toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Abeysinghe, D.; Smith, M.D.; Yeon, J.; Tran, T.T.; Sena, R.P.; Hadermann, J.; Halasyamani, P.S.; zur Loye, H.-C. pdf  doi
openurl 
  Title Crystal growth and structure analysis of Ce-18-W-10-O-57 : a complex oxide containing tungsten in an unusual trigonal prismatic coordination environment Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 5 Pages 2566-2575  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The noncentrosymmetric tungstate oxide, Ce18W10O57) was synthesized for the first time as high-quality single crystals via the molten chloride flux method and structurally characterized by single-crystal X-ray diffraction. The compound is a structural analogue to the previously reported La18W10O57, which crystallizes in the hexagonal space group P (6) over bar 2c. The +3 oxidation state of cerium in Ce18W10O57 was achieved via the in situ reduction of Ce(IV) to Ce(III) using Zn metal. The structure consists of both isolated and face-shared WO6 octahedra and, surprisingly, isolated WO6 trigonal prisms. A careful analysis of the packing arrangement in the structure makes it possible to explain the unusual structural architecture of Ce18W10O57, which is described in detail. The temperature-dependent magnetic susceptibility of Ce18W10O57 indicates that the cerium(III) f(1) cations do not order magnetically and exhibit simple paramagnetic behavior. The SHG efficiency of Ln(18)W(10)O(57) (Ln = La, Ce) was measured as a function of particle size, and both compounds were found to be SHG active with efficiency approximately equal to that of alpha-SiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000395847300026 Publication Date 2017-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access Not_Open_Access  
  Notes ; Financial support for this work was provided by the National Science Foundation under DMR-1301757 and is gratefully acknowledged. T.T.T. and P.S.H. thank the Welch Foundation (Grant E-1457) and NSF-DMR-1503573. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:142449 Serial 4643  
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Batuk, D.; Colin, C.V.; Dalla Corte, D.A.; Tarascon, J.-M. pdf  doi
openurl 
  Title Synthesis, structure, and electrochemical properties of k-based sulfates K2M2(SO4)3) with M = Fe and Cu Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 4 Pages 2013-2021  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stabilizing new host structures through potassium extraction from K-based polyanionic materials has been proven to be an interesting approach to develop new Li+/Na+ insertion materials. Pursuing the same trend, we here report the feasibility of preparing langbeinite “Fe-2(SO4)(3)” via electrochemical and chemical oxidation of K2Fe2(SO4)(3). Additionally, we succeeded in stabilizing a new K2Cu2(SO4)(3) phase via a solid-state synthesis approach. This novel compound crystallizes in a complex orthorhombic structure that differs from that of langbeinite as deduced from synchrotron X-ray and neutron powder diffraction. Electrochemically, the performance of this new phase is limited, which we explain in terms of sluggish diffusion kinetics. We further show that K2Cu2(SO4)(3) decomposes into K2Cu3O(SO4)(3) on heating, and we report for the first time the synthesis of fedotovite K2Cu3O(SO4)(3). Finally, the fundamental attractiveness of these S = 1/2 systems for physicists is examined by neutron magnetic diffraction, which reveals the absence of a long-range ordering of Cu2+ magnetic moments down to 1.5 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000394736600027 Publication Date 2017-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 13 Open Access Not_Open_Access  
  Notes ; We thank Matthieu Courty for performing TGA/DSC measurements. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 and is acknowledged. The French CRG D1B is acknowledged for allocating neutron beamtime. L.L. thanks the ANR “Hipolite” for the Ph.D. funding. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:142531 Serial 4692  
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. pdf  doi
openurl 
  Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 15 Pages 8782-8792  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000407405500026 Publication Date 2017-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:145727 Serial 4744  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Altantzis, T.; Gombac, V.; Fornasiero, P.; Maccato, C. url  doi
openurl 
  Title Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2Nanomaterials Type A1 Journal Article
  Year 2018 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 23 Pages 14564-14573  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses,from heterogeneous catalysis to gas sensing, owing to its

structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasmaassisted process starting from a fluorinated manganese(II)

molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and

morphology revealed the formation of F-doped, oxygendeficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature (TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vislight activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452344400016 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access Not_Open_Access  
  Notes The present work was financially supported by Padova University DOR 2016−2018 and P-DiSC #03BIRD2016- UNIPD projects. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium) and to Dr. Giorgio Carraro (Department of Chemical Sciences, Padova University, Italy) for valuable support and experimental assistance. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:156245 Serial 5147  
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Hendrickx, M.; Hadermann, J.; Cadogan, J.M. pdf  doi
openurl 
  Title Ferrimagnetism as a consequence of unusual cation ordering in the Perovskite SrLa2FeCoSbO9 Type A1 Journal article
  Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 12 Pages 7438-7445  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of SrLa2FeCoSbO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, magnetometry, Mossbauer spectroscopy, X-ray diffraction, and neutron diffraction. The compound adopts a monoclinic (space group P2(1)/n; a = 5.6218(6), b = 5.6221(6), c = 7.9440(8) angstrom, beta = 90.050(7)degrees at 300 K) perovskite-like crystal structure with two crystallographically distinct six-coordinate sites. One of these sites is occupied by 2/3 Co-2(+),1/3 Fe3+ and the other by 2/3 Sb5+, 1/3 Fe3+. This pattern of cation ordering results in a transition to a ferrimagnetic phase at 215 K. The magnetic moments on nearest-neighbor, six-coordinate cations align in an antiparallel manner, and the presence of diamagnetic Sb5+ on only one of the two sites results in a nonzero remanent magnetization of similar to 1 mu(B) per formula unit at 5 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000436023800073 Publication Date 2018-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access Not_Open_Access  
  Notes ; PDB, ECH, and JH acknowledge support from EPSRC under grant EP/M0189954/1. We would like to thank the STFC for the award of beamtime at the ISIS Neutron and Muon Source (RB 1610100), and we thank Dr. I. da Silva for the assistance provided. We also thank Dr. R Paria Sena for help with the HAADF-STEM and STEM-EDX experiments. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:152485 Serial 5103  
Permanent link to this record
 

 
Author Cassidy, S.J.; Orlandi, F.; Manuel, P.; Hadermann, J.; Scrimshire, A.; Bingham, P.A.; Clarke, S.J. url  doi
openurl 
  Title Complex Magnetic Ordering in the Oxide Selenide Sr2Fe3Se2O3 Type A1 Journal article
  Year 2018 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 16 Pages 10312-10322  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000442489100078 Publication Date 2018-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access OpenAccess  
  Notes ; S. J. Cassidy prepared the samples and performed the diffraction and magnetometry measurements. F.O., P.M., and S. J. Cassidy measured and interpreted the NPD data. J.H. performed and interpreted the electron diffraction measurements. A.S. and P.A.B. performed and interpreted the Mossbauer spectroscopy measurements. S. J. Cassidy and S. J. Clarke conceived the project and wrote the paper with input from all co-authors. We acknowledge the financial support of the EPSRC (Grants EP/I017844/1, EP/P018874/1, and EP/ M020517/1), and the Leverhulme Trust (RPG-2014-221). We thank the ESTEEM2 network for enabling the electron microscopy investigations, the ISIS facility for the award of beamtime on WISH (RB1610357), and the Diamond Light Source Ltd. for the award of beam time on I11 (allocation EE13284). We thank Dr. C. Murray, Dr. S. Day and Dr. A. Baker for assistance on I11 and Dr. M. Coduri and Dr. A. N. Fitch for assistance on ID22. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:153723 Serial 5085  
Permanent link to this record
 

 
Author Cassidy, S.J.; Pitcher, M.J.; Lim, J.J.K.; Hadermann, J.; Allen, J.P.; Watson, G.W.; Britto, S.; Chong, E.J.; Free, D.G.; Grey, C.P.; Clarke, S.J. url  doi
openurl 
  Title Layered CeSO and LiCeSO oxide chalcogenides obtained via topotactic oxidative and reductive transformations Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 6 Pages 3838-3850  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chemical accessibility of the Celv oxidation state enables redox chemistry to be performed on the naturally coinagemetal -deficient phases CeM1-xSO (M = Cu, Ag). A metastable black compound with the PbFC1 structure type (space group P4/nmm: a = 3.8396(1) angstrom, c = 6.607(4) angstrom, V = 97.40(6) angstrom(3)) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the highresolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A strawcolored compound with the filled PbFCI (i.e., ZrSiCuAs- or HfCuSi2type) structure (space group P4/nmm: a = 3.98171(1) angstrom, c = 8.70913(5) angstrom, V = 138.075(1) angstrom 3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAga8S0 or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce' compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce' in the presence of sulfide (S2-). Comparison of the behavior of CeCu0.8SO with that of CeCu0.8SO reveals much slower reaction kinetics associated with the Cu,_xS layers, and this enables intermediate CeCui LixSO phases to be isolated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461978700036 Publication Date 2019-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes ; We thank the UK EPSRC (EP/M020517/1 and EP/P018874/1), the Leverhulme Trust (RPG-2014-221), and Science Foundation Ireland (Grant 12/IA/1414) for funding and the EPSRC for additional studentship support. We acknowledge the ISIS pulsed neutron and muon source and the Diamond Light Source Ltd. (EE13284 and EE18786) and the ESRF for the award of beam time. We thank Dr. R I. Smith for assistance on the neutron beamlines, Dr. A. Baker and Dr. C. Murray for support on III, and Dr. C. Curls for support on ID31. ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:159426 Serial 5253  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D.R.; Hennet, L.; Thiaudiere, D.; Ouisse, T.; Hadermann, J.; Vleugels, J.; Lambrinou, K. pdf  doi
openurl 
  Title Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramics Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 10 Pages 6669-6683  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (ZryTi)(2)(Al-0.5,Sn-0.5)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH2, TiH2, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)(2)AlC system was the key to achieve phase purity. Its effect on the crystal structure of a 211-type MAX phase was assessed by calculating the distortions of the octahedral M6C and trigonal M(6)A prisms due to steric effects. The M(6)A prismatic distortion values were found to be smaller in Sn-containing double solid solutions than in the (Zr,Ti)(2)AlC MAX phases. The coefficients of thermal expansion along the < a > and < c > directions were measured by means of Rietveld refinement of high-temperature synchrotron X-ray diffraction data of (Zr1-x,Ti-x)(2)(Al-0.5,Sn-0.5)C MAX phase solid solutions with x = 0, 0.3, 0.7, and 1. The thermal expansion coefficient data of the Ti-2(Al-0.5,Sn-0.5)C solid solution were compared with those of the Ti2AlC and Ti2SnC ternary compounds. The thermal expansion anisotropy increased in the (Zr,Ti)(2)(Al-0.5,Sn-0.5)C double solid solution MAX phases as compared to the Zr-2(Al-0.5,Sn-0.5)C and Ti-2(Al-0.5,Sn-0.5)C end-members.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469304700014 Publication Date 2019-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access  
  Notes ; H. Roussel and D. Pinek are acknowledged for the Ti<INF>2</INF>SnC single-crystal production and high-temperature XRD measurements performed at Grenoble INP-LMGP-CMTC. This research was funded partly by the European Atomic Energy Community's (Euratom) Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 604862 (FP7MatISSE), and partly by the Euratom research and training programme 2014-2018 under Grant Agreement No. 740415 (H2020 IL TROVATORE). T.L. thanks the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium, for Ph.D. Grant No. 131081. B.T. acknowledges the financial support of the SCK.CEN Academy for Nuclear Science and Technology. All authors gratefully acknowledge Synchrotron SOLEIL for the allocated time at the DIFFABS beamline in association with Project 20161410 entitled “Investigation of (Zr-Ti)-Al-C MAX phases with in-situ high-temperature XRD” and the Hercules Foundation for Project AKUL/1319 (CombiS(T)EM). ; Approved Most recent IF: 4.857  
  Call Number UA @ admin @ c:irua:160318 Serial 5261  
Permanent link to this record
 

 
Author Jin, L.; Batuk, M.; Kirschner, F.K.K.; Lang, F.; Blundell, S.J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Exsolution of SrO during the Topochemical Conversion of LaSr3CoRuO8to the Oxyhydride LaSr3CoRuO4H4 Type A1 Journal article
  Year 2019 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 58 Issue 21 Pages 14863-14870  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the n = 1 Ruddlesden-Popper oxide LaSr3CoRuO8 with CaH2 yields the oxyhydride phase LaSr3CoRuO4H4 via topochemical anion-exchange. Close inspection of X-ray and neutron powder diffraction data in combination with HAADF-STEM images reveals that nanoparticles of SrO are exsolved from the system during the reaction, with the change in cation stoichiometry accommodated by the inclusion of n > 1 (Co/Ru)nOn+1H2n ‘perovskite’ layers into the Ruddlesden-Popper stacking sequence. This novel pseudo-topochemical process offers a new route for the formation of n > 1 Ruddlesden-Popper structured materials. Magnetization data are consistent with a LaSr3Co1+Ru2+O4H4 (Co1+, d8, S = 1; Ru2+, d6, S = 0) oxidation/spin state combination. Neutron diffraction and μ+SR data show no evidence for long-range magnetic order down to 2 K, suggesting the diamagnetic Ru2+ centers impede the Co-Co magnetic exchange interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494894400062 Publication Date 2019-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 1 Open Access  
  Notes We thank P. Manuel for assistance collecting the neutron powder diffraction data. We thank The Leverhulme Trust grant award RPG-2014-366 “Topochemical reduction of 4d and 5d transition metal oxides” for supporting this work. Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Investigation by TEM was supported through the FWO grant G035619N. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:164625 Serial 5434  
Permanent link to this record
 

 
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 21 Pages 15898-15912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588738100035 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number EMAT @ emat @c:irua:176058 Serial 6704  
Permanent link to this record
 

 
Author Skaggs, C.M.; Kang, C.-J.; Perez, C.J.; Hadermann, J.; Emge, T.J.; Frank, C.E.; Pak, C.; Lapidus, S.H.; Walker, D.; Kotliar, G.; Kauzlarich, S.M.; Tan, X.; Greenblatt, M. pdf  url
doi  openurl
  Title Ambient and high pressure CuNiSb₂ : metal-ordered and metal-disordered NiAs-type derivative pnictides Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 19 Pages 14058-14069  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P (3) over bar m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P6(3)/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 degrees C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P (3) over bar m1 space group, corroborated by transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580381700028 Publication Date 2020-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number UA @ admin @ c:irua:174331 Serial 6714  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 14 Pages 5637-5652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000789034200023 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access  
  Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:188631 Serial 7079  
Permanent link to this record
 

 
Author Sheath, B.C.; Xu, X.; Manuel, P.; Hadermann, J.; Batuk, M.; O'Sullivan, J.; Bonilla, R.S.; Clarke, S.J. url  doi
openurl 
  Title Structures and magnetic ordering in layered Cr oxide arsenides Sr₂CrO₂Cr₂OAs₂ and Sr₂CrO₃CrAs Type A1 Journal article
  Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 61 Issue 31 Pages 10-12385  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two novel chromium oxide arsenide materials have been synthesized, Sr2CrO2Cr2OAs2 (i.e., Sr2Cr3As2O3) and Sr2CrO3CrAs (i.e., Sr2Cr2AsO3), both of which contain chromium ions in two distinct layers. Sr2CrO2Cr2OAs2 was targeted following electron microscopy measurements on a related phase. It crystallizes in the space group P4/mmm and accommodates distorted CrO4As2 octahedra containing Cr2+ and distorted CrO(2)As(4 )octahedra containing Cr3+. In contrast, Sr2CrO3CrAs incorporates Cr3+ in CrO5 square-pyramidal coordination in [Sr2CrO3](+) layers and Cr2+ ions in CrAs(4 )tetrahedra in [CrAs](-) layers and crystallizes in the space group P4/nmm. Powder neutron diffraction data reveal antiferromagnetic ordering in both compounds. In Sr2CrO3CrAs the Cr2+ moments in the [CrAs](-) layers exhibit long-range ordering, while the Cr3+ moments in the [Sr2CrO3](+) layers only exhibit short-range ordering. However, in Sr2CrO2Cr2OAs2, both the Cr(2+ )moments in the CrO4As2 environments and the Cr3+ moments in the CrO2As4 polyhedra are long-range-ordered below 530(10) K. Above this temperature, only the Cr3+ moments are ordered with a Neel temperature slightly in excess of 600 K. A subtle structural change is evident in Sr2CrO2Cr2OAs2 below the magnetic ordering transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000841943600001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190007 Serial 7215  
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A. pdf  doi
openurl 
  Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 62 Issue 27 Pages 10822-10832  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018974700001 Publication Date 2023-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:197789 Serial 8881  
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M. pdf  doi
openurl 
  Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 63 Issue 2 Pages 1136-1141  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001143581300001 Publication Date 2023-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:202780 Serial 9018  
Permanent link to this record
 

 
Author Van Holsbeke, C.S.; Leemans, G.; Vos, W.G.; de Backer, J.W.; Vinchurkar, S.C.; Geldof, M.; Verdonck, P.R.; Parizel, P.M.; van Schil, P.E.; de Backer, W.A. pdf  doi
openurl 
  Title Functional Respiratory Imaging as a tool to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis Type A1 Journal article
  Year 2013 Publication Respiratory care Abbreviated Journal Resp Care  
  Volume Issue Pages 1-20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract In two subjects with a unilateral diaphragmatic paralysis and complaints of dyspnea, a completely different treatment approach was chosen despite similar anatomical and physiological abnormalities. These decisions were supported by the results generated by Functional Respiratory Imaging (FRI). FRI was able to generate functional information with respect to lobar ventilation and local drug deposition. In one subject, it was found that some lobes were poorly ventilated and drug deposition simulation showed that some regions were undertreated. This subject underwent a diaphragm plication to restore the ventilation. In the other subject, it was found that all lobes were still ventilated. A conservative approach with regular follow-up was chosen to wait for spontaneous recovery of the diaphragmatic function. Both subjects improved subjectively and objectively. These cases demonstrate how novel medical imaging techniques such as FRI can be used to personalize respiratory treatment in subjects with unilateral diaphragmatic paralysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Dallas, Tex. Editor  
  Language Wos 000349200100024 Publication Date 2013-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0020-1324;1943-3654; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.733 Times cited 5 Open Access  
  Notes ; ; Approved Most recent IF: 1.733; 2013 IF: 1.840  
  Call Number UA @ lucian @ c:irua:112982 Serial 1303  
Permanent link to this record
 

 
Author Simionovici, A.S.; Chukalina, M.; Schroer, C.; Drakopoulos, M.; Snigirev, A.; Snigireva, I.; Lengeler, B.; Janssens, K.; Adams, F. doi  openurl
  Title High-resolution X-ray fluorescence microtomography of homogeneous samples Type A1 Journal article
  Year 2000 Publication IEEE transactions on nuclear science Abbreviated Journal Ieee T Nucl Sci  
  Volume 47 Issue 6 Pages 2736-2740  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000166992400006 Publication Date 2002-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.171 Times cited Open Access  
  Notes Approved Most recent IF: 1.171; 2000 IF: 1.060  
  Call Number UA @ admin @ c:irua:32403 Serial 5644  
Permanent link to this record
 

 
Author Nelson, J.W.; Williams, I.; Johansson, T.B.; Van Grieken, R.E. doi  openurl
  Title Elemental analysis of aerosols using proton-scattering Type A1 Journal article
  Year 1974 Publication IEEE transactions on nuclear science Abbreviated Journal  
  Volume Ns21 Issue 1 Pages 618-621  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Elemental analysis for all of the light elements up through chlorine by elastic scattering of 16 MeV protons has been shown to be feasible. Basic problems associated with such measurements are discussed including kinematics, angular distribution, and sample backings. Spectra are presented for air particulate matter for both a total filter (Nuclepore) and a size fractionated air impactor (polystyrene backed) sample. The method is absolute, non destructive and can be used in conjunction with proton induced x-ray fluorescence to quantitatively analyze all elements in the same sample in minutes of time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1974S533700086 Publication Date 2008-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:113642 Serial 7881  
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van den Bos, A.; van Dyck, D. doi  openurl
  Title High-resolution electron microscopy : from imaging toward measuring Type A1 Journal article
  Year 2002 Publication IEEE transactions on instrumentation and measurement Abbreviated Journal Ieee T Instrum Meas  
  Volume 51 Issue 4 Pages 611-615  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000178992000010 Publication Date 2003-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9456; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.456 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.456; 2002 IF: 0.592  
  Call Number UA @ lucian @ c:irua:47521 Serial 1450  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Sorée, B.; Groeseneken, G.; De Meyer, K. doi  openurl
  Title Direct and indirect band-to-band tunneling in germanium-based TFETs Type A1 Journal article
  Year 2012 Publication IEEE transactions on electron devices Abbreviated Journal Ieee T Electron Dev  
  Volume 59 Issue 2 Pages 292-301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Germanium is a widely used material for tunnel FETs because of its small band gap and compatibility with silicon. Typically, only the indirect band gap of Ge at 0.66 eV is considered. However, direct band-to-band tunneling (BTBT) in Ge should be included in tunnel FET modeling and simulations since the energy difference between the Ge conduction band edges at the L and G valleys is only 0.14 eV at room temperature. In this paper, we theoretically calculate the parameters A and B of Kane's direct and indirect BTBT models at different tunneling directions ([100], [110], and [111]) for Si, Ge and unstrained Si1-xGex. We highlight how the direct BTBT component becomes more important as the Ge mole fraction increases. The calculation of the band-to-band generation rate in the uniform electric field limit reveals that direct tunneling always dominates over indirect tunneling in Ge. The impact of the direct transition in Ge on the performance of two realistic tunnel field-effect transistor configurations is illustrated with TCAD simulations. The influence of field-induced quantum confinement is included in the analysis based on a back-of-the-envelope calculation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000299430200005 Publication Date 2011-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9383;1557-9646; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.605 Times cited 212 Open Access  
  Notes ; Manuscript received August 5, 2011; revised October 5, 2011 and October 28, 2011; accepted October 30, 2011. Date of publication December 7, 2011; date of current version January 25, 2012. This work was supported by the Interuniversity Microelectronics Center's (IMEC) Industrial Affiliation Program. The work of W. G. Vandenberghe was supported by a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). The review of this paper was arranged by Editor A. Schenk. ; Approved Most recent IF: 2.605; 2012 IF: 2.062  
  Call Number UA @ lucian @ c:irua:97215 Serial 708  
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; Leonelli, D.; Groeseneken, G.; De Meyer, K. doi  openurl
  Title Optimization of gate-on-source-only tunnel FETs with counter-doped pockets Type A1 Journal article
  Year 2012 Publication IEEE transactions on electron devices Abbreviated Journal Ieee T Electron Dev  
  Volume 59 Issue 8 Pages 2070-2077  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate a promising tunnel FET configuration having a gate on the source only, which is simultaneously exhibiting a steeper subthreshold slope and a higher ON-current than the lateral tunneling configuration with a gate on the channel. Our analysis is performed based on a recently developed 2-D quantum-mechanical simulator calculating band-to-band tunneling and including quantum confinement (QC). It is shown that the two disadvantages of the structure, namely, the sensitivity to gate alignment and the physical oxide thickness, are mitigated by placing a counter-doped parallel pocket underneath the gate-source overlap. The pocket also significantly reduces the field-induced QC. The findings are illustrated with all-Si and all-Ge gate-on-source-only tunnel field-effect transistor simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000306920200011 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9383;1557-9646; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.605 Times cited 72 Open Access  
  Notes ; Manuscript received February 17, 2012; revised May 7, 2012; accepted May 11, 2012. Date of publication June 26, 2012; date of current version July 19, 2012. This work was supported by the Interuniversity Microelectronics Center's Industrial Affiliation Program. The work of W. G. Vandenberghe was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) through a Ph.D. stipend. The review of this paper was arranged by Editor H. S. Momose. ; Approved Most recent IF: 2.605; 2012 IF: 2.062  
  Call Number UA @ lucian @ c:irua:100820 Serial 2487  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Signature of ballistic band-tail tunneling current in tunnel FET Type A1 Journal article
  Year 2020 Publication Ieee Transactions On Electron Devices Abbreviated Journal Ieee T Electron Dev  
  Volume 67 Issue 8 Pages 3486-3491  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To improve the interpretation of the tunnel field-effect transistor (TFET) measurements, we theoretically identify the signatures of the ballistic band-tail (BT) tunneling (BTT) current in the transfer and output characteristics of the TFETs. In particular, we demonstrate that the temperature dependence of a BTT-dominated subthreshold swing (SS) is in agreement with the reported experimental results. We explain how the temperature dependence of the output characteristics can be used to distinguish between a current dominated by BTT and a current dominated by trap-assisted tunneling. Finally, we propose an expression that relates the energetic extension of the quasi-extended BT states in the bandgap to the onset voltage for tunneling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000552976100072 Publication Date 2020-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9383 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.1; 2020 IF: 2.605  
  Call Number UA @ admin @ c:irua:171189 Serial 6601  
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Gielis, J.; Caratelli, D. pdf  doi
openurl 
  Title Modeling of electroporation induced by pulsed electric fields in irregularly shaped cells Type A1 Journal article
  Year 2018 Publication IEEE transactions on biomedical engineering Abbreviated Journal  
  Volume 65 Issue 2 Pages 414-423  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract During the past decades, the poration of cell membrane induced by pulsed electric fields has been widely investigated. Since the basic mechanisms of this process have not yet been fully clarified, many research activities are focused on the development of suitable theoretical and numerical models. To this end, a nonlinear, nonlocal, dispersive, and space-time numerical algorithm has been developed and adopted to evaluate the transmembrane voltage and pore density along the perimeter of realistic irregularly shaped cells. The presented model is based on the Maxwell's equations and the asymptotic Smoluchowski's equation describing the pore dynamics. The dielectric dispersion of the media forming the cell has been modeled by using a general multirelaxation Debye-based formulation. The irregular shape of the cell is described by using the Gielis' superformula. Different test cases pertaining to red blood cells, muscular cells, cell in mitosis phase, and cancer-like cell have been investigated. For each type of cell, the influence of the relevant shape, the dielectric properties, and the external electric pulse characteristics on the electroporation process has been analyzed. The numerical results demonstrate that the proposed model is an efficient numerical tool to study the electroporation problem in arbitrary-shaped cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000422914700018 Publication Date 2017-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0018-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148417 Serial 8264  
Permanent link to this record
 

 
Author Subramanian, V.; Van Grieken, R.; Van 't dack, L. openurl 
  Title Transport and fractionation of Pb in river sediments from the Indian sub-continent Type A1 Journal article
  Year 1987 Publication Journal of the Geological Society of India Abbreviated Journal  
  Volume 30 Issue Pages 217-226  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0016-7622 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111506 Serial 8699  
Permanent link to this record
 

 
Author Van De Vijver, E.; Delbecque, N.; Verdoodt, A.; Seuntjens, P. pdf  doi
openurl 
  Title Estimating the urban soil information gap using exhaustive land cover data: The example of Flanders, Belgium Type A1 Journal article
  Year 2020 Publication Geoderma Abbreviated Journal Geoderma  
  Volume 372 Issue Pages 114371  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Human activities related to urbanization and industrialization have established a vast territory of urban soil worldwide. On traditional soil maps, urban and industrial areas usually appear as blind spots as they were beyond the interest of national soil survey campaigns. Furthermore, these soil maps are likely already outdated with respect to urban soil due to rapid urban expansion in recent decades. This research aims to evaluate the use of land cover data to estimate the urban soil information gap considering the highly urbanized region of Flanders, Belgium, as a case study. The current extent and spatial distribution of anthropogenic urban soil (1) was estimated through reclassification of recently acquired (2012) exhaustive land cover data, discriminating three qualitative likelihood levels (high-intermediate-low) of anthropogenic influence by urbanization, and (2) compared with its occurrence as represented by the 'Technosols/Not Surveyed area' in the legacy soil map of Belgium, as this map unit best matches with the likelihood for anthropogenic urban soil at the time of the National Soil Survey conducted between end 1940s and mid 1970s. The proposed reclassification of the land cover map resulted in 16.3% and 16.7% of Flanders' total area that corresponds with a high and intermediate likelihood for anthropogenic urban soil, which highlights the underestimation of the anthropogenic urban soil extent as represented by the 'Technosol/Not Surveyed' unit in the legacy soil map (only 13.7%). Moreover, a more realistic spatial pattern of anthropogenic urban soil occurrence was obtained, providing an improved basis for urban soil spatial analysis studies. The produced anthropogenic urban soil likelihood map therefore presents a useful supporting tool for coordinating future soil surveys in urban environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535713600006 Publication Date 2020-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0016-7061 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 6.1; 2020 IF: 4.036  
  Call Number UA @ admin @ c:irua:170153 Serial 6510  
Permanent link to this record
 

 
Author Allegretta, I.; Legrand, S.; Alfeld, M.; Gattullo, C.E.; Porfido, C.; Spagnuolo, M.; Janssens, K.; Terzano, R. pdf  doi
openurl 
  Title SEM-EDX hyperspectral data analysis for the study of soil aggregates Type A1 Journal article
  Year 2022 Publication Geoderma: an international journal of soil science Abbreviated Journal Geoderma  
  Volume 406 Issue Pages  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Scanning electron microscopy coupled with microanalysis (SEM-EDX) is an important analytical tool for the morphological and chemical characterization of different types of materials. In many applications, SEM-EDX elemental maps are usually used and processed as images, thus flattening and reducing the spectroscopic information contained in EDX hyperspectral data cubes. The exploitation of the full hyperspectral dataset could be indeed very useful for the study of complex matrices like soil. In order to maximize the information attainable by SEM-EDX data cubes analysis, the software package “Datamuncher Gamma” was implemented and applied to study soil aggregates. By using this approach, different phases (silicates, aluminosilicates, Ca-carbonates, Ca-phosphates, organic matter, iron oxides) inside soil aggregates were successfully identified and segmented. The advantages of this method over the common ROI imaging approach are presented. Finally, this method was used to compare different aggregates in a Cr-polluted soil and understand their possible pedological history. The present method can be used for the analysis of every type of SEM-EDX data cubes, allowing its application to different types of samples and fields of study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708893700026 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0016-7061 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.1  
  Call Number UA @ admin @ c:irua:182493 Serial 7207  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.; Perreault, P.; Bula, A.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Co-gasification of biomass and coal in a top-lit updraft fixed bed gasifier : syngas composition and its interchangeability with natural gas for combustion applications Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 316 Issue Pages 123394-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The co-gasification of biomass and coal is a promising approach for efficiently integrating the unique advantages of different gasification feedstock with syngas production. Additionally, syngas from the co-gasification of locally available biomass and coal could supplement the natural gas used in household and industrial burners. The top-lit updraft gasifier features a moving ignition front that starts at the top and propagates downward through the solids bed, while air enters from the bottom and the gas product flows upwards. This study assesses the co-gasification performance of palm kernel shell and high-volatile bituminous coal in a top-lit updraft fixed bed gasifier using 70, 85, and 100 vol% biomass and equivalence ratios ranging from 0.26 to 0.34. The results indicate that the ignition front propagates faster and is more uniform as the biomass volume increases. Micro GC analysis revealed that the H2/CO ratio remained in the range of 0.57–0.59, 0.49–0.51, and 0.42–0.46 for experiments with 70, 85, and 100 vol% biomass, respectively. A gas interchangeability analysis showed that syngas-natural gas blends with up to 15 vol% of syngas could combust in atmospheric natural gas burners without modifications. Thus, the top-lit updraft gasifier shows excellent potential for the co-gasification of coal and biomass. Further research on this technology should explore steam as a gasification agent to enhance the syngas energy content and continuous solids feeding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000783173000003 Publication Date 2022-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187752 Serial 7136  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 323 Issue Pages 124269-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799165400007 Publication Date 2022-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187830 Serial 7159  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: