toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A.
  Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
  Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry
  Volume 47 Issue Pages 100916
  Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-03-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2452-2236 ISBN Additional Links
  Impact Factor 9.3 Times cited Open Access
  Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA
  Call Number PLASMANT @ plasmant @ Serial 9117
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L.
  Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal
  Volume 36 Issue Pages 102602
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000916285000001 Publication Date 2022-12-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.2 Times cited Open Access OpenAccess
  Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA
  Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244
Permanent link to this record
 

 
Author Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Fridman, A.; Lu, X.; Ostrikov, K.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; Mesbah, A.; Walsh, J.; Jiang, C.; Thagard, S.M.; Tanaka, H.; Liu, D.; Yan, D.; Yusupov, M.
  Title Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap Type A1 Journal article
  Year 2022 Publication IEEE transactions on radiation and plasma medical sciences Abbreviated Journal IEEE Trans. Radiat. Plasma Med. Sci.
  Volume 6 Issue 2 Pages 127-157
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma, the fourth and most pervasive state of matter in the visible universe, is a fascinating medium that is connected to the beginning of our universe itself. Man-made plasmas are at the core of many technological advances that include the fabrication of semiconductor devices, which enabled the modern computer and communication revolutions. The introduction of low temperature, atmospheric pressure plasmas to the biomedical field has ushered a new revolution in the healthcare arena that promises to introduce plasma-based therapies to combat some thorny and long-standing medical challenges. This article presents an overview of where research is at today and discusses innovative concepts and approaches to overcome present challenges and take the field to the next level. It is written by a team of experts who took an in-depth look at the various applications of plasma in hygiene, decontamination, and medicine, made critical analysis, and proposed ideas and concepts that should help the research community focus their efforts on clear and practical steps necessary to keep the field advancing for decades to come.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000750257400005 Publication Date 2021-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2469-7311 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes Research Foundation—Flanders, 1200219N ; Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:185875 Serial 6907
Permanent link to this record
 

 
Author Kelly, S.; Bogaerts, A.
  Title Nitrogen fixation in an electrode-free microwave plasma Type A1 Journal Article
  Year 2021 Publication Joule Abbreviated Journal Joule
  Volume 5 Issue 11 Pages 3006-3030
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract Plasma-based gas conversion has great potential for enabling carbon-free fertilizer production powered by renewable electricity. Sustaining an energy-efficient plasma process without eroding the containment vessel is currently a significant challenge, limiting scaling to higher powers and throughputs. Isolation of the plasma from contact with any solid surfaces is an advantage, which both limits energy loss to the walls and prevents material erosion that could lead to disastrous soil contamination. This paper presents highly energy-efficient nitrogen fixation from air into NOx by microwave plasma, with the plasma filament isolated at the center of a quartz tube using a vortex gas flow. NOx production is found to scale very efficiently when increasing both gas flow rate and absorbed power. The lowest energy cost recorded of ~2 MJ/mol, for a total NOx production of ~3.8%, is the lowest reported up to now for atmospheric pressure plasmas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000723010700018 Publication Date 2021-10-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2542-4351 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access OpenAccess
  Notes We acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We thank Dr. Waldo Bongers and Dr. Floran Peeters of the DIFFER institute for their help and advice in the initial phase of the project, as well as Mr. Luc van‘t Dack, Dr. Karen Leyssens and Ing. Karel Venken for their technical assistance. We thank Dr. Klaus Werner, executive director of the RF Energy Alliance, for his extensive expertise and helpful discourse regarding solid-state MW technology. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:184250 Serial 6835
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
  Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
  Year 2018 Publication Plasma Abbreviated Journal
  Volume 1 Issue 1 Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2018-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2571-6182 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access OpenAccess
  Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990
Permanent link to this record
 

 
Author Gorbanev, Y.; Golda, J.; Gathen, V.S.; Bogaerts, A
  Title Applications of the COST Plasma Jet: More than a Reference Standard Type A1 Journal article
  Year 2019 Publication Plasma Abbreviated Journal Plasma
  Volume 2 Issue 3 Pages 316-327
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-07-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2571-6182 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes We would like to thank Deborah O’Connell (York Plasma Institute, Department of Physics, University of York, United Kingdom) and Angela Privat-Maldonado (PLASMANT, University of Antwerp) for useful discussions. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:161628 Serial 5287
Permanent link to this record
 

 
Author Shah, J.; Wang, W.; Bogaerts, A.; Carreon, M.L.
  Title Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms Type A1 Journal article
  Year 2018 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
  Volume 1 Issue 9 Pages 4824-4839
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonthermal plasma is a promising alternative for ammonia synthesis at gentle conditions. Metal meshes of Fe, Cu, Pd, Ag, and Au were employed as catalysts in radio frequency plasma for ammonia synthesis. The energy yield for all these transition metal catalysts ranged between 0.12 and 0.19 g-NH3/kWh at 300 W and, thus, needs further improvement. In addition, a semimetal, pure gallium, was used for the first time as catalyst for ammonia synthesis, with energy yield of 0.22 g-NH3/kWh and with a maximum yield of ∼10% at 150 W. The emission spectra, as well as computer simulations, revealed hydrogen recombination as a primary governing parameter, which depends on the concentration or flux of H atoms in the plasma and on the catalyst surface. The simulations helped to elucidate the underlying mechanism, implicating the dominance of surface reactions and surface adsorbed species. The rate limiting step appears to be NH2 formation on the surface of the reactor wall and on the catalyst surface, which is different from classical catalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458706500048 Publication Date 2018-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes M.L.C. acknowledges financial support from The University of Tulsa Faculty Startup Funds and The University of Tulsa Faculty Development Summer Fellowship Grant (FDSF). A.B. acknowledges financial support from the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F91618N; EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:153804 Serial 5051
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X.
  Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
  Year 2023 Publication JACS Au Abbreviated Journal JACS Au
  Volume 3 Issue 5 Pages 1328-1336
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000981779300001 Publication Date 2023-05-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792
Permanent link to this record
 

 
Author Paunska, T.; Trenchev, G.; Bogaerts, A.; Kolev, S.
  Title A 2D model of a gliding arc discharge for CO2conversion Type P1 Proceeding
  Year 2019 Publication AIP conference proceedings T2 – 10th Jubilee Conference of the Balkan-Physical-Union (BPU), AUG 26-30, 2018, Sofia, BULGARIA Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The study presents a 2D fluid plasma model of a gliding arc discharge for dissociation of CO2 which allows its subsequent conversion into value-added chemicals. The model is based on the balance equations of charged and neutral particles, the electron energy balance equation, the gas thermal balance equation and the current continuity equation. By choosing the modeling domain to be the plane perpendicular to the arc current, the numerical calculations are significantly simplified. Thus, the model allows us to explore the influence of the gas instabilities (turbulences) on the energy efficiency of CO2 conversion. This paper presents results for plasma parameters at different values of the effective turbulent thermal conductivity leading to enhanced energy transport.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472653800069 Publication Date 2019-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume 2075 Series Issue Edition
  ISSN (up) 978-0-7354-1803-5; 978-0-7354-1803-5; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161422 Serial 6281
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
  Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.
  Address
  Corporate Author Thesis
  Publisher Masarykova univ Place of Publication Brno Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:141554 Serial 4516
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P.
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal
  Volume Issue Pages
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.
  Address
  Corporate Author Thesis
  Publisher Masarykova univ Place of Publication Brno Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:141553 Serial 4526
Permanent link to this record
 

 
Author Elmonov, A.A.; Yusupov, M.S.; Dzhurakhalov, A.A.; Bogaerts, A.
  Title Sputtering of Si(001) and SiC(001) by grazing ion bombardment Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal
  Volume Issue Pages 209-213
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The peculiarities of sputtering processes at 0.5-5 keV Ne grazing ion bombardment of Si(001) and SiC(001) surfaces and their possible application for the surface modification have been studied by computer simulation. Sputtering yields in the primary knock-on recoil atoms regime versus the initial energy of incident ions (E(0) = 0.5-5 keV) and angle of incidence (psi = 0-30 degrees) counted from a target surface have been calculated. Comparative studies of layer-by-layer sputtering for Si(001) and SiC(001) surfaces versus the initial energy of incident ions as well as an effective sputtering and sputtering threshold are discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue 84 Edition
  ISSN (up) 978-86-80019-27-7 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:95704 Serial 3112
Permanent link to this record
 

 
Author Derzsi, A.; Donko, Z.; Bogaerts, A.; Hoffmann, V.
  Title The influence of the secondary electron emission coefficient and effect of the gas heating on the calculated electrical characteristics of a grimm type glow discharge cell Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal
  Volume Issue Pages 285-288
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Electron emission properties of cathode surfaces affect considerably the electrical characteristics of glow discharges. Using a heavy-particle hybrid model ill 2 dimensions, we investigate the influence of the secondary electron emission coefficient gamma oil the calculated discharge characteristics for both 'clean' and 'dirty' cathode surface conditions, and assuming a constant gamma parameter as well. The effect of the gas heating and the role of the heavy particles reflected from the cathode on this process is also studied.
  Address
  Corporate Author Thesis
  Publisher Astronomical Observatory Place of Publication Belgrade Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume 2008 Series Issue 84 Edition
  ISSN (up) 978-86-80019-27-7; 0373-3742 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:95705 Serial 1650
Permanent link to this record
 

 
Author Petrovic, D.; Martens, T.; van Dijk, J.; Brok, W.J.M.; Bogaerts, A.
  Title Modeling of a dielectric barrier discharge used as a flowing chemical reactor Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal
  Volume Issue Pages 262-262
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Astronomical Observatory Place of Publication Belgrade Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume 2008 Series Issue 84 Edition
  ISSN (up) 978-86-80019-27-7; 0373-3742 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:95700 Serial 2114
Permanent link to this record
 

 
Author Madani, M.; Bogaerts, A.; Vangeneugden, D.
  Title Numerical modelling for a dielectric barrier discharge at atmospheric pressure in nitrogen Type P1 Proceeding
  Year 2005 Publication Abbreviated Journal
  Volume Issue Pages 53-56
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper we used a one dimensional fluid model, for the simulations of a Dielectric Barrier Discharge at atmospheric pressure. From the current and voltage profiles and the density profiles, we notice that two different regimes can be obtained in a uniform DBD. Furthermore a two dimensional flud model was developed and we describe how the gasflow can be included in such a model.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (up) 978-90-808669-2-8 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:88728 Serial 2399
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: