|   | 
Details
   web
Records
Author Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E.
Title Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source Type A1 Journal article
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 13 Issue 2 Pages 324-329
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are carried out for describing growth of Pd and PdO nanoclusters using the ReaxFF force field. The resulting nanocluster structures are successfully compared to those of nanoclusters experimentally grown in a gas aggregation source. The PdO structure is quasi-crystalline as revealed by high resolution transmission microscope analysis for experimental PdO nanoclusters. The role of the nanocluster temperature in the molecular dynamics simulated growth is highlighted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400009 Publication Date 2019-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ admin @ c:irua:160278 Serial 5276
Permanent link to this record
 

 
Author Neyts, E.C.
Title Special Issue on future directions in plasma nanoscience Type Editorial
Year 2019 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 13 Issue 2 Pages 199-200
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468848400001 Publication Date 2019-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ admin @ c:irua:160277 Serial 5280
Permanent link to this record
 

 
Author Semlali, B.-eddine B.; El Amrani, C.; Denys, S.
Title Development of a Java-based application for environmental remote sensing data processing Type A1 Journal article
Year 2019 Publication International Journal of Electrical and Computer Engineering Abbreviated Journal
Volume 9 Issue 3 Pages 1978-1986
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Air pollution is one of the most serious problems the world faces today. It is highly necessary to monitor pollutants in real-time to anticipate and reduce damages caused in several fields of activities. Likewise, it is necessary to provide decision makers with useful and updated environmental data. As a solution to a part of the above-mentioned necessities, we developed a Java-based application software to collect, process and visualize several environmental and pollution data, acquired from the Mediterranean Dialog earth Observatory (MDEO) platform [1]. This application will amass data of Morocco area from EUMETSAT satellites, and will decompress, filter and classify the received datasets. Then we will use the processed data to build an interactive environmental real-time map of Morocco. This should help finding out potential correlations between pollutants and emitting sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2088-8708 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:163847 Serial 7799
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
Year 2019 Publication Electronics (Basel) Abbreviated Journal
Volume 8 Issue 1 Pages 37
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457142800037 Publication Date 2019-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157203 Serial 7765
Permanent link to this record
 

 
Author Bagherpour, A.; Baral, P.; Colla, M.-S.; Orekhov, A.; Idrissi, H.; Haye, E.; Pardoen, T.; Lucas, S.
Title Tailoring Mechanical Properties of a-C:H:Cr Coatings Type A1 Journal Article
Year 2023 Publication Coatings Abbreviated Journal Coatings
Volume 13 Issue 12 Pages 2084
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The development of coatings with tunable performances is critical to meet a wide range of technological applications each one with different requirements. Using the plasma-enhanced chemical vapor deposition (PECVD) process, scientists can create hydrogenated amorphous carbon coatings doped with metal (a-C:H:Me) with a broad range of mechanical properties, varying from those resembling polymers to ones resembling diamond. These diverse properties, without clear relations between the different families, make the material selection and optimization difficult but also very rich. An innovative approach is proposed here based on projected performance indices related to fracture energy, strength, and stiffness in order to classify and optimize a-C:H:Me coatings. Four different a-C:H:Cr coatings deposited by PECVD with Ar/C2H2 discharge under different bias voltage and pressures are investigated. A path is found to produce coatings with a selective critical energy release rate between 5–125 J/m2 without compromising yield strength (1.6–2.7 GPa) and elastic limit (≈0.05). Finally, fine-tuned coatings are categorized to meet desired applications under different testing conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001136013600001 Publication Date 2023-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-6412 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Walloon region under the PDR FNRS, C 62/5—PDR/OL 33677636 ; Belgian National Fund for Scientific Research, CDR—J.0113.20 ; National Fund for Scientific Reaserch; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:202390 Serial 8982
Permanent link to this record
 

 
Author Mudronja, D.; Vanmeert, F.; Fazinic, S.; Janssens, K.; Tibljas, D.; Desnica, V.
Title Protection of stone monuments using a brushing treatment with ammonium oxalate Type A1 Journal article
Year 2021 Publication Coatings Abbreviated Journal Coatings
Volume 11 Issue 4 Pages 379
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible to chemical weathering in basic environments. To slow down surface corrosion of limestone and marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed. In this work, samples from two stone types with different porosity were treated with ammonium oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed brushing method. Two different synchrotron microscopy experiments were performed to determine its protective capability. X-ray powder diffraction (SR-mu-XRPD) in transmission geometry allowed visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a second step, X-ray fluorescence (SR-mu-XRF) was used to check the efficiency/integrity of the protective surface coating layer. This was done by measuring the sulfur distribution on the stone surface after exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate layer with a thickness of 5-15 mu m on the less porous stone, while a 20-30 mu m thick layer formed on the more porous stone. The XRF study showed that the optimal treatment time depends on the stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the protective layer for the low porosity stone. We assume that this is due to the formation of vertical channels (cracks) in the protective layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000642940900001 Publication Date 2021-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-6412 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.175 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.175
Call Number UA @ admin @ c:irua:178271 Serial 8428
Permanent link to this record
 

 
Author De Wael, K.; De Belder, S.; Pilehar, S.; Van Steenberge, G.; Herrebout, W.; Heering, H.A.
Title Enzyme-gelatin electrochemical biosensors : scaling down Type A1 Journal article
Year 2012 Publication Biosensors Abbreviated Journal
Volume 2 Issue Pages 101-113
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Molecular Spectroscopy (MolSpec)
Abstract In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC) in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2012-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-6374 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:96507 Serial 5606
Permanent link to this record
 

 
Author Pilehvar, S.; De Wael, K.
Title Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms Type A1 Journal article
Year 2015 Publication Biosensors Abbreviated Journal
Volume 5 Issue 4 Pages 712-735
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2015-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-6374 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:129157 Serial 5805
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P.
Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 6 Issue 6 Pages 45
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373533300009 Publication Date 2016-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access
Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553
Call Number c:irua:131902 Serial 4015
Permanent link to this record
 

 
Author Liao, T.-W.; Verbruggen, S.; Claes, N.; Yadav, A.; Grandjean, D.; Bals, S.; Lievens, P.
Title TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 8 Issue 8 Pages 30
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this study, we applied cluster beam deposition (CBD) as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs) produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML) equivalents. Scanning Electron Microscopy (SEM) images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML) and aggregate at higher coverage (8 ML). A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 x 10-6 over a period of 93 h). These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424131600030 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 29 Open Access OpenAccess
Notes The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 607417 (Catsense). We also thank the Research Foundation—Flanders (FWO, Belgium), the Flemish Concerted Action (BOF KU Leuven, Project No. GOA/14/007) research program, and the microscope was partly funded by the Hercules Fund from the Flemish Government for the support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ECAS_Sara (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147898UA @ admin @ c:irua:147898 Serial 4805
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 7 Issue 7 Pages 442
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419186800037 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access OpenAccess
Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A.
Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 8 Issue 11 Pages 917
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451316100052 Publication Date 2018-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access
Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:155767 Serial 5139
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J.
Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 10 Issue 11 Pages 2152
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000593731700001 Publication Date 2020-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access
Notes Approved Most recent IF: 5.3; 2020 IF: 3.553
Call Number UA @ admin @ c:irua:172621 Serial 6580
Permanent link to this record
 

 
Author Kashiwar, A.; Hahn, H.; Kubel, C.
Title In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 2 Pages 432
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000622951500001 Publication Date 2021-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:176770 Serial 6729
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W.
Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 10 Pages 2624
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000712759800001 Publication Date 2021-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 7 Open Access OpenAccess
Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:183281 Serial 6812
Permanent link to this record
 

 
Author Pinto, N.; McNaughton, B.; Minicucci, M.; Milošević, M.V.; Perali, A.
Title Electronic transport mechanisms correlated to structural properties of a reduced graphene oxide sponge Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 10 Pages 2503
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge ”, having a density as low as & AP;0.07 kg/m3 and a carbon to oxygen ratio C:O & SIME; 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped millimetres-sized small flakes, containing small crystallites with a typical size of & SIME;16.3 nm. A defect density as high as & SIME;2.6 x 1011 cm-2 has been estimated by the Raman intensity of D and G peaks, dominating the spectrum from room temperature down to & SIME;153 K. Despite the high C:O ratio, the graphene sponge exhibits an insulating electrical behavior, with a raise of the resistance value at & SIME;6 K up to 5 orders of magnitude with respect to the room temperature value. A variable range hopping (VRH) conduction, with a strong 2D character, dominates the charge carriers transport, from 300 K down to 20 K. At T < 20 K, graphene sponge resistance tends to saturate, suggesting a temperature-independent quantum tunnelling. The 2D-VRH conduction originates from structural disorder and is consistent with hopping of charge carriers between sp2 defects in the plane, where sp3 clusters related to oxygen functional groups act as potential barriers.</p>
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000713174500001 Publication Date 2021-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:184050 Serial 6988
Permanent link to this record
 

 
Author Hendrickx, M.; Paulus, A.; Kirsanova, M.A.; Van Bael, M.K.; Abakumov, A.M.; Hardy, A.; Hadermann, J.
Title The influence of synthesis method on the local structure and electrochemical properties of Li-rich/Mn-rich NMC cathode materials for Li-Ion batteries Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 13 Pages 2269-18
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000824547500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:189591 Serial 7098
Permanent link to this record
 

 
Author Shaw, P.; Vanraes, P.; Kumar, N.; Bogaerts, A.
Title Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 19 Pages 3397
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other’s strengths and overcome each other’s limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866927800001 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes This research was funded by the Methusalem Grant of UAntwerp, and the Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship (BT/RLF/Re-entry/27/2019), as well as the Science and Engineering Research Board (SERB), Core Research Grant (CRG/2021/001935), Department of Science and Technology, India. Approved Most recent IF: 5.3
Call Number PLASMANT @ plasmant @c:irua:191493 Serial 7108
Permanent link to this record
 

 
Author McNaughton, B.; Pinto, N.; Perali, A.; Milošević, M.V.
Title Causes and consequences of ordering and dynamic phases of confined vortex rows in superconducting nanostripes Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 22 Pages 4043-18
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Understanding the behaviour of vortices under nanoscale confinement in superconducting circuits is important for the development of superconducting electronics and quantum technologies. Using numerical simulations based on the Ginzburg-Landau theory for non-homogeneous superconductivity in the presence of magnetic fields, we detail how lateral confinement organises vortices in a long superconducting nanostripe, presenting a phase diagram of vortex configurations as a function of the stripe width and magnetic field. We discuss why the average vortex density is reduced and reveal that confinement influences vortex dynamics in the dissipative regime under sourced electrical current, mapping out transitions between asynchronous and synchronous vortex rows crossing the nanostripe as the current is varied. Synchronous crossings are of particular interest, since they cause single-mode modulations in the voltage drop along the stripe in a high (typically GHz to THz) frequency range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000887683200001 Publication Date 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:192731 Serial 7286
Permanent link to this record
 

 
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K.
Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 12 Issue 23 Pages 4153-13
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000896093900001 Publication Date 2022-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.3
Call Number UA @ admin @ c:irua:191843 Serial 7341
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C.
Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 13 Issue 6 Pages 1035
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960297000001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number EMAT @ emat @c:irua:196115 Serial 7378
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A.
Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
Year 2018 Publication Nanomaterials Abbreviated Journal
Volume 8 Issue 10 Pages 801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451174100057 Publication Date 2018-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156335 Serial 7842
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Linking bi-metal distribution patterns in porous carbon nitride fullerene to its catalytic activity toward gas adsorption Type A1 Journal article
Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 11 Issue 7 Pages 1794
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Immobilization of two single transition metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. If the substrate contains more than one vacancy site, the combination of TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bi-metal composition. By means of DFT calculations, we modeled three dissimilar bi-metal atoms (Ti, Mn, and Cu) doped into the six porphyrin-like cavities of porous C24N24 fullerene, considering different bi-metal distribution patterns for each binary complex, viz. TixCuz@C24N24, TixMny@C24N24, and MnyCuz@C24N24 (with x, y, z = 0-6). We elucidate whether controlling the distribution of bi-metal atoms into the C24N24 cavities can alter their catalytic activity toward CO2, NO2, H-2, and N-2 gas capture. Interestingly, Ti2Mn4@C24N24 and Ti2Cu4@C24N24 complexes showed the highest activity and selectively toward gas capture. Our findings provide useful information for further design of novel few-atom carbon-nitride-based catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000676140500001 Publication Date 2021-07-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.553
Call Number UA @ admin @ c:irua:180372 Serial 8174
Permanent link to this record
 

 
Author Drăgan, A.-M.; Feier, B.G.; Tertis, M.; Bodoki, E.; Truta, F.; Stefan, M.-G.; Kiss, B.; Van Durme, F.; De Wael, K.; Oprean, R.; Cristea, C.
Title Forensic analysis of synthetic cathinones on nanomaterials-based platforms : chemometric-assisted voltametric and UPLC-MS/MS investigation Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal
Volume 13 Issue 17 Pages 2393-19
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Synthetic cathinones (SCs) are a group of new psychoactive substances often referred to as “legal highs” or “bath salts”, being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, N-ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner. In this regard, the voltametric characterization of the SCs was performed by cyclic and square wave voltammetry. The elucidation of the SCs redox pathways was successfully achieved using liquid chromatography coupled to (tandem) mass spectrometry. For the rational identification of the ideal experimental conditions, chemometric data processing was employed, considering two critical qualitative and quantitative variables: the type of the electrochemical platform and the pH of the electrolyte. The analytical figures of merit were determined on standard working solutions using the optimized method, which exhibited wide linear ranges and LODs suitable for confiscated sample screening. Finally, the performance of the method was evaluated on real confiscated samples, the resulting validation parameters being similar to those obtained with another portable device (i.e., Raman spectrometer).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061205100001 Publication Date 2023-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2079-4991 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number UA @ admin @ c:irua:199221 Serial 8869
Permanent link to this record
 

 
Author Mazhar, R.; Azadi, H.; Van Passel, S.; Varnik, R.; Pietrzykowski, M.; Skominas, R.; Wei, Z.; Xuehao, B.
Title Does contract length matter? The impact of various contract-farming regimes on land-improvement investment and the efficiency of contract farmers in Pakistan Type A1 Journal article
Year 2023 Publication Agriculture (Basel) Abbreviated Journal
Volume 13 Issue 9 Pages 1651-16
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Land-tenure security is integral to local communities' socioeconomic development. It has been a center of debate in academia and for legislators and advocates to implement reforms to enhance efficient and sustainable development in land management. Yet, knowledge gaps remain in how various contract-farming regimes contribute to land-improvement investment and technical efficiency. This study used a data set of 650 farm households collected through a two-stage stratified sampling to investigate the influence of three contract-farming regimes: long-term, medium-term, and short-term contracts, on the land-improvement investment, productivity, and technical efficiency of contract farmers in Punjab, Pakistan. The study used multivariate probit and ordinary least square regression models to examine the posit relationships. The findings highlight that farmers with long-term land contracts have higher per hectare yield, income and profit than those with medium-term and short-term contracts. The results confirm that farmers with medium- and long-term contracts tend to invest more in land-improvement measures, i.e., organic and green manure. Further, the study findings demonstrate that long-term land tenures are more effective when farmers make decisions regarding the on-farm infrastructure, like tube-well installation, tractor ownership, and holding farm logistics. Last, the study results confirm that long-term contracts are more robust regarding technical efficiency. Moreover, the findings support the Marshallian inefficiency hypothesis and extend the literature on contract farming, land-improvement investment, and land use policy, and offer coherent policy actions for stakeholders to improve farmers' productivity, technical efficiency, and income.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071045300001 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2077-0472 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:200373 Serial 9201
Permanent link to this record
 

 
Author Van Loenhout, J.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Oxidative Stress-Inducing Anticancer Therapies: Taking a Closer Look at Their Immunomodulating Effects Type A1 Journal article
Year 2020 Publication Antioxidants Abbreviated Journal Antioxidants
Volume 9 Issue 12 Pages 1188
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cancer cells are characterized by higher levels of reactive oxygen species (ROS) compared to normal cells as a result of an imbalance between oxidants and antioxidants. However, cancer cells maintain their redox balance due to their high antioxidant capacity. Recently, a high level of oxidative stress is considered a novel target for anticancer therapy. This can be induced by increasing exogenous ROS and/or inhibiting the endogenous protective antioxidant system. Additionally, the immune system has been shown to be a significant ally in the fight against cancer. Since ROS levels are important to modulate the antitumor immune response, it is essential to consider the effects of oxidative stress-inducing treatments on this response. In this review, we provide an overview of the mechanistic cellular responses of cancer cells towards exogenous and endogenous ROS-inducing treatments, as well as the indirect and direct antitumoral immune effects, which can be both immunostimulatory and/or immunosuppressive. For future perspectives, there is a clear need for comprehensive investigations of different oxidative stress-inducing treatment strategies and their specific immunomodulating effects, since the effects cannot be generalized over different treatment modalities. It is essential to elucidate all these underlying immune effects to make oxidative stress-inducing treatments effective anticancer therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000602288600001 Publication Date 2020-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access
Notes This research was funded by the Olivia Hendrickx Research Fund (21OCL06) and the University of Antwerp (FFB160231). Approved Most recent IF: 7; 2020 IF: NA
Call Number PLASMANT @ plasmant @c:irua:173865 Serial 6441
Permanent link to this record
 

 
Author De Backer, J.; Maric, D.; Zuhra, K.; Bogaerts, A.; Szabo, C.; Vanden Berghe, W.; Hoogewijs, D.
Title Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response Type A1 Journal article
Year 2022 Publication Antioxidants Abbreviated Journal Antioxidants
Volume 11 Issue 8 Pages 1548
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
Abstract Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000846411000001 Publication Date 2022-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7
Call Number PLASMANT @ plasmant @c:irua:190686 Serial 7102
Permanent link to this record
 

 
Author Kang, T.-Y.; Kwon, J.-S.; Kumar, N.; Choi, E.; Kim, K.-M.
Title Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells Type A1 Journal article
Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 9 Issue 22 Pages 4819
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502570800096 Publication Date 2019-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited Open Access
Notes The plasma source was kindly provided by the Plasma Bioscience Research Center, Kwangwoon University. Approved Most recent IF: 1.679
Call Number PLASMANT @ plasmant @c:irua:164893 Serial 5435
Permanent link to this record
 

 
Author Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; van der Snickt, G.
Title IR reflectography and active thermography on artworks : the added value of the 1.53 µm band Type A1 Journal article
Year 2018 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 8 Issue 1 Pages 50
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Infrared Radiation (IR) artwork inspection is typically performed through active thermography and reflectography with different setups and cameras. While Infrared Radiation Reflectography (IRR) is an established technique in the museum field, exploiting mainly the IR-A (0.71.4 µm) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (35 μ m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we assess to which extent the less investigated IR-B band (1.53 μ m) can combine the information obtained from both setups. The application of IR-B systems is relatively rare as there are only a limited amount of commercial systems available due to the technical complexity of the lens coating. This is mainly added as a so-called broadband option on regular Mid-wave infrared radiation (MWIR) (IR-C/35 μ m) cameras to increase sensitivity for high temperature applications in industry. In particular, four objects were studied in both reflectographic and thermographic mode in the IR-B spectral range and their results benchmarked with IR-A and IR-C images. For multispectral application, a single benchmark is made with macroscopic reflection mode Fourier transform infrared (MA-rFTIR) results. IR-B proved valuable for visualisation of underdrawings, pencil marks, canvas fibres and wooden grain structures and potential pathways for additional applications such as pigment identification in multispectral mode or characterization of the support (panels, canvas) are indicated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424388800050 Publication Date 2018-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited 4 Open Access
Notes ; This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) by the support to the TETRA project 'SINT: Smart Integration of Numerical modelling and Thermal inspection' with project number HBC.2017.0032. Furthermore, the research leading to these results has received funding from the Research Foundation Flanders (FWO) travel grant V4.010.16N and the Stimpro stimuli of UAntwerpen under project ID 32864. We would like to end with a special thanks to the MiViM research chair of Prof. Xavier Maldague and the support of the full team in supporting the preliminary measurements of this research. ; Approved Most recent IF: 1.679
Call Number UA @ admin @ c:irua:149164 Serial 5677
Permanent link to this record
 

 
Author Katiyar, K.S.; Lin, A.; Fridman, A.; Keating, C.E.; Cullen, D.K.; Miller, V.
Title Non-thermal plasma accelerates astrocyte regrowth and neurite regeneration following physical trauma in vitro Type A1 Journal article
Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel
Volume 9 Issue 18 Pages 3747
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Non-thermal plasma (NTP), defined as a partially ionized gas, is an emerging technology with several biomedical applications, including tissue regeneration. In particular, NTP treatment has been shown to activate endogenous biological processes to promote cell regrowth, differentiation, and proliferation in multiple cell types. However, the effects of this therapy on nervous system regeneration have not yet been established. Accordingly, the current study explored the effects of a nanosecond-pulsed dielectric barrier discharge plasma on neural regeneration. Following mechanical trauma in vitro, plasma was applied either directly to (1) astrocytes alone, (2) neurons alone, or (3) neurons or astrocytes in a non-contact co-culture. Remarkably, we identified NTP treatment intensities that accelerated both neurite regeneration and astrocyte regrowth. In astrocyte cultures alone, an exposure of 20-90 mJ accelerated astrocyte re-growth up to three days post-injury, while neurons required lower treatment intensities (<= 20 mJ) to achieve sub-lethal outgrowth. Following injury to neurons in non-contact co-culture with astrocytes, 20 mJ exposure of plasma to only neurons or astrocytes resulted in increased neurite regeneration at three days post-treatment compared to the untreated, but no enhancement was observed when both cell types were treated. At day seven, although regeneration further increased, NTP did not elicit a significant increase from the control. However, plasma exposure at higher intensities was found to be injurious, underscoring the need to optimize exposure levels. These results suggest that growth-promoting physiological responses may be elicited via properly calibrated NTP treatment to neurons and/or astrocytes. This could be exploited to accelerate neurite re-growth and modulate neuron-astrocyte interactions, thereby hastening nervous system regeneration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489115200107 Publication Date 2019-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.679 Times cited 2 Open Access
Notes Approved Most recent IF: 1.679
Call Number UA @ admin @ c:irua:163799 Serial 6312
Permanent link to this record