mirzakhani, M.; Zarenia, M.; Ketabi, S.A.; da Costa, D.R.; Peeters, F.M.
Title Energy levels of hybrid monolayer-bilayer graphene quantum dots Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 165410
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer-bilayer graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the presence of a bias potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373572700004 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO)-CNPq project between Flanders and Brazil and the Brazilian Science Without Borders program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133261 Serial 4174
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M.
Title N-doped graphene : polarization effects and structural properties Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 174112
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376245900002 Publication Date 2016-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134148 Serial 4212
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.;
Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 075439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371398000007 Publication Date 2016-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:132352 Serial 4213
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M.
Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 075111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369401000001 Publication Date 2016-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131614 Serial 4220
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
Title Quantum magnetotransport properties of a MoS2 monolayer Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 035406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B. We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90%.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000367663500003 Publication Date 2016-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 42 Open Access
Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131093 Serial 4233
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Peeters, F.M.; Van Duppen, B.
Title Spin- and valley-dependent miniband structure and transport in silicene superlattices Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 125425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate silicene superlattices in the presence of a tunable barrier potential U, an exchange field M, and a perpendicular electric field E-z. The resulting miniband structure depends on the spin and valley indices and on the fields M and E-z. These fields determine the minigaps and also affect the additional Dirac points brought about by the periodic potential U. In addition, we consider diffusive transport and assess its dependence on the spin and valley indices as well as on temperature. The corresponding spin and valley polarizations strongly depend on the potential U and can be made almost 100% at very low temperatures at particular values of the Fermi energy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372715800009 Publication Date 2016-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.), and by the Flemish Science Foundation FWO-Vl) with the “Odysseus” Program (N. M.) and with a PhD research grant (B.V.D.). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133194 Serial 4246
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R.
Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 115314
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372715700001 Publication Date 2016-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133191 Serial 4262
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 115423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372409900006 Publication Date 2016-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133197 Serial 4267
Permanent link to this record
 

 
Author Grujić, M.M.; Ezawa, M.; Tadic, M.Z.; Peeters, F.M.
Title Tunable skewed edges in puckered structures Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 245413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E-z. A topological argument is presented, revealing the condition for the emergence of such edge states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377802700010 Publication Date 2016-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes ; This work was supported by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). M.E. is thankful for the support by the Grants-in-Aid for Scientific Research from MEXT KAKENHI (Grants No. 25400317 and No. 15H05854). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134599 Serial 4268
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M.
Title Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 014515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368481600003 Publication Date 2016-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131541 Serial 4270
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V.
Title Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 014518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000369217400004 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131581 Serial 4275
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 93 Issue (down) 93 Pages 046101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000374962100019 Publication Date 2016-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 3 Open Access
Notes Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:141060 Serial 4591
Permanent link to this record
 

 
Author Sankaran, K.J.; Duc Quang Hoang; Korneychuk, S.; Kunuku, S.; Thomas, J.P.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D'Haen, J.; Verbeeck, J.; Leou, K.-C.; Leung, K.T.; Lin, I.-N.; Haenen, K.
Title Hierarchical hexagonal boron nitride nanowall-diamond nanorod heterostructures with enhanced optoelectronic performance Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue (down) 93 Pages 90338-90346
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A superior field electron emission (FEE) source made from a hierarchical heterostructure, where two-dimensional hexagonal boron nitride (hBN) nanowalls were coated on one-dimensional diamond nanorods (DNRs), is fabricated using a simple and scalable method. FEE characteristics of hBN-DNR display a low turn-on field of 6.0 V mu m(-1), a high field enhancement factor of 5870 and a high life-time stability of 435 min. Such an enhancement in the FEE properties of hBN-DNR derives from the distinctive material combination, i.e., high aspect ratio of the heterostructure, good electron transport from the DNR to the hBN nanowalls and efficient field emission of electrons from the hBN nanowalls. The prospective application of these heterostructures is further evidenced by enhanced microplasma devices using hBN-DNR as a cathode, in which the threshold voltage was lowered to 350 V, affirming the role of hBN-DNR in the improvement of electron emission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385451800044 Publication Date 2016-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 8 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. KJ Sankaran, and P Pobedinskas are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.108
Call Number UA @ lucian @ c:irua:144757UA @ admin @ c:irua:144757 Serial 4662
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M.
Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue (down) 93 Pages 174503
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375527500001 Publication Date 2016-05-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:141732 Serial 4480
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 045420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358373600003 Publication Date 2015-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 68 Open Access
Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127192 Serial 1903
Permanent link to this record
 

 
Author Shakouri, K.; Peeters, F.M.
Title Spin- and pseudospin-polarized quantum Hall liquids in HgTe quantum wells Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 045416
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Hg(Cd)Te insulator heterostructure hosts a two-dimensional electron system that can simulate the physics of Dirac fermions with only a single valley. We investigate the magnetotransport properties of this structure and show that, unlike most two-dimensional crystals with spin and valley coupled levels, the Shubnikov-de Haas oscillations exhibit a high spin polarization in the absence of any valley degree of freedom. This effect can be observed using magnetospectroscopy measurements for quantum well thicknesses corresponding to either the topologically trivial or quantum spin Hall phases. The pseudospin texture of the electrons near the Fermi level is also studied and we show that a tunable pseudospin-polarized quantum Hall liquid can only be observed for thicknesses corresponding to the inverted regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358032000002 Publication Date 2015-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127097 Serial 3077
Permanent link to this record
 

 
Author Shakouri, K.; Simchi, H.; Esmaeilzadeh, M.; Mazidabadi, H.; Peeters, F.M.
Title Tunable spin and charge transport in silicene nanoribbons Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 035413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding formalism, we study spin and charge transport through a zigzag silicene ribbon subject to an external electric field E-z. The effect of an exchange field M-z is also taken into account and its consequences on the band structure as well as spin transport are evaluated. We show that the band structure lacks spin inversion symmetry in the presence of intrinsic spin-orbit interaction in combination of E-z and M-z fields. Our quantum transport calculations indicate that for certain energy ranges of the incoming electrons the silicene ribbon can act as a controllable high-efficiency spin polarizer. The polarization maxima occur simultaneously with the van Hove singularities of the local density of states. In this case, the combination of electric and exchange fields is the key to achieving nearly perfect spin polarization, which also leads to the appearance of additional narrow plateaus in the quantum conductance. Moreover, we demonstrate that the output current still remains completely spin-polarized for low-energy carriers even when a few edge vacancies are present.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357806900004 Publication Date 2015-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 70 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127099 Serial 3746
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Peeters, F.M.
Title Valley filtering using electrostatic potentials in bilayer graphene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 045417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Propagation of an electron wave packet through a quantum point contact (QPC) defined by electrostatic gates in bilayer graphene is investigated. The gates provide a bias between the layers, in order to produce an energy gap. If the gates on both sides of the contact produce the same bias, steps in the electron transmission probability are observed, as in the usual QPC. However, if the bias is inverted on one of the sides of the QPC, only electrons belonging to one of the Dirac valleys are allowed to pass, which provides a very efficient valley filtering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358253200009 Publication Date 2015-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 47 Open Access
Notes ; This work was financially supported by CNPq, under PNPD and PRONEX/FUNCAP grants; the CAPES Foundation under ProcessNo. BEX7178/13-1; the Bilateral programme between Flanders and Brazil; the Flemish Science Foundation (FWOVl); and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127152 Serial 3833
Permanent link to this record
 

 
Author Adami, O.-A.; Jelić, Ž.L.; Xue, C.; Abdel-Hafiez, M.; Hackens, B.; Moshchalkov, V.V.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V.
Title Onset, evolution, and magnetic braking of vortex lattice instabilities in nanostructured superconducting films Type A1 Journal article
Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 134506
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In 1976, Larkin and Ovchinnikov [Zh. Eksp. Teor. Fiz. 68, 1915 (1975) [Sov. Phys.–JETP 41, 960 (1976)]] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically, this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density J∗, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well-defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362433200003 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ACKNOWLEDGMENTS: This work was partially supported by the Fonds de la Recherche Scientifique-FNRS, the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO), and COST Action MP1201. The work of A.V.S. and Z.L.J. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. B.H. is an associate researcher of the Fonds de la Recherche Scientifique- FNRS. The authors thank J. Cuppens for the data analysis at the early stage of this work, R. Delamare for his valuable help during the fabrication of the samples, and G. Grimaldi for helpful discussions. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:128747 Serial 3981
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
Title Defect-induced faceted blue phosphorene nanotubes Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 104104
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The properties of a new class of phosphorene nanotubes (PNT) are investigated by performing first-principles calculations. We demonstrate that it is advantageous to use blue phosphorene in order to make small nanotubes and propose a way to create low-energy PNTs by the inclusion of defect lines. Five different types of defect lines are investigated and incorporated in various combinations. The resulting defect-induced faceted PNTs have negligible bending stresses which leads to a reduction in the formation energy with respect to round PNTs. Our armchair faceted PNTs have similar formation energies than the recently proposed multiphase faceted PNTs, but they have a larger variety of possible structures. Our zigzag faceted PNTs have lower formation energies than round tubes and multiphase faceted nanotubes. The electronic properties of the defect-induced faceted PNTs are determined by the defect lines which control the band gap and the shape of the electronic states at the band edges. These band gaps increase with the radius of the nanotubes and converge to those of isolated defect lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361037200006 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and ser- vices used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government, department EWI. Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127837 Serial 4033
Permanent link to this record
 

 
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M.
Title Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 081408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359860700005 Publication Date 2015-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 124 Open Access
Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127754 Serial 4034
Permanent link to this record
 

 
Author Dell'Anna, L.; Perali, A.; Covaci, L.; Neilson, D.
Title Using magnetic stripes to stabilize superfluidity in electron-hole double monolayer graphene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 220502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Experiments have confirmed that double monolayer graphene does not generate finite-temperature electron-hole superfluidity, because of very strong screening of the pairing attraction. The linear dispersing energy bands in monolayer graphene block any attempt to reduce the strength of the screening. We propose a hybrid device with two sheets of monolayer graphene in a modulated periodic perpendicular magnetic field. The field preserves the isotropic Dirac cones of the original monolayers but reduces the slope of the cones, making the monolayer Fermi velocity v(F) smaller. We demonstrate that with current experimental techniques, the reduction in vF can weaken the screening sufficiently to allow electron-hole superfluidity at measurable temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366500100004 Publication Date 2015-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; We thank M. Zarenia for useful discussions. L.D. acknowledges financial support from MIUR: FIRB 2012, Grant No. RBFR12NLNA_002, and PRIN, Grant No. 2010LLKJBX. A.P. and D.N. acknowledge financial support from University of Camerino FAR project CESEMN. L.C. acknowledges financial support from Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:130211 Serial 4069
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J.
Title Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries Type A1 Journal article
Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 134108
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.

Instead of writing the scattering amplitude in Fourier space as a set of plane waves,we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362893100002 Publication Date 2015-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes The authors acknowledge support from the FWO (As- pirant Fonds Wetenschappelijk Onderzoek–Vlaanderen), the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2, and ERC Starting Grant No. 278510 VORTEX; esteem2jra1; ECASJO; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:129417 c:irua:129417UA @ admin @ c:irua:129417 Serial 4089
Permanent link to this record
 

 
Author Sobrino Fernandez, M.M.; Neek-Amal, M.; Peeters, F.M.
Title AA-stacked bilayer square ice between graphene layers Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 245428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Water confined between two graphene layers with a separation of a few A forms a layered two-dimensional ice structure. Using large scale molecular dynamics simulations with the adoptable ReaxFF interatomic potential we found that flat monolayer ice with a rhombic-square structure nucleates between the graphene layers which is nonpolar and nonferroelectric. We provide different energetic considerations and H-bonding results that explain the interlayer and intralayer properties of two-dimensional ice. The controversial AA stacking found experimentally [Algara-Siller et al., Nature (London) 519, 443 (2015)] is consistent with our minimum-energy crystal structure of bilayer ice. Furthermore, we predict that an odd number of layers of ice has the same lattice structure as monolayer ice, while an even number of ice layers exhibits the square ice AA stacking of bilayer ice.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000366731800004 Publication Date 2015-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:130203 Serial 4127
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M.
Title Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 064112
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000359859400003 Publication Date 2015-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127753 Serial 4148
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Energy levels of bilayer graphene quantum dots Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue (down) 92 Pages 115437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000361663700003 Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 21 Open Access
Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:128726 Serial 4173
Permanent link to this record