toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schalm, O.; van der Linden, V.; Frederickx, P.; Luyten, S.; van der Snickt, G.; Caen, J.; Schryvers, D.; Janssens, K.; Cornelis, E.; van Dyck, D.; Schreiner, M. pdf  doi
openurl 
  Title Enamels in stained glass windows: preparation, chemical composition, microstructure and causes of deterioration Type A1 Journal article
  Year 2009 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 64 Issue (down) 8 Pages 812-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Vision lab  
  Abstract Stained glass windows incorporating dark blue and purple enamel paint layers are in some cases subject to severe degradation while others from the same period survived the ravages of time. A series of dark blue, greenblue and purple enamel glass paints from the same region (Northwestern Europe) and from the same period (16early 20th centuries) has been studied by means of a combination of microscopic X-ray fluorescence analysis, electron probe micro analysis and transmission electron microscopy with the aim of better understanding the causes of the degradation. The chemical composition of the enamels diverges from the average chemical composition of window glass. Some of the compositions appear to be unstable, for example those with a high concentration of K2O and a low content of CaO and PbO. In other cases, the deterioration of the paint layers was caused by the less than optimal vitrification of the enamel during the firing process. Recipes and chemical compositions indicate that glassmakers of the 1617th century had full control over the color of the enamel glass paints they made. They mainly used three types of coloring agents, based on Co (dark blue), Mn (purple) and Cu (light-blue or greenblue) as coloring elements. Bluepurple enamel paints were obtained by mixing two different coloring agents. The coloring agent for redpurple enamel, introduced during the 19th century, was colloidal gold embedded in grains of lead glass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000269995300018 Publication Date 2009-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 28 Open Access  
  Notes Iuap Vi/6; Fwo; Goa Approved Most recent IF: 3.241; 2009 IF: 2.719  
  Call Number UA @ lucian @ c:irua:79647 Serial 1035  
Permanent link to this record
 

 
Author De Meyer, S.; Vanmeert, F.; Vertongen, R.; Van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; van der Snickt, G.; Vandivere, A.; Janssens, K. url  doi
openurl 
  Title Macroscopic x-ray powder diffraction imaging reveals Vermeer's discriminating use of lead white pigments in Girl with a Pearl Earring Type A1 Journal article
  Year 2019 Publication Science Advances Abbreviated Journal  
  Volume 5 Issue (down) 8 Pages eaax1975  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Until the 19th century, lead white was the most important white pigment used in oil paintings. Lead white is typically composed of two crystalline lead carbonates: hydrocerussite [2PbCO(3)center dot Pb(OH)(2)] and cerussite (PbCO3). Depending on the ratio between hydrocerussite and cerussite, lead white can be classified into different subtypes, each with different optical properties. Current methods to investigate and differentiate between lead white subtypes involve invasive sampling on a microscopic scale, introducing problems of paint damage and representativeness. In this study, a 17th century painting Girl with a Pearl Earring (by Johannes Vermeer, c. 1665, collection of the Mauritshuis, NL) was analyzed with a recently developed mobile and noninvasive macroscopic x-ray powder diffraction (MA-XRPD) scanner within the project Girl in the Spotlight. Four different subtypes of lead white were identified using XRPD imaging at the macroscopic and microscopic scale, implying that Vermeer was highly discriminatory in his use of lead white.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000491121200021 Publication Date 2019-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; K.J. wishes to thank the Research Council of the University of Antwerp for financial support through GOA project SolarPaint. Also, FWO, Brussels is acknowledged for financial support through grants G056619N and G054719N. The support of InterReg programme Smart*Light is appreciated. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163815 Serial 5700  
Permanent link to this record
 

 
Author Aibéo, C.L.; Goffin, S.; Schalm, O.; van der Snickt, G.; Laquière, N.; Eyskens, P.; Janssens, K. pdf  doi
openurl 
  Title Micro-Raman analysis for the identification of pigments from 19th and 20th century paintings Type A1 Journal article
  Year 2008 Publication Journal of Raman spectroscopy Abbreviated Journal J Raman Spectrosc  
  Volume 39 Issue (down) 8 Pages 1091-1098  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this article, results using confocal µ-Raman to analyse the cross-section of paint samples are presented. Results obtained with light microscopy, scanning electron microscopy (SEM) combined with an energy dispersive X-ray analysis (EDX) and micro-X-ray fluorescence (µ-XRF) are mentioned and compared to the ones obtained with confocal (MRS). In some cases, pigment identification was possible only by combining analytical results from different techniques. The samples were drawn from five paintings belonging to the Academy of Fine Arts of Antwerp, which are part of a collection of 34 paintings made by students from the Academy between 1819 and 1920. Since, on the one hand, the painting techniques and materials, especially pigments, used in this period are still not completely known, and on the other hand, this collection constitutes a very important and reliable resource of information, these paintings were chosen for a systematic investigation. They represent the evolution of painting in Belgium over approximately a century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259242100020 Publication Date 2008-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0377-0486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.969 Times cited 28 Open Access  
  Notes Approved Most recent IF: 2.969; 2008 IF: 3.526  
  Call Number UA @ admin @ c:irua:74467 Serial 5716  
Permanent link to this record
 

 
Author van der Snickt, G.; Dik, J.; Cotte, M.; Janssens, K.; Jaroszewicz, J.; de Nolf, W.; Groenewegen, J.; van der Loeff, L. doi  openurl
  Title Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques Type A1 Journal article
  Year 2009 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 81 Issue (down) 7 Pages 2600-2610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract On several paintings of James Ensor (1860−1949), a gradual fading of originally bright yellow areas, painted with the pigment cadmium yellow (CdS), is observed. Additionally, in some areas exposed to light, the formation of small white-colored globules on top of the original paint surface is observed. In this paper the chemical transformation leading to the color change and to the formation of the globules is elucidated. Microscopic X-ray absorption near-edge spectroscopy (ì-XANES) experiments show that sulfur, originally present in sulfidic form (S2−), is oxidized during the transformation to the sulfate form (S6+). Upon formation (at or immediately below the surface), the highly soluble cadmium sulfate is assumed to be transported to the surface in solution and reprecipitates there, forming the whitish globules. The presence of cadmium sulfate (CdSO4·2H2O) and ammonium cadmium sulfate [(NH4)2Cd(SO4)2] at the surface is confirmed by microscopic X-ray diffraction measurements, where the latter salt is suspected to result from a secondary reaction of cadmium sulfate with ammonia. Measurements performed on cross sections reveal that the oxidation front has penetrated into the yellow paint down to ca. 1−2 ìm. The morphology and elemental distribution of the paint and degradation product were examined by means of scanning electron microscopy equipped with an energy-dispersive spectrometer (SEM-EDS) and synchrotron radiation based micro-X-ray fluorescence spectrometry (SR ì-XRF). In addition, ultraviolet-induced visible fluorescence photography (UIVFP) revealed itself to be a straightforward technique for documenting the occurrence of this specific kind of degradation on a macroscale by painting conservators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000264759400025 Publication Date 2009-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 91 Open Access  
  Notes Approved Most recent IF: 6.32; 2009 IF: 5.214  
  Call Number UA @ admin @ c:irua:76415 Serial 5501  
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G. url  doi
openurl 
  Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
  Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 13 Issue (down) 7 Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000972133900001 Publication Date 2023-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.679  
  Call Number UA @ admin @ c:irua:194898 Serial 7333  
Permanent link to this record
 

 
Author Janssens, K.; de Nolf, W.; van der Snickt, G.; Vincze, L.; Vekemans, B.; Terzano, R.; Brenker, F.E. doi  openurl
  Title Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis Type A1 Journal article
  Year 2010 Publication Trends in analytical chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 29 Issue (down) 6 Pages 464-478  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279235000014 Publication Date 2010-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited 48 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of FWO (Brussels, Belgium) projects nr. G.0704.08 and G.0179.09 and from the UA-BOF GOA programme. ; Approved Most recent IF: 8.442; 2010 IF: 6.602  
  Call Number UA @ admin @ c:irua:83903 Serial 5806  
Permanent link to this record
 

 
Author Dooley, K.A.; Gifford, E.M.; van Loon, A.; Noble, P.; Zeibel, J.G.; Conover, D.M.; Alfeld, M.; van der Snickt, G.; Legrand, S.; Janssens, K.; Dik, J.; Delaney, J.K. url  doi
openurl 
  Title Separating two painting campaigns in Saul and David, attributed to Rembrandt, using macroscale reflectance and XRF imaging spectroscopies and microscale paint analysis Type A1 Journal article
  Year 2018 Publication Heritage science Abbreviated Journal  
  Volume 6 Issue (down) 6 Pages 46  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Late paintings of Rembrandt van Rijn (1606-1669) offer intriguing problems for both art historians and conservation scientists. In the research presented here, the key question addressed is whether observed stylistic differences in paint handling can be correlated with material differences. In Saul and David, in the collection of the Royal Picture Gallery Mauritshuis in The Hague, NL, the stylistic differences between the loose brushwork of Saul's cloak and the more detailed depiction of his turban and the figure of David have been associated with at least two painting stages since the late 1960s, but the attribution of each stage has been debated in the art historical literature. Stylistic evaluation of the paint handling in the two stages, based on magnified surface examination, is further described here. One of the research goals was to determine whether the stylistic differences could be further differentiated with macroscale and microscale methods of material analysis. To address this, selected areas of the painting having pronounced stylistic differences were investigated with two macroscopic chemical imaging methods, X-ray fluorescence and reflectance imaging spectroscopies. The pigments used were identified and their spatial distribution was mapped. The mapping results show that the passages rendered in more detail and associated stylistically with the first painting stage, such as the orange-red color of David's garment or the Greek key design in Saul's turban, were painted with predominately red ochre mixed with vermilion. The regions of loose, bold brushwork, such as the orange-red slashing strokes in the interior of Saul's cloak, associated with the second painting stage, were painted with predominately red ochre without vermilion. These macroscale imaging results were confirmed and extended with scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analysis of three cross-sections taken from regions of stylistic differences associated with the two painting stages, including one sample each from the right and left sleeve of David, and one from the interior of Saul's cloak. SEM-EDX also identified a trace component, barium sulfate, associated with the red ochre of the second stage revisions. Combining mapping information from two spectroscopic imaging methods with localized information from microscopic samples has clearly shown that the stylistic differences observed in the paint handling are affiliated with differences in the chemical composition of the paints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441205600001 Publication Date 2018-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes ; The authors gratefully acknowledge the financial support through the NWO Science4Arts program (ReVisRembrandt Project 2012-2018) and the NSF SCI-ART program (Award 1041827). JKD acknowledges support from the Andrew W. Mellon and the Samuel H. Kress Foundations. SL is grateful for a doctoral scholarship from the Research Council of the University of Antwerp. GvdS and KJ acknowledge support from the Fund Baillet Latour. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:153119 Serial 5829  
Permanent link to this record
 

 
Author Alfeld, M.; Pedroso, J.V.; van Hommes, M.E.; van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. pdf  doi
openurl 
  Title A mobile instrument for in situ scanning macro-XRF investigation of historical paintings Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 28 Issue (down) 5 Pages 760-767  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Scanning macro-X-ray fluorescence analysis (MA-XRF) is rapidly being established as a technique for the investigation of historical paintings. The elemental distribution images acquired by this method allow for the visualization of hidden paint layers and thus provide insight into the artist's creative process and the painting's conservation history. Due to the lack of a dedicated, commercially available instrument the application of the technique was limited to a few groups that constructed their own instruments. We present the first commercially available XRF scanner for paintings, consisting of an X-ray tube mounted with a Silicon-Drift (SD) detector on a motorized stage to be moved in front of a painting. The scanner is capable of imaging the distribution of the main constituents of surface and sub-surface paint layers in an area of 80 by 60 square centimeters with dwell times below 10 ms and a lateral resolution below 100 mu m. The scanner features for a broad range of elements between Ti (Z = 22) and Mo (Z = 42) a count rate of more than 1000 counts per second (cps)?mass percent and detection limits of 100 ppm for measurements of 1 s duration. Next to a presentation of spectrometric figures of merit, the value of the technique is illustrated through a case study of a painting by Rembrandt's student Govert Flinck (1615-1660).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317674200019 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 106 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents the results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. M. Alfeld receives a Ph. D. fellowship of the Research Foundation-Flanders (FWO). We thank J. Langerock for allowing us to examine the portable altar triptych shown in Fig. 5. ; Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ admin @ c:irua:108517 Serial 5453  
Permanent link to this record
 

 
Author de Nolf, W.; Dik, J.; van der Snickt, G.; Wallert, A.; Janssens, K. doi  openurl
  Title High energy X-ray powder diffraction for the imaging of (hidden) paintings Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue (down) 5 Pages 910-916  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Over the past few years a number of innovative imaging techniques have been introduced for the visualization of hidden paint layers in Old Master Paintings. These include X-ray fluorescence scanning, TeraHertz imaging, optical coherence tomography and other acoustics-based forms of visualization. All of these techniques are usually a trade-off between their penetrative capability on the one side and their analytical precision in terms of spatial resolution and material identification on the other. Here, we present the first-time use of High-Energy X-ray Powder Diffraction imaging (HE-XRPD) in the study of hidden layers in paintings. As an imaging tool, it combines high-depth sensitivity with fingerprint identification of most inorganic painting materials. The potential as well as some limitations of this technique are demonstrated using model paintings as well as an authentic 16th century painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000289731900005 Publication Date 2011-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 34 Open Access  
  Notes ; ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:89922 Serial 5640  
Permanent link to this record
 

 
Author Alfeld, M.; Janssens, K.; Dik, J.; de Nolf, W.; van der Snickt, G. doi  openurl
  Title Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue (down) 5 Pages 899-909  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Elemental distribution maps are of great interest in the study of historical paintings, as they allow to investigate the pigment use of the artist, to image changes made in the painting during or after its creation and in some cases to reveal discarded paintings that were later over painted. Yet a method that allows to record such maps of a broad range of elements in a fast, non-destructive and in situ manner is not yet commonly available; a dedicated mobile scanning XRF instrument might fill this gap. In this paper we present three self-built scanning macro-XRF instruments, each based on the experience gained with its precursor. These instruments are compared in terms of sensitivity and limits of detection, which includes a discussion of the use of polycapillary optics and pinhole collimators as beam defining devices. Furthermore, the imaging capabilities of the instruments are demonstrated in three exemplary cases: (parts of) historical paintings from the 15th to the 19th century are examined. These cases illustrate the value of element specific distribution maps in the study of historical paintings and allow in the case of Vincent van Gogh's Patch of Grass a direct comparison between in situ and synchrotron based scanning macro-XRF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000289731900004 Publication Date 2011-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 107 Open Access  
  Notes ; The investigation of the “Triptych of the Seven Sacraments'' was done in collaboration with Griet Steyaert, independent restorer, and Lizet Klaassen, Royal Museum of Fine Arts (Antwerp, Belgium). The investigation of ”Patch of Grass'' was realized in collaboration with Luuk van der Loeff, Kroller-Muller-Museum (Otterlo, The Netherlands). M. Alfeld is a PhD fellowship of the Research Foundation-Flanders (FWO). This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16) NACHO. The text also presents results of GOA "XANES meets ELNES'' (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0103.04, G.0689.06 and G.0704.08. Further, the work presented was sponsored by the Innovational Research Incentives Scheme of the Netherlands Organization for Scientific Research, NWO (proj. no. 016.118.303). ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:89919 Serial 5758  
Permanent link to this record
 

 
Author Radepont, M.; de Nolf, W.; Janssens, K.; van der Snickt, G.; Coquinot, Y.; Klaassen, L.; Cotte, M. doi  openurl
  Title The use of microscopic X-ray diffraction for the study of HgS and its degradation products corderoite (\alpha-Hg3S2Cl2), kenhsuite (\gamma-Hg3S2Cl2) and calomel (Hg2Cl2) in historical paintings Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue (down) 5 Pages 959-968  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Since antiquity, the red pigment mercury sulfide (α-HgS), called cinnabar in its natural form or vermilion red when synthetic, was very often used in frescoes and paintings, even if it was known to suffer occasionally from degradation. The paint hereby acquires a black or silver-grey aspect. The chemical characterization of these alteration products is rather challenging mainly because of the micrometric size and heterogeneity of the surface layers that develop and that are responsible for the color change. Methods such as electron microscopy, synchrotron-based microscopic X-ray fluorescence, microscopic X-ray absorption near edge spectroscopy, Raman microscopy and secondary ion microscopy have been previously employed to identify the (Hg- and S-) compounds present and to study their co-localization. Next to these, also microscopic X-ray diffraction (XRD) (either by making use of laboratory X-ray sources or when used at a synchrotron facility) allows the identification of the crystal phases that are present in degraded HgS paint layers. In this paper we employ these various forms of micro-XRD to analyze degraded red paint in different paintings and compare the results with other X-ray based methods. Whereas the elemental analyses of the degradation products revealed, next to mercury and sulfur, the presence of chlorine, X-ray diffraction allowed the identification, next to α-HgS, of the Hg and S-containing compound calomel (Hg2Cl2) but also of the Hg, S and Cl-containing minerals corderoite (α-Hg3S2Cl2) and kenhsuite (γ-Hg3S2Cl2). These observations are consistent with X-ray absorption spectroscopy measurements performed at the S- and Cl-edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000289731900011 Publication Date 2011-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 40 Open Access  
  Notes ; The authors gratefully acknowledge GOA programme “XANES meets EELS'' (University of Antwerp Research Council), the IUAP VI/P16 programme ”Nacho'' (BELSPO, Brussels, Belgium) and FWO (Brussels, Belgium) projects no. G.0689.06, G.0704.08 and G017909N for financial support, the ESRF for granting beamtime under proposals no. EC442 and EC720, and Gema Martinez-Criado for practical help on ID18F. The KMSKA staff is also gratefully acknowledged for their help and interest. Javier Chillida is thanked for providing us with the Pedralbes samples. The authors are also indebted to the CHARISMA project (grant agreement 228330) for financial support. ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:89927 Serial 5896  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Hendriks, E.; Vanmeert, F.; van der Snickt, G.; Cotte, M.; Falkenberg, G.; Brunetti, B.G.; Miliani, C. pdf  doi
openurl 
  Title Evidence for degradation of the chrome yellows in Van Gogh's sunflowers : a study using noninvasive in situ methods and synchrotron-radiation-based x-ray techniques Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue (down) 47 Pages 13923-13927  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-xSxO4 (x approximate to 0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr-III compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367722500009 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; We acknowledge financial support from the Italian MIUR project SICH-PRIN (2010329WPF_001) and BELSPO (Brussels) Project S2-ART (SD04A), GOA “SOLARPAINT” (Research Fund Antwerp University, BOF-2015), and FWO (Brussels) projects G.0C12.13, G.0704.08, G.01769.09. We thank ESRF (EC-1051, HG-26) and DESY (I-20120312 EC) for beamtime grants received. Noninvasive analysis of Sunflowers were supported by the EU FP7 programme CHARISMA (Grant 228330) and the Fund Inbev-Baillet Latour (Brussels). L.M. acknowledges financial support from the CNR Short Term Mobility Programme-2013. We thank Muriel Geldof, Luc Megens, Suzan de Groot (The Netherlands Cultural Heritage Agency, RCE), Chiara Grazia, David Buti (CNR-ISTM and SMAArt Centre), and the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:131110 Serial 5617  
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Verbeeck, J.; Tian, H.; Tan, H.; Dik, J.; Radepont, M.; Cotte, M. pdf  doi
openurl 
  Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 1 : artificially aged model samples Type A1 Journal article
  Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 83 Issue (down) 4 Pages 1214-1223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1−3 μm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (μ-XANES), X-ray fluorescence spectrometry (μ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR μ-XRD), μ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and μ-XANES spectra are consistent with the presence of Cr2O3·2H2O (viridian). Moreover, as demonstrated by μ-XANES, the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide], is likely.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000287176900011 Publication Date 2011-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 113 Open Access  
  Notes Iuap; Fwo Approved Most recent IF: 6.32; 2011 IF: 5.856  
  Call Number UA @ lucian @ c:irua:88794UA @ admin @ c:irua:88794 Serial 632  
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Dik, J.; Radepont, M.; Hendriks, E.; Geldof, M.; Cotte, M. doi  openurl
  Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 2 : original paint layer samples Type A1 Journal article
  Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 83 Issue (down) 4 Pages 1224-1231  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The darkening of the original yellow areas painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is a phenomenon widely observed on several paintings by Vincent van Gogh, such as the famous different versions of Sunflowers. During our previous investigations on artificially aged model samples of lead chromate, we established for the first time that darkening of chrome yellow is caused by reduction of PbCrO4 to Cr2O3·2H2O (viridian green), likely accompanied by the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide]. In the second part of this work, in order to demonstrate that this reduction phenomenon effectively takes place in real paintings, we study original paint samples from two paintings of V. van Gogh. As with the model samples, in view of the thin superficial alteration layers that are present, high lateral resolution spectroscopic methods that make use of synchrotron radiation (SR), such as microscopic X-ray absorption near edge (μ-XANES) and X-ray fluorescence spectrometry (μ-XRF) were employed. Additionally, μ-Raman and mid-FTIR analyses were carried out to completely characterize the samples. On both paint microsamples, the local presence of reduced Cr was demonstrated by means of μ-XANES point measurements. The presence of Cr(III) was revealed in specific areas, in some cases correlated to the presence of Ba(sulfate) and/or to that of aluminum silicate compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287176900012 Publication Date 2011-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 84 Open Access  
  Notes ; This research was funded by grants from ESRF (experiment EC-504) and by HASYLAB (experiments 11-20080130 EC and 11-20070157 EC) and was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Van Gogh Museum, Amsterdam, is acknowledged for their agreeable cooperation and for the authorization to publish the images of the paintings in this article. L.M. was financially supported by the Erasmus Placement in the framework of Lifelong Learning Programme (A.Y. 2009-2010). The EU Community's FP7 Research Infrastructures program under the CHARISMA Project (Grant Agreement 228330) is also acknowledged. ; Approved Most recent IF: 6.32; 2011 IF: 5.856  
  Call Number UA @ admin @ c:irua:88795 Serial 5571  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K. pdf  doi
openurl 
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem  
  Volume 374 Issue (down) 374 Pages 81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Springer international publishing ag Place of Publication Cham Editor  
  Language Wos 000391178900006 Publication Date 2016-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.033 Times cited 50 Open Access  
  Notes ; ; Approved Most recent IF: 4.033  
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443  
Permanent link to this record
 

 
Author van der Snickt, G.; Dooley, K.A.; Sanyova, J.; Dubois, H.; Delaney, J.K.; Gifford, E.M.; Legrand, S.; Laquiere, N.; Janssens, K. url  doi
openurl 
  Title Dual mode standoff imaging spectroscopy documents the painting process of the Lamb of God in the Ghent Altarpiece by J. and H. Van Eyck Type A1 Journal article
  Year 2020 Publication Science Advances Abbreviated Journal  
  Volume 6 Issue (down) 31 Pages eabb3379  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract The ongoing conservation treatment program of the Ghent Altarpiece by Hubert and Jan Van Eyck, one of the iconic paintings of the west, has revealed that the designs of the paintings were changed several times, first by the original artists, and then during later restorations. The central motif, The Lamb of God, representing Christ, plays an essential iconographic role, and its depiction is important. Because of the prevalence of lead white, it was not possible to visualize the Van Eycks' original underdrawing of the Lamb, their design changes, and the overpaint by later restorers with a single spectral imaging modality. However, by using elemental (x-ray fluorescence) and molecular (infrared reflectance) imaging spectroscopies, followed by analysis of the resulting data cubes, the necessary chemical contrast could be achieved. In this way, the two complementary modalities provided a more complete picture of the development and changes made to the Lamb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000556543100033 Publication Date 2020-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access  
  Notes ; This research was part of the activities of the Chair on Advanced Imaging Techniques for the Arts, established by the Baillet Latour fund. In addition, it was supported by the Belgian Science Policy Office (Project MO/39/011) and the Gieskes-Strijbis fund. We are also indebted to the BOF-GOA SOLARPaint project of the University of Antwerp Research Council and to FWO (Brussels) projects G056619N and G054719N. J.K.D. and K.A.D. acknowledge support from the National Gallery of Art. ; Approved Most recent IF: 13.6; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:171270 Serial 6494  
Permanent link to this record
 

 
Author Trentelman, K.; Janssens, K.; van der Snickt, G.; Szafran, Y.; Woollett, A.T.; Dik, J. url  doi
openurl 
  Title Rembrandt's An Old Man in Military Costume: the underlying image re-examined Type A1 Journal article
  Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater  
  Volume 121 Issue (down) 3 Pages 801-811  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The painting An Old Man in Military Costume in the J. Paul Getty Museum, by Rembrandt Harmensz van Rijn, was studied using two complementary, element-specific imaging techniques-neutron activation autoradiography (NAAR) and macro-X-ray fluorescence (MA-XRF) mapping-to reveal the second, hidden painting. NAAR provided a strong image of the face and cloak of the underlying figure, along with an indication of the chemical composition. The single-element distribution maps produced by MA-XRF mapping provided additional details into the shape of the underlying image and the composition of the pigments used. The underlying figure's face is richer in mercury, indicative of the pigment vermilion, than the face of the figure on the surface. Likewise, the cloak of the underlying figure is richer in copper than the surface figure though the identity of the copper-containing pigment cannot be determined from these data. The use of iron earth pigments, specifically Si-rich umbers, is indicated through the complementary information provided by the NAAR and MA-XRF maps. These data are used to create a false color digital reconstruction, yielding the most detailed representation of the underlying painting to date.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364914100003 Publication Date 2015-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.455 Times cited 22 Open Access  
  Notes ; The authors gratefully acknowledge the assistance of all those who aided in the examination of this painting over the decades, that has culminated in the work presented here. Particular thanks go to Mark Leonard (former head of Paintings Conservation at the J. Paul Getty Museum) and Henry Prask (NIST) for carrying out the NAAR analysis; John Twilley (former GCI Scientist) for early investigations; Andrea Sartorius (former JPGM Paintings intern) for creating a mock-up painting used in earlier phases of this work; Peter Reishig (former GCI intern) for compiling the NAAR data; Catherine Patterson, Lynn Lee, and David Carson (GCI Science) and Gene Karraker (JPGM Paintings Conservation) for helping with the setup and operation of the M6 Jetstream; and Giacomo Chiari (former head of GCI Science) for performing the XRD analysis. Koen Janssens and Geert van der Snickt acknowledge the Fund Inbev-Baillet Latour for financial support. Joris Dik acknowledges the help of the Netherlands Organization for Scientific Research (NWO) in the form of a VIDI grant in the Innovational Research Incentive Scheme. ; Approved Most recent IF: 1.455; 2015 IF: 1.704  
  Call Number UA @ admin @ c:irua:130289 Serial 5812  
Permanent link to this record
 

 
Author Vanmeert, F.; Hendriks, E.; van der Snickt, G.; Monico, L.; Dik, J.; Janssens, K. doi  openurl
  Title Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's Sunflowers : identification of areas with higher degradation risk Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue (down) 25 Pages 7418-7422  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The discoloration rate of chrome yellow (CY), a class of synthetic inorganic pigments (PbCr1-xSxO4) frequently used by Van Gogh and his contemporaries, strongly depends on its sulfate content and on its crystalline structure (either monoclinic or orthorhombic). Macroscopic X-Ray powder diffraction imaging of selected areas on Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam) revealed the presence of two subtypes of CY: the light-fast monoclinic PbCrO4 (LF-CY) and the light-sensitive monoclinic PbCr1-xSxO4 (x approximate to 0.5; LS-CY). The latter was encountered in large parts of the painting (e.g., in the pale-yellow background and the bright-yellow petals, but also in the green stems and flower hearts), thus indicating their higher risk for past or future darkening. Overall, it is present in more than 50% of the CY regions. Preferred orientation of LS-CY allows observation of a significant ordering of the elongated crystallites along the direction of Van Gogh's brush strokes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434949200023 Publication Date 2018-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 10 Open Access  
  Notes ; The authors acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, the GOA Project Solarpaint (University of Antwerp Research Council), and the Interreg Smart*Light project. Raman analyses were performed using the European MOLAB platform, which is financially supported by the Horizon 2020 Programme (IPERION CH Grant 654028). The authors thank the staff of the Van Gogh Museum for their collaboration. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:153185 Serial 5517  
Permanent link to this record
 

 
Author van der Snickt, G.; Janssens, K.; Dik, J.; de Nolf, W.; Vanmeert, F.; Jaroszewicz, J.; Cotte, M.; Falkenberg, G.; Van der Loeff, L. doi  openurl
  Title Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh Type A1 Journal article
  Year 2012 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 84 Issue (down) 23 Pages 10221-10228  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO4 center dot H2O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 mu m sized globular agglomerations. Here, we study cadmium yellow in the painting “Flowers in a blue vase” by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (mu-XRD), microscopic X-ray absorption near-edge spectroscopy (mu-XANES), microscopic X-ray fluorescence (mu-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (mu-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO4 compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd2+ ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO42- anions, for their part, found a suitable reaction partner in Pb2+ ions stemming from a dissolved lead-based siccative that was added to the varnish to promote its drying. The resulting opaque anglesite compound in the varnish, in combination with the underlying CdC2O4 layer at the paint/varnish interface, account for the orange-gray crust that is disfiguring the painting on a macroscopic level. In this way, the results presented in this paper demonstrate how, through a judicious combined use of several microanalytical methods with speciation capabilities, many new insights can be obtained from two minute, but highly complex and heterogeneous paint samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000311815300013 Publication Date 2012-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 59 Open Access  
  Notes ; This research was supported by BELSPO via the Interuniversity Attraction Poles Programme (IUAP VI/16) and the S2-ART project (SD/RI/04A) and funded by Grants from the ESRF (EC-442) and PETRA-III (I-20120312 EC). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) project nos. G.0103.04, G.0689.06, and G.0704.08. The staff of the Kroller-Muller Museum and painting conservators Margje Leeuwestein and Esther Van Duijn are acknowledged for this pleasant cooperation and the authorization for the publication of the images in this article. ; Approved Most recent IF: 6.32; 2012 IF: 5.695  
  Call Number UA @ admin @ c:irua:105971 Serial 5526  
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.; Vanmeert, F.; De Meyer, S.; Gabrieli, F.; Hermens, E.; van der Snickt, G.; Janssens, K.; Keune, K. url  doi
openurl 
  Title Reviving degraded colors of yellow flowers in 17th century still life paintings with macro- and microscale chemical imaging Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue (down) 23 Pages 1-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Over time, artist pigments are prone to degradation, which can decrease the readability of the artwork or notably change the artist's intention. In this article, the visual implication of secondary degradation products in a degraded yellow rose in a still life painting by A. Mignon is discussed as a case study. A multimodal combination of chemical and optical imaging techniques, including noninvasive macroscopic x-ray powder diffraction (MA-XRPD) and macroscopic x-ray fluorescence imaging, allowed us to gain a 3D understanding of the transformation of the original intended appearance of the rose into its current degraded state. MA-XRPD enabled us to precisely correlate in situ formed products with what is optically visible on the surface and demonstrated that the precipitated lead arsenates and arsenolite from the yellow pigment orpiment and the light-induced fading of an organic yellow lake irreversibly changed the artist's intentional light-shadow modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000811556500011 Publication Date 2022-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189657 Serial 7205  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Vanmeert, F.; Cotte, M.; Brunetti, B.G.; van der Snickt, G.; Leeuwestein, M.; Plisson, J.S.; Menu, M.; Miliani, C. doi  openurl
  Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : part 5 : effects of nonoriginal surface coatings into the nature and distribution of chromium and sulfur species in chrome yellow paints Type A1 Journal article
  Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 86 Issue (down) 21 Pages 10804-10811  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The darkening of lead chromate yellow pigments, caused by a reduction of the chromate ions to Cr(III) compounds, is known to affect the appearance of several paintings by Vincent van Gogh. In previous papers of this series, we demonstrated that the darkening is activated by light and depends on the chemical composition and crystalline structure of the pigments. In this work, the results of Part 2 are extended and complemented with a new study aimed at deepening the knowledge of the nature and distribution of Cr and S species at the interface between the chrome yellow paint and the nonoriginal coating layer. For this purpose, three microsamples from two varnished paintings by Van Gogh and a waxed low relief by Gauguin (all originally uncoated) have been examined. Because nonoriginal coatings are often present in artwork by Van Gogh and contemporaries, the understanding of whether or not their application has influenced the morphological and/or physicochemical properties of the chrome yellow paint underneath is relevant in view of the conservation of these masterpieces. In all the samples studied, microscopic X-ray fluorescence (mu-XRF) and X-ray absorption near edge structure (mu-XANES) investigations showed that Cr(III)-based alteration products are present in the form of grains inside the coating (generally enriched of S species) and also homogeneously widespread at the paint surface. The distribution of Cr(III) species may be explained by the mechanical friction caused by the coating application by brush that picked up and redistributed the superficial Cr compounds, likely already present in the reduced state as result of the photodegradation process. The analysis of the XANES profiles allowed us to obtain new insights into the nature of the Cr(III) alteration products, that were identified as sulfate-, oxide-, organo-metal-, and chloride-based compounds. Building upon the knowledge acquired through the examination of original paint samples and from the investigation of aged model paints in the last Part 4 paper, in this study we aim to characterize a possible relation between the chemical composition of the coating and the chrome yellow degradation pathways by studying photochemically aged model samples covered with a dammar varnish contaminated with sulfide and sulfate salts. Cr speciation results did not show any evidence of the active role of the varnish and added S species on the reduction process of chrome yellows.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344510200043 Publication Date 2014-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 25 Open Access  
  Notes ; This research was supported by the Italian projects PRIN (SICH) and PON (ITACHA). The text also presents results from Interuniversity Attraction Poles Programme Belgian Science Policy (S2-ART project S4DA), GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects no. G.0704.08 and G.01769.09. ESRF is acknowledged for the grants received (experiments EC-799 and EC-1051). L.M. acknowledges the CNR for the financial support received in the framework of the Short Term Mobility Programme 2013. Thanks are expressed to Ella Hendriks (Van Gogh Museum, Amsterdam) and Muriel Geldof (Cultural Heritage Agency of The Netherlands) for selecting and sharing the information on the cross-section taken from Bank of the Seine. All the staff of the Van Gogh Museum, the Kroller-Muller Museum, and the Musee d'Orsay are acknowledged for the agreeable cooperation. ; Approved Most recent IF: 6.32; 2014 IF: 5.636  
  Call Number UA @ admin @ c:irua:122100 Serial 5570  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Miliani, C.; van der Snickt, G.; Brunetti, B.G.; Guidi, M.C.; Radepont, M.; Cotte, M. doi  openurl
  Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods : 4 : artificial aging of model samples of co-precipitates of lead chromate and lead sulfate Type A1 Journal article
  Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 85 Issue (down) 2 Pages 860-867  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Previous investigations about the darkening of chrome yellow pigments revealed that this form of alteration is attributable to a reduction of the original Cr(VI) to Cr(III), and that the presence of sulfur-containing compounds, most often sulfates, plays a key role during this process. We recently demonstrated that different crystal forms of chrome yellow pigments (PbCrO4 and PbCr1xSxO4) are present in paintings by Vincent van Gogh. In the present work, we show how both the chemical composition and the crystalline structure of lead chromate-based pigments influence their stability. For this purpose, oil model samples made with in-house synthesized powders of PbCrO4 and PbCr1xSxO4 were artificially aged and characterized. We observed a profound darkening only for those paint models made with PbCr1xSxO4, rich in SO42 (x ≥ 0.4), and orthorhombic phases (>30 wt %). Cr and S K-edge micro X-ray absorption near edge structure investigations revealed in an unequivocal manner the formation of up to about 60% of Cr(III)-species in the outer layer of the most altered samples; conversely, independent of the paint models chemical composition, no change in the S-oxidation state was observed. Analyses employing UVvisible diffuse reflectance and Fourier transform infrared spectroscopy were performed on unaged and aged model samples in order to obtain additional information on the physicochemical changes induced by the aging treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313668400032 Publication Date 2012-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 49 Open Access  
  Notes ; This research was supported by grants from ESRF (experiment EC-799), the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16), and the BELSPO-SDD S2-ART (SD/RI/04) project. The text also presents results from GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects G.0704.08 and G.01769.09. The EU FP7 programme CHARISMA (Grant Agreement 228330) and MIUR (PRIN08, Materiali e sistemi innovativi per la conservazione dell'arte contemporanea 2008 FFXXN9) are also acknowledged. ; Approved Most recent IF: 6.32; 2013 IF: 5.825  
  Call Number UA @ admin @ c:irua:110471 Serial 5569  
Permanent link to this record
 

 
Author van der Snickt, G.; Janssens, K.; Schalm, O.; Aibéo, C.; Kloust, H.; Alfeld, M. doi  openurl
  Title James Ensor's pigment use: artistic and material evolution studied by means of portable X-ray fluorescence spectrometry Type A1 Journal article
  Year 2010 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume 39 Issue (down) 2 Pages 103-111  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this paper, portable X-ray fluorescence spectrometry (PXRF) was employed as a screening tool for determining and comparing the pigment use in a large series of paintings by the Belgian artist James Ensor (1860-1949). Benefits and drawbacks of PXRF as a method, and the instrument employed, are discussed from a practical, conservation and instrumental perspective. Regardless of several restrictions due to the set-up and/or the analytical method, it appeared feasible to document the evolution with time in Ensor's use of inorganic pigments and to correlate this technical evolution with stylistic developments, Nevertheless, it became clear that a full identification of all materials present can only be done by means of the analysis of (cross-sectioned) samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000275959400006 Publication Date 2009-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.298 Times cited 25 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The staff of the different museums and private institutions is acknowledged for rendering their assistance to this research, i.e. by making all paintings available for analysis and authorising the publication of the images in this article. Therefore, a word of gratitude to Paul Huvenne, Yolande Deckers, Herwig Todts, Stef Antonissen, Gwen Borms and Lizet Klaassen of the Koninklijk Museum voor Schone Kunsten Antwerpen (KMSKA), Luuk Van der Loeff of the Kroller-Muller Museum in Otterlo and Mireille Engel, Barbara De Jong of the Musea aan Zee (MuZee), Patricia Jaspers of the Dexia bank, Hildegard Van de Velde of the KBC bank and Frederik Leen of the Koninklijke Musea voor Schone Kunsten van Belgie (KMSKB). Special thanks to Xavier Tricot and the other members of the Ensor committee for their valuable feedback. ; Approved Most recent IF: 1.298; 2010 IF: 1.661  
  Call Number UA @ admin @ c:irua:82324 Serial 5680  
Permanent link to this record
 

 
Author van der Snickt, G.; Dubois, H.; Sanyova, J.; Legrand, S.; Coudray, A.; Glaude, C.; Postec, M.; van Espen, P.; Janssens, K. pdf  doi
openurl 
  Title Large-area elemental imaging reveals Van Eyck's original paint layers on the Ghent altarpiece (1432), rescoping its conservation treatment Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue (down) 17 Pages 4797-4801  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A combination of large-scale and micro-scale elemental imaging, yielding elemental distribution maps obtained by, respectively non-invasive macroscopic X-ray fluorescence (MA-XRF) and by secondary electron microscopy/energy dispersive X-ray analysis (SEM-EDX) and synchrotron radiation-based micro-XRF (SR m-XRF) imaging was employed to reorient and optimize the conservation strategy of van Eyck's renowned Ghent Altarpiece. By exploiting the penetrative properties of X-rays together with the elemental specificity offered by XRF, it was possible to visualize the original paint layers by van Eyck hidden below the overpainted surface and to simultaneously assess their condition. The distribution of the high-energy Pb-L and Hg-L emission lines revealed the exact location of hidden paint losses, while Fe-K maps demonstrated how and where these lacunae were filled-up using an iron-containing material. The chemical maps nourished the scholarly debate on the overpaint removal with objective, chemical arguments, leading to the decision to remove all skillfully applied overpaints, hitherto interpreted as work by van Eyck. MA-XRF was also employed for monitoring the removal of the overpaint during the treatment phase. To gather complementary information on the in-depth layer build-up, SEM-EDX and SR mu-XRF imaging was used on paint cross sections to record microscale elemental maps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398576000019 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 11 Open Access  
  Notes ; This research was supported by the Baillet Latour fund, the Belgian Science Policy Office (Projects MO/39/011) and the Gieskes-Strijbis fund. The authors are also indebted to the BOF-GOA SOLAR Paint project of the University of Antwerp Research Council. The church wardens of the cathedral of St. Bavo and their chairman L. Collin are acknowledged for this agreeable collaboration. We also wish to thank conservators L. Depuydt, B. De Volder, F. Rosier, N. Laquiere and G. Steyaert as well as the members of the international committee. We are indebted to Prof. Em. A. Van Grevenstein-Kruse. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:142376 Serial 5688  
Permanent link to this record
 

 
Author Dik, J.; Janssens, K.; van der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M. doi  openurl
  Title Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping Type A1 Journal article
  Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 80 Issue (down) 16 Pages 6436-6442  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Vincent van Gogh (1853−1890), one of the founding fathers of modern painting, is best known for his vivid colors, his vibrant painting style, and his short but highly productive career. His productivity is even higher than generally realized, as many of his known paintings cover a previous composition. This is thought to be the case in one-third of his early period paintings. Van Gogh would often reuse the canvas of an abandoned painting and paint a new or modified composition on top. These hidden paintings offer a unique and intimate insight into the genesis of his works. Yet, current museum-based imaging tools are unable to properly visualize many of these hidden images. We present the first-time use of synchrotron radiation based X-ray fluorescence mapping, applied to visualize a womans head hidden under the work Patch of Grass by Van Gogh. We recorded decimeter-scale, X-ray fluorescence intensity maps, reflecting the distribution of specific elements in the paint layers. In doing so we succeeded in visualizing the hidden face with unprecedented detail. In particular, the distribution of Hg and Sb in the red and light tones, respectively, enabled an approximate color reconstruction of the flesh tones. This reconstruction proved to be the missing link for the comparison of the hidden face with Van Goghs known paintings. Our approach literally opens up new vistas in the nondestructive study of hidden paint layers, which applies to the oeuvre of Van Gogh in particular and to old master paintings in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000258448100039 Publication Date 2008-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 178 Open Access  
  Notes Approved Most recent IF: 6.32; 2008 IF: 5.712  
  Call Number UA @ admin @ c:irua:74466 Serial 5906  
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K. pdf  url
doi  openurl
  Title In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 138 Issue (down) 138 Pages 238-245  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Within the last decade, the established synchrotron- and laboratory-based micro-XRF scanning technology inspired the development of mobile instruments that allow performing in situ experiments on paintings on a macro scale. Since the development of the first mobile scanner at the start of this decade, this chemical imaging technique has brought new insights with respect to several iconic paintings, especially in cases when standard imaging techniques such as X-Ray Radiography (XRR) or Infrared Refiectography (IRR) yielded ambiguous results. The ability of scanning MA-XRF to visualise the distribution of elements detected at and below the paint surface renders this spectrometric method particularly helpful for studying painting techniques and revealing materials that remain hidden below the paint surface. The latter aspect is especially relevant for the technical study of works by Pieter Paul Rubens (1577-1640) as this highly productive seventeenth century master is particularly renowned for the continuous application of modifications during (and even after) the entire course of the creative process. In this work, the added value of MA-XRF scanning experiments for visualising these subsurface features is exemplified by interpreting the chemical images obtained on three of Rubens' key works. Special attention is given to three types of adjustments that are particularly relevant for the technical study of Rubens' oeuvre: (1) compositional changes ('pentimenti'), exemplified by results obtained on The Portrait of Helene Fourment (ca. 1638), (2) extensions to the support ('Anstlickungen.), illustrated by imaging experiments performed on the Venus Frigida (1614) and (3) Rubens' intriguing halos around flesh tones, as found amongst others in The Incredulity of Saint Thomas (1613). The ensuing insights in the paint stratigraphy and the underlying supporting structure illustrate the potential of MA-XRF scanning for the non-invasive, comparative study of Rubens' oeuvre. The results do not only augment the understanding of the complex genesis of Rubens' works of art and his efficient painting technique, but prove valuable during conservation treatments as well, as addressed in this paper. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428103000027 Publication Date 2018-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:151564 Serial 5657  
Permanent link to this record
 

 
Author Koldeweij, J.; Hoogstede, L.; Ilsink, M.; Janssens, K.; De Keyser, N.; Gotink, R.K.; Legrand, S.; Nauhaus, J.M.; van der Snickt, G.; Spronk, R. file  openurl
  Title The patron of Hieronymus Bosch's 'Last Judgment' triptych in Vienna Type A1 Journal article
  Year 2018 Publication The Burlington magazine Abbreviated Journal  
  Volume 160 Issue (down) 1379 Pages 106-111  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A technical examination of the Last Judgment triptych by Hieronymus Bosch in the Paintings Gallery of the Academy of Fine Arts, Vienna, has revealed a painted escutcheon with the coat of arms of the Burgundian court official Hippolyte de Berthoz underneath the current surface of the right outer wing. This allows him to be firmly identified as the painting's patron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458246800007 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:181267 Serial 8656  
Permanent link to this record
 

 
Author Vanmeert, F.; van der Snickt, G.; Janssens, K. pdf  doi
openurl 
  Title Plumbonacrite identified by X-ray powder diffraction tomography as a missing link during degradation of red lead in a Van Gogh painting Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue (down) 12 Pages 3607-3610  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β-PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3⋅Pb(OH)2; PbCO3). X-ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3⋅ Pb(OH)2⋅PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000351178300008 Publication Date 2015-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 24 Open Access  
  Notes ; The authors acknowledge L. Van der Loeff and M. Leeuwestein (Kroller-Muller Museum) for providing the paint sample. We thank Dr. J. Jaroszewicz (WUT) for performing the CT measurements. This research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). We thank Dr. G. Falkenberg and the members of his team for their assistance in using beam line P06. We acknowledge financial support from the University of Antwerp GOA projects “XANES meets EELS” and “SOLARPaint”, as well as from BELSPO (Brussels) Project S2-ART and FWO (Brussels) project “ESRF-Dubble”. ; Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number UA @ admin @ c:irua:124620 Serial 5774  
Permanent link to this record
 

 
Author Hillen, M.; Legrand, S.; Dirkx, Y.; Janssens, K.; van der Snickt, G.; Caen, J.; Steenackers, G. url  doi
openurl 
  Title Cluster analysis of IR thermography data for differentiating glass types in historical leaded-glass windows Type A1 Journal article
  Year 2020 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 10 Issue (down) 12 Pages 4255-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Cultural Heritage Sciences (ARCHES); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549351800001 Publication Date 2020-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access  
  Notes Approved Most recent IF: 2.7; 2020 IF: 1.679  
  Call Number UA @ admin @ c:irua:170012 Serial 7674  
Permanent link to this record
 

 
Author van der Snickt, G.; Miliani, C.; Janssens, K.; Brunetti, B.G.; Romani, A.; Rosi, F.; Walter, P.; Castaing, J.; de Nolf, W.; Klaassen, L.; Labarque, I.; Wittermann, R. doi  openurl
  Title Material analyses of “Christ with singing and music-making Angels”, a late 15th-C panel painting attributed to Hans Memling and assistants : part 1 : non-invasive in situ investigations Type A1 Journal article
  Year 2011 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 26 Issue (down) 11 Pages 2216-2229  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In cultural heritage science, compositional data is traditionally obtained from works of art through the analysis of samples by means of various bench-top instruments (scanning electron microscope, Raman spectrometer, etc.). Alternatively, the object can be transported to a laboratory where it may be examined, usually by spectroscopic methods working in reflection mode. However, this paper describes how a complementary set of mobile and portable instruments was deployed in situ to gain a comprehensive view on the materials and related ageing compounds of an (almost) unmovable 15th-C polyptych, prior to and in preparation of the extraction of a limited number of samples. In line with the methodological approach discussed, PXRF was first employed as an efficient screening tool. The ensuing elemental data was supplemented by more specific information on both organic as inorganic materials supplied by reflection near- and mid-FTIR spectroscopy and fluorimetry. In completion, a limited number of diffraction patterns were collected with a mobile XRD instrument in order to identify the constituent crystalline phases in pigments, grounding materials and degradation products. In this way, it could be demonstrated how a rich array of colours was obtained by means of a limited palette of pigments: lead white, lead tin yellow, azurite, natural ultramarine, bone black, vermillion, madder lake, and a green copper-organo complex were detected and situated on the panels. Remarkably, next to chalk also gypsum was found in the ground layer(s) of this Western European easel painting. The relatively large surface of the background was covered with gold leaf; the analyses seem to point towards the labour-intensive water gilding technique. The versatility of this combination of analytical techniques was further illustrated by the accurate characterisation of degradation products affecting the readability and conservation of the painting: the overall presence of a calcium oxalate-based film of variable thickness was established. Nevertheless, further analysis of cross-sectioned samples was considered desirable in order to study the stratigraphy, to gain direct access to altered and sub-imposed layers and to allow highly detailed analysis of micrometric degradation products by state-of-the art techniques (i.e. synchrotron radiation).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296021800010 Publication Date 2011-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 32 Open Access  
  Notes ; This research was supported by the Interuniversity Attraction Poles Programme – Belgian Science Policy (IUAP VI/16). The text also presents results of GOA “XANES meets ELNES” (Research Fund University of Antwerp, Belgium) and from FWO (Brussels, Belgium) projects no. G.0103.04, G.0689.06 and G.0704.08. The staff of the Royal Museum of Fine Arts Antwerp is acknowledged for this pleasant cooperation and the authorisation for the publication of the images in this article. Therefore, a word of gratitude to Paul Huvenne, Yolande Deckers, Stef Antonissen and Gwen Borms. In addition, the authors would like to thank the MOLAB's team operators Chiari Anselmi and Federica Presciutti. MOLAB analyses have been carried out through the support of the EU within the 6th Framework Programme (Contract Eu-ARTECH, RII3-CT-2004-506171). ; Approved Most recent IF: 3.379; 2011 IF: 3.220  
  Call Number UA @ admin @ c:irua:93680 Serial 5705  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: