|   | 
Details
   web
Records
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M.
Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 13013-13020
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000354195300065 Publication Date 2015-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 104 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number c:irua:126394 Serial 2835
Permanent link to this record
 

 
Author Hermans, I.; Breynaert, E.; Poelman, H.; de Gryse, R.; Liang, D.; Van Tendeloo, G.; Maes, A.; Peeters, J.; Jacobs, P.
Title Silica-supported chromium oxide: colloids as building blocks Type A1 Journal article
Year 2007 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 9 Issue 39 Pages 5382-5386
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000249925500022 Publication Date 2007-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 8 Open Access
Notes Approved Most recent IF: 4.123; 2007 IF: 3.343
Call Number UA @ lucian @ c:irua:66752 Serial 3000
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B.
Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 36 Pages 15091-15097
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000323520600029 Publication Date 2013-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 3 Open Access
Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:110793 Serial 3130
Permanent link to this record
 

 
Author Huang, W.; Zhang, X.-B.; Tu, J.; Kong, F.; Ning, Y.; Xu, J.; Van Tendeloo, G.
Title Synthesis and characterization of graphite nanofibers deposited on nickel foams Type A1 Journal article
Year 2002 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 4 Issue 21 Pages 5325-5329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nickel foams were used as catalysts to dissociate acetylene and deposit carbon atoms. Graphite nanofibers with distinct structures were developed at 550degreesC with nickel foams pretreated with hydrogen. HREM observations showed that the graphite layers of the nanofibers were aligned at a certain angle to the fiber axis. It is suggested that hydrogen treatment and metal catalysts have a tremendous impact on the yields and microstructures of the graphite nanofibers. The growth mechanism of these fish-bone graphite nanofibers is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000178635300016 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 20 Open Access
Notes Approved Most recent IF: 4.123; 2002 IF: 1.838
Call Number UA @ lucian @ c:irua:94938 Serial 3411
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue 4 Pages 1463-1467
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000298754500018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 67 Open Access
Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title The role of the VZn-NO-H complex in the p-type conductivity in ZnO Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 5485-5489
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Past research efforts aiming at obtaining stable p-type ZnO have been based on complexes involving nitrogen doping. A recent experiment by (J. G. Reynolds et al., Appl. Phys. Lett., 2013, 102, 152114) demonstrated a significant ([similar]1018 cm−3) p-type behavior in N-doped ZnO films after appropriate annealing. The p-type conductivity was attributed to a VZnNOH shallow acceptor complex, formed by a Zn vacancy (VZn), N substituting O (NO), and H interstitial (Hi). We present here a first-principles hybrid functional study of this complex compared to the one without hydrogen. Our results confirm that the VZnNOH complex acts as an acceptor in ZnO. We find that H plays an important role, because it lowers the formation energy of the complex with respect to VZnNO, a complex known to exhibit (unstable) p-type behavior. However, this additional H atom also occupies the hole level at the origin of the shallow behavior of VZnNO, leaving only two states empty higher in the band gap and making the VZnNOH complex a deep acceptor. Therefore, we conclude that the cause of the observed p-type conductivity in experiment is not the presence of the VZnNOH complex, but probably the formation of the VZnNO complex during the annealing process.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000349616400080 Publication Date 2015-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 20 Open Access
Notes FWO G021614N; FWO G015013; FWO G018914N; GOA; Hercules Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number c:irua:123218 Serial 3592
Permanent link to this record
 

 
Author Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C.
Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 13 Issue 15 Pages 6931-6935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000288951000019 Publication Date 2011-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123; 2011 IF: 3.573
Call Number UA @ lucian @ c:irua:89378 Serial 3807
Permanent link to this record