|   | 
Details
   web
Records
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A.
Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 23 Issue (down) 15 Pages 3583-3594
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000397502900010 Publication Date 2016-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 13 Open Access Not_Open_Access
Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:142485 Serial 4653
Permanent link to this record
 

 
Author Proost, J.; Blaffart, F.; Turner, S.; Idrissi, H.
Title On the Origin of Damped Electrochemical Oscillations at Silicon Anodes (Revisited) Type A1 Journal article
Year 2014 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem
Volume 15 Issue (down) 14 Pages 3116-3124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride-free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress-induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field-induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000342770500029 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.075 Times cited 5 Open Access
Notes Approved Most recent IF: 3.075; 2014 IF: 3.419
Call Number UA @ lucian @ c:irua:121086 Serial 2444
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A.
Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 139 Issue (down) 139 Pages 819-828
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000392459300041 Publication Date 2016-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access
Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858
Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G.
Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
Year 2009 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 19 Issue (down) 13 Pages 2116-2124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000268297800012 Publication Date 2009-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 100 Open Access
Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990
Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.;
Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 26 Issue (down) 13 Pages 2034-2040
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000333616700008 Publication Date 2013-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 34 Open Access
Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved Most recent IF: 19.791; 2014 IF: 17.493
Call Number UA @ lucian @ c:irua:116150 Serial 1346
Permanent link to this record
 

 
Author Müller, M.; Turner, S.; Lebedev, O.I.; Wang, Y.; Van Tendeloo, G.; Fischer, R.A.
Title Au@MOF-5 and Au/Mox@MOF-5 (M = Zn, Ti; x = 1, 2) : preparation and microstructural characterisation Type A1 Journal article
Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem
Volume Issue (down) 12 Pages 1876-1887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Zn-carboxylate-based porous coordination polymer MOF-5 [Zn4O(bdc)3] and the metal oxide loaded materials ZnO@MOF-5 and TiO2@MOF-5 were loaded in a second step with the precursor [ClAuCO] to yield intermediate materials denoted as [ClAuCO]@MOF-5, [ClAuCO]/ZnO@MOF-5 and [ClAuCO]/TiO2@MOF-5. These composites were decomposed to Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 under hydrogen at 100 °C. The nanoparticle-loaded hybrid materials were characterised by powder X-ray diffraction (PXRD), IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and N2 sorption measurements, which reveal an intact MOF-5 structure that maintains a high specific surface area. For Au@MOF-5, crystalline Au nanoparticles were distributed over the MOF matrix in a homogeneous fashion with a size of ca. 13 nm, evidenced by high resolution transmission electron microscopy. In the case of Au/ZnO@MOF-5, the Au and metal oxide particles of a few nm in size were coexistent in a given volume of the MOF-5 matrix and were not separated in different crystalline MOF particles. For the TiO2 loaded materials the oxide is preferentially located near the outer surface of the MOF particles, leading to an increase of larger exterior Au particles in comparison to very small interior Au particles as observed for the other materials. Au@MOF-5, Au/ZnO@MOF-5 and Au/TiO2@MOF-5 were tested in liquid-phase oxidation of alcohols. Preliminary results show a high activity for the Au loaded materials in this reaction. This observation is attributed to the microstructure of the composites with very small Au particles distributed homogeneously over the MOF matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000289644300004 Publication Date 2011-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.444 Times cited 75 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.444; 2011 IF: 3.049
Call Number UA @ lucian @ c:irua:88644 Serial 205
Permanent link to this record
 

 
Author Mei, B.; Wiktor, C.; Turner, S.; Pougin, A.; Van Tendeloo, G.; Fischer, R.A.; Muhler, M.; Strunk, J.
Title Evidence for metalsupport interactions in Au modified TiOx/SBA-15 materials prepared by photodeposition Type A1 Journal article
Year 2013 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 3 Issue (down) 12 Pages 3041-3049
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold nanoparticles have been efficiently photodeposited onto titanate-loaded SBA-15 (Ti(x)/SBA-15) with different titania coordination. Transmission electron microscopy shows that relatively large Au nanoparticles are photodeposited on the outer surface of the Ti(x)/SBA-15 materials and that TiOx tends to form agglomerates in close proximity to the Au nanoparticles, often forming coreshell Au/TiOx structures. This behavior resembles typical processes observed due to strong-metal support interactions. In the presence of gold, the formation of hydrogen on Ti(x)/SBA-15 during the photodeposition process and the performance in the hydroxylation of terephthalic acid is greatly enhanced. The activity of the Au/Ti(x)/SBA-15 materials is found to depend on the TiOx loading, increasing with a larger amount of initially isolated TiO4 tetrahedra. Samples with initially clustered TiOx species show lower photocatalytic activities. When isolated zinc oxide (ZnOx) species are present on Ti(x)/SBA-15, gold nanoparticles are smaller and well dispersed within the pores. Agglomeration of TiOx species and the formation of Au/TiOx structures is negligible. The dispersion of gold and the formation of Au/TiOx in the SBA-15 matrix seem to depend on the mobility of the TiOx species. The mobility is determined by the initial degree of agglomeration of TiOx. Effective hydrogen evolution requires Au/TiOx coreshell composites as in Au/Ti(x)/SBA-15, whereas hydroxylation of terephthalic acid can also be performed with Au/ZnOx/TiOx/SBA-15 materials. However, isolated TiOx species have to be grafted onto the support prior to the zinc oxide species, providing strong evidence for the necessity of TiOSi bridges for high photocatalytic activity in terephthalic acid hydroxylation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328231400044 Publication Date 2013-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.614 Times cited 22 Open Access
Notes 262348 ESMI; FWO; 246791 COUNTATOMS; IAP-PAI; Hercules Approved Most recent IF: 10.614; 2013 IF: 7.572
Call Number UA @ lucian @ c:irua:112502 Serial 1094
Permanent link to this record
 

 
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.;
Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
Year 2012 Publication Macromolecular bioscience Abbreviated Journal Macromol Biosci
Volume 12 Issue (down) 12 Pages 1731-1738
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000312242600016 Publication Date 2012-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.238 Times cited 22 Open Access
Notes 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742
Call Number UA @ lucian @ c:irua:105286 Serial 1354
Permanent link to this record
 

 
Author Lisiecki, I.; Turner, S.; Bals, S.; Pileni, M.P.; Van Tendeloo, G.
Title The remarkable and intriguing resistance to oxidation of 2D ordered hcp Co nanocrystals: a new intrinsic property Type A1 Journal article
Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 21 Issue (down) 12 Pages 2335-2338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000267049200001 Publication Date 2009-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 28 Open Access
Notes Iap-Vi; Esteem 026019 Approved Most recent IF: 9.466; 2009 IF: 5.368
Call Number UA @ lucian @ c:irua:77887 Serial 2867
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue (down) 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H.
Title Functional twin boundaries Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue (down) 11 Pages 1052-1059
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000327475900002 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited 5 Open Access
Notes Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:107344 Serial 1304
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.;
Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 109 Issue (down) 109 Pages 062105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000383183600025 Publication Date 2016-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 20 Open Access
Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:137160 Serial 4407
Permanent link to this record
 

 
Author Pospisilova, A.; Filippov, S.K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M.
Title Glycogen-graft-poly(2-alkyl-2-oxazolines) – the new versatile biopolymer-based thermoresponsive macromolecular toolbox Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue (down) 106 Pages 61580-61588
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study is focused on thermoresponsive glycogen-graft-poly(2-alkyl-2-oxazolines), a new group of nanostructured hybrid dendrimeric stimuli-responsive polymers connecting the body's own biodegradable polysaccharidic dendrimer glycogen with the widely tuneable thermoresponsive behavior of polypeptide-analogic poly(2-alkyl-2-oxazolines), which are known to be biocompatible. Glycogen-graft-poly(2-alkyl-2-oxazolines) were prepared by a simple one-pot two-step procedure involving cationic ring-opening polymerization of 2-alkyl-2-oxazolines followed by termination of the living cationic ends with sodium glycogenate. As confirmed by light and X-ray scattering, as well as cryo-transmission electron microscopy, the grafted dendrimer structure allows easy adjustment of the cloud point temperature, the concentration dependence and nanostructure of the self-assembled phase separated polymer by crosstalk during graft composition, the graft length and the grafting density, in a very wide range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345656600045 Publication Date 2014-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 15 Open Access
Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:122222 Serial 1355
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G.
Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 107 Issue (down) 10 Pages 107602
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000294406600018 Publication Date 2011-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 115 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5
Permanent link to this record
 

 
Author Turner, S.; Shenderova, O.; da Pieve, F.; Lu, Y.-G.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G.
Title Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond Type A1 Journal article
Year 2013 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 210 Issue (down) 10 Pages 1976-1984
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Aberration-corrected transmission electron microscopy, electron energy-loss spectroscopy, and density functional theory (DFT) calculations are used to solve several key questions about the surface structure, the particle morphology, and the distribution and nature of nitrogen impurities in detonation nanodiamond (DND) cleaned by a recently developed ozone treatment. All microscopy and spectroscopy measurements are performed at a lowered acceleration voltage (80/120kV), allowing prolonged and detailed experiments to be carried out while minimizing the risk of knock-on damage or surface graphitization of the nanodiamond. High-resolution TEM (HRTEM) demonstrates the stability of even the smallest nanodiamonds under electron illumination at low voltage and is used to image the surface structure of pristine DND. High resolution electron energy-loss spectroscopy (EELS) measurements on the fine structure of the carbon K-edge of nanodiamond demonstrate that the typical * pre-peak in fact consists of three sub-peaks that arise from the presence of, amongst others, minimal fullerene-like reconstructions at the nanoparticle surfaces and deviations from perfect sp(3) coordination at defects in the nanodiamonds. Spatially resolved EELS experiments evidence the presence of nitrogen within the core of DND particles. The nitrogen is present throughout the whole diamond core, and can be enriched at defect regions. By comparing the fine structure of the experimental nitrogen K-edge with calculated energy-loss near-edge structure (ELNES) spectra from DFT, the embedded nitrogen is most likely related to small amounts of single substitutional and/or A-center nitrogen, combined with larger nitrogen clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000329299700025 Publication Date 2013-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 37 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; FWO; Hercules; GOA XANES meets ELNES Approved Most recent IF: 1.775; 2013 IF: 1.525
Call Number UA @ lucian @ c:irua:110821UA @ admin @ c:irua:110821 Serial 41
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue (down) 10 Pages 1904-1909
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000304237500024 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 33 Open Access
Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Lebedev, O.I.; Parfenova, A.; Turner, S.; Tondello, E.; Van Tendeloo, G.
Title Tailored vapor-phase growth of CuxO-TiO2(x=1,2) nanomaterials decorated with Au particles Type A1 Journal article
Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume 27 Issue (down) 10 Pages 6409-6417
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of CuxOTiO2 (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous CuxO matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO2 nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400550 °C under wet oxygen atmospheres, adopting Cu(hfa)2·TMEDA (hfa =1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) and Ti(O-iPr)2(dpm)2 (O-iPr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial CuxO matrix and on the deposited TiO2 amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000290292900082 Publication Date 2011-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 36 Open Access
Notes Fwo Approved Most recent IF: 3.833; 2011 IF: 4.186
Call Number UA @ lucian @ c:irua:88940 Serial 3467
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G.
Title Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue (down) 10 Pages 10878-10884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343952600126 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 85 Open Access OpenAccess
Notes 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:121219 Serial 3656
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Turner, S.; Van Tendeloo, G.
Title Fabrication and Characterization of Fe2O3-Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers Type A1 Journal article
Year 2015 Publication Journal of advanced microscopy research Abbreviated Journal
Volume 10 Issue (down) 10 Pages 239-243
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the design of nanosystems based on functionalized -Fe 2 O 3 nanostructures supported on fluorine-doped tin oxide (FTO) substrates. The target materials were developed by means of hybrid vapor phase approaches, combining plasma assisted-chemical vapor deposition (PA-CVD) for the production of iron(III) oxide systems and the subsequent radio frequency (RF)-sputtering or atomic layer deposition (ALD) for the functionalization with Au nanoparticles or TiO 2 overlayers, respectively. The interplay between material characteristics and the adopted processing parameters was investigated by complementary analytical techniques, encompassing X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS). The obtained results highlight the possibility of fabricating Au/ -Fe 2 O 3 nanocomposites, with a controlled dispersion and distribution of metal particles, and TiO 2 / -Fe 2 O 3 heterostructures, characterized by an intimate coupling between the constituent oxides.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-7573 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes The authors acknowledge the financial support under the FP7 project “SOLARO- GENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2015 projects, grant n CPDR132937/13 (SOLLEONE), and Regione Lombardia- INSTM ATLANTE program. Stuart Turner acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Dr. L. Borgese and Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia Univer- sity, Italy) for precious assistance in ALD experiments. Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:132798 Serial 4058
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Srinivasu, K.; Korneychuk, S.; Turner, S.; Drijkoningen, S.; Pobedinskas, P.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.
Title Type A1 Journal article
Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 213 Issue (down) 10 Pages 2654-2661
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Utilization of Au and nanocrystalline diamond ( NCD) as interlayers noticeably modifies the microstructure and field electron emission ( FEE) properties of hexagonal boron nitride nanowalls ( hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3V mu m(-1), attaining FEE current density of 2.58mAcm(-2) and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride ( aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388321500017 Publication Date 2016-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 5 Open Access
Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. K. J. Sankaran, P. Pobedinskas, and S. Turner are FWO Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 1.775
Call Number UA @ lucian @ c:irua:144644UA @ admin @ c:irua:144644 Serial 4655
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Kloetzer, B.; Rameshan, C.; Pfaller, K.
Title Origin of different deactivation of Pd/SnO2 and Pd/GeO2 catalysts in methanol dehydrogenation and reforming: a comparative study Type A1 Journal article
Year 2010 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen
Volume 381 Issue (down) 1/2 Pages 242-252
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Pd particles supported on SnO2 and GeO2 have been structurally investigated by X-ray diffraction, (High-Resolution) transmission and scanning electron microscopy after different reductive treatments to monitor the eventual formation of bimetallic phases and catalytically tested in methanol dehydrogenation/ reforming. For both oxides this included a thin film sample with well-defined Pd particles and a powder catalyst prepared by incipient wetness impregnation. The hexagonal and the tetragonal polymorph were studied for powder GeO2. Pd2Ge formation was observed on all GeO2-supported catalysts, strongly depending on the specific sample used. Reduction of the thin film at 573K resulted in full transformation into the bimetallic state. The partial solubility of hexagonal GeO2 in water and its thermal structural instability yielded Pd2Ge formation at 473 K, at the cost of a structurally inhomogeneous support and Ge metal formation at higher reduction temperatures. Pd on tetragonal GeO2 entered a state of strong metalsupport interaction after reduction at 573673 K, resulting in coalescing Pd2Ge particles on a sintered and re-crystallized support, apparently partially covering the bimetallic particles and decreasing the catalytic activity. Pd2Ge on amorphous thin film and hexagonal GeO2 converted methanol primarily via dehydrogenation to CO and H2. At 573 K, formation of Pd2Sn and also PdSn occurred on the Pd/SnO2 thin film. Pd3Sn2 (and to some extent Pd2Sn) were predominantly obtained on the respective powder catalyst. Strong deactivation with increasing reduction temperature was observed, likely not based on the classical strong metalsupport interaction effect, but rather on a combination of missing active structural ensembles on Sn-enriched bimetallic phases and the formation of metallic -Sn. Correlations to Pd and its bimetallics supported on ZnO, Ga2O3 and In2O3 were also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000279100700029 Publication Date 2010-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.339 Times cited 14 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.339; 2010 IF: 3.384
Call Number UA @ lucian @ c:irua:83927 Serial 2522
Permanent link to this record
 

 
Author Lorenz, H.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Pfaller, K.; Penner, S.
Title Pd-In2O3 interaction due to reduction in hydrogen: consequences for methanol steam reforming Type A1 Journal article
Year 2010 Publication Applied catalysis : A : general Abbreviated Journal Appl Catal A-Gen
Volume 374 Issue (down) 1/2 Pages 180-188
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two different Pd/In2O3 samples including a thin film model catalyst with well-defined Pd particles grown on NaCl(0 0 1) supports and a powder catalyst prepared by an impregnation technique are examined by electron microscopy, X-ray diffraction and catalytic measurements in methanol steam reforming in order to correlate the formation of different oxide-supported bimetallic PdIn phases with catalytic activity and selectivity. A PdIn shell around the Pd particles is observed on the thin film catalyst after embedding the Pd particles in In2O3 at 300 K, likely because alloying to PdIn and oxidation to In2O3 are competing processes. Increased PdIn bimetallic formation is observed up to 573 K reduction temperature until at 623 K the film stability limit in hydrogen is reached. Oxidative treatments at 573 K lead to decomposition of PdIn and to the formation of an In2O3 shell covering the Pd particles, which irreversibly changes the activity and selectivity pattern to clean In2O3. PdIn and Pd2In3 phases are obtained on the powder catalyst after reduction at 573 K and 673 K, respectively. Only CO2-selective methanol steam reforming is observed in the reduction temperature range between 473 K and 573 K. After reduction at 673 K encapsulation of the bimetallic particles by crystalline In2O3 suppresses CO2 formation and only activity and selectivity of clean In2O3 are measured.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000274869900023 Publication Date 2009-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-860X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.339 Times cited 55 Open Access
Notes Esteem 026019 Approved Most recent IF: 4.339; 2010 IF: 3.384
Call Number UA @ lucian @ c:irua:81801 Serial 3553
Permanent link to this record
 

 
Author Kundu, P.; Turner, S.; Van Aert, S.; Ravishankar, N.; Van Tendeloo, G.
Title Atomic structure of quantum gold nanowires : quantification of the lattice strain Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue (down) 1 Pages 599-606
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000330542900061 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 20 Open Access
Notes FWO; Countatoms; Hercules Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:113856 Serial 199
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue (down) 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.;
Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem
Volume 79 Issue (down) 1 Pages 21-24
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337974900002 Publication Date 2013-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.797 Times cited 34 Open Access
Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved Most recent IF: 2.797; 2014 IF: 2.997
Call Number UA @ lucian @ c:irua:113088 Serial 1235
Permanent link to this record
 

 
Author Orlinskii, S.B.; Bogomolov, R.S.; Kiyamova, A.M.; Yavkin, B.V.; Mamin, G.M.; Turner, S.; Van Tendeloo, G.; Shiryaev, A.A.; Vlasov, I.I.; Shenderova, O.
Title Identification of substitutional nitrogen and surface paramagnetic centers in nanodiamond of dynamic synthesis by electron paramagnetic resonance Type A1 Journal article
Year 2011 Publication Nanoscience and nanotechnology letters Abbreviated Journal Nanosci Nanotech Let
Volume 3 Issue (down) 1 Pages 63-67
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Production of nanodiamond particles containing substitutional nitrogen is important for a wide variety of advanced applications. In the current work nanodiamond particles synthesized from a mixture of graphite and hexogen were analyzed to determine the presence of substitutional nitrogen using pulsed electron paramagnetic resonance (EPR) spectroscopy. Nitrogen paramagnetic centers in the amount of 1.2 ppm have been identified. The spin relaxation characteristics for both nitrogen and surface defects are also reported. A new approach for efficient depletion of the strong non-nitrogen EPR signal in nanodiamond material by immersing nanodiamond particles into ice matrix is suggested. This approach allows an essential decrease of the spin relaxation time of the dominant non-nitrogen defects, while preserving the substitutional nitrogen spin relaxation time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293211200012 Publication Date 2011-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-4900;1941-4919; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.889 Times cited 14 Open Access
Notes Approved Most recent IF: 1.889; 2011 IF: 0.528
Call Number UA @ lucian @ c:irua:91943 Serial 1548
Permanent link to this record
 

 
Author Van Rompaey, S.; Dachraoui, W.; Turner, S.; Podyacheva, O.Y.; Tan, H.; Verbeeck, J.; Abakumov, A.; Hadermann, J.
Title Layered oxygen vacancy ordering in Nb-doped SrCo1-xFexO3-\delta perovskite Type A1 Journal article
Year 2013 Publication Zeitschrift für Kristallographie Abbreviated Journal Z Krist-Cryst Mater
Volume 228 Issue (down) 1 Pages 28-34
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structure of SrCo0.7Fe0.2Nb0.1O2.72 was determined using a combination of precession electron diffraction (PED), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and spatially resolved electron energy loss spectroscopy (STEM-EELS). The structure has a tetragonal P4/mmm symmetry with cell parameters a = b = a(p), c = 2a(p) (a(p) being the cell parameter of the perovskite parent structure). Octahedral BO2 layers alternate with the anion-deficient BO1.4 layers, the different B cations are randomly distributed over both layers. The specific feature of the SrCo0.7Fe0.2NB0.1O2.72 microstructure is a presence of extensive nanoscale twinning resulting in domains with alignment of the tetragonal c-axis along all three cubic direction of the perovskite subcell.
Address
Corporate Author Thesis
Publisher Place of Publication München Editor
Language Wos 000315475900004 Publication Date 2013-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4946; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.179 Times cited 9 Open Access
Notes Fwo; Countatoms Approved Most recent IF: 3.179; 2013 IF: NA
Call Number UA @ lucian @ c:irua:107698UA @ admin @ c:irua:107698 Serial 1808
Permanent link to this record
 

 
Author Gao, J.; Lebedev, O.I.; Turner, S.; Li, Y.F.; Lu, Y.H.; Feng, Y.P.; Boullay, P.; Prellier, W.; Van Tendeloo, G.; Wu, T.
Title Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires Type A1 Journal article
Year 2012 Publication Nano letters Abbreviated Journal Nano Lett
Volume 12 Issue (down) 1 Pages 275-280
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Rational synthesis of nanowires via the vaporliquidsolid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored AuCu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary InSnO phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000298943100048 Publication Date 2011-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 25 Open Access
Notes Fwo Approved Most recent IF: 12.712; 2012 IF: 13.025
Call Number UA @ lucian @ c:irua:94209 Serial 2587
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Poelman, H.; Bulut, M.; de Clippel, F.; Smeets, P.; Sels, B.; Jacobs, P.
Title Selectivity in sorption and hydrogenation of methyl oleate and elaidate on MFI zeolites Type A1 Journal article
Year 2010 Publication Journal of catalysis Abbreviated Journal J Catal
Volume 270 Issue (down) 1 Pages 172-184
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Different zeolites were tested for selective removal of methyl elaidate (trans isomer) from an equimolar mixture with methyl oleate (cis isomer). Sorption experiments of the geometric isomers show that only ZSM-5 samples with reduced Al content in the framework are able to discriminate among the bent cis and the linear trans fatty acid methyl esters. Hydrogenation experiments of equimolar methyl oleate and elaidate mixtures at low temperature (65 °C) and high hydrogen pressure (6.0 MPa), using Pt catalysts, confirm this result. Only with a Pt/NaZSM-5 catalyst outspoken selectivity for the hydrogenation of the trans isomer is obtained. In order to prepare a selective Pt/ZSM-5 catalyst, the influence of Pt addition (impregnation, ion-exchange and competitive ion-exchange) and Pt activation (different calcination and reduction temperatures) on the Pt-distribution and Pt particle size was investigated using SEM, bright-field and HR TEM, EDX, electron tomography, CO-chemisorption, XPS, XRD, and UVvis measurements. The best result in terms of hydrogenation activity and selectivity is obtained with a Pt/ZSM-5 catalyst, which is prepared via competitive ion-exchange, followed by slow calcination up to 350 °C under high O2 flow and a reduction up to 500 °C under H2. This preparation method leads to a Pt/ZSM-5 catalyst with the best Pt distribution and the smallest Pt clusters occluded in the zeolite structure. Finally, the influence of zeolite crystal size, morphology, and elemental composition of ZSM-5 on hydrogenation activity and selectivity was investigated in detail.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, Calif. Editor
Language Wos 000275966100021 Publication Date 2010-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 24 Open Access
Notes FWO; IAP-IV; Methusalem Approved Most recent IF: 6.844; 2010 IF: 5.415
Call Number UA @ lucian @ c:irua:82435 Serial 2970
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 9 Issue (down) 1 Pages 13426
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486139700008 Publication Date 2019-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited Open Access
Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:162786 Serial 5375
Permanent link to this record