toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R.
  Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal
  Volume 620 Issue 7975 Pages 1-17
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001153630400007 Publication Date 2023-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited 17 Open Access
  Notes Approved Most recent IF: 64.8; 2023 IF: 40.137
  Call Number UA @ admin @ c:irua:203827 Serial 9078
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V.
  Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type A1 Journal article
  Year 2024 Publication Nature Abbreviated Journal
  Volume 626 Issue Pages 542-548
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001176943100001 Publication Date 2023-12-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited Open Access
  Notes Approved Most recent IF: 64.8; 2024 IF: 40.137
  Call Number UA @ admin @ c:irua:204796 Serial 9144
Permanent link to this record
 

 
Author Geim, A.K.; Dubonos, S.V.; Grigorieva, I.V.; Novoselov, K.S.; Peeters, F.M.; Schweigert, V.A.
  Title Non-quantized penetration of magnetic field in the vortex state of superconductors Type A1 Journal article
  Year 2000 Publication Nature Abbreviated Journal Nature
  Volume 407 Issue Pages 55-57
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000089124000037 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 40.137 Times cited 155 Open Access
  Notes Approved Most recent IF: 40.137; 2000 IF: 25.814
  Call Number UA @ lucian @ c:irua:34356 Serial 2350
Permanent link to this record
 

 
Author Geim, A.K.; Grigorieva, I.V.; Dubonos, S.V.; Lok, J.G.S.; Maan, J.C.; Filippov, A.E.; Peeters, F.M.
  Title Phase transitions in individual sub-micrometre superconductors Type A1 Journal article
  Year 1997 Publication Nature Abbreviated Journal Nature
  Volume 390 Issue Pages 259-262
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1997YG66700054 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 40.137 Times cited 370 Open Access
  Notes Approved Most recent IF: 40.137; 1997 IF: 27.368
  Call Number UA @ lucian @ c:irua:19265 Serial 2595
Permanent link to this record
 

 
Author Zhou, K.-G.; Vasu, K.S.; Cherian, C.T.; Neek-Amal, M.; Zhang, J.C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O.P.; Kravets, V.G.; Abraham, J.; Su, Y.; Grigorenko, A.N.; Pratt, A.; Geim, A.K.; Peeters, F.M.; Novoselov, K.S.; Nair, R.R.
  Title Electrically controlled water permeation through graphene oxide membranes Type A1 Journal article
  Year 2018 Publication Nature Abbreviated Journal Nature
  Volume 559 Issue 7713 Pages 236-+
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies(1-7). Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength(3,8). Electrical control over water transport is an attractive alternative; however, theory and simulations(9-14) have often yielded conflicting results, from freezing of water molecules to melting of ice(14-16) under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes(17-21). Such membranes have previously been shown to exhibit ultrafast permeation of water(17,22) and molecular sieving properties(18,21), with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000438240900052 Publication Date 2018-07-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 40.137 Times cited 216 Open Access
  Notes ; This work was supported by the Royal Society, Engineering and Physical Sciences Research Council, UK (EP/K016946/1, EP/N013670/1 and EP/P00119X/1), British Council (award reference number 279336045), European Research Council (contract 679689) and Lloyd's Register Foundation. We thank J. Waters for assisting with X-ray measurements and G. Yu for electrical measurements. ; Approved Most recent IF: 40.137
  Call Number UA @ lucian @ c:irua:152420UA @ admin @ c:irua:152420 Serial 5096
Permanent link to this record
 

 
Author Mao, J.; Milovanović, S.P.; Andelkovic, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; Jiang, Y.; Andrei, E.Y.
  Title Evidence of flat bands and correlated states in buckled graphene superlattices Type A1 Journal article
  Year 2020 Publication Nature Abbreviated Journal Nature
  Volume 584 Issue 7820 Pages 215-220
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure(1-5). An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers(6). The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition(7-9), resulting in a periodically modulated pseudo-magnetic field(10-14), which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state(15-17). This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000559831500012 Publication Date 2020-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited 109 Open Access Not_Open_Access
  Notes ; ; Approved Most recent IF: 64.8; 2020 IF: 40.137
  Call Number UA @ admin @ c:irua:171150 Serial 6513
Permanent link to this record
 

 
Author Tong, J.; Fu, Y.; Domaretskiy, D.; Della Pia, F.; Dagar, P.; Powell, L.; Bahamon, D.; Huang, S.; Xin, B.; Costa Filho, R.N.; Vega, L.F.; Grigorieva, I.V.; Peeters, F.M.; Michaelides, A.; Lozada-Hidalgo, M.
  Title Control of proton transport and hydrogenation in double-gated graphene Type A1 Journal Article
  Year 2024 Publication Nature Abbreviated Journal Nature
  Volume 630 Issue 8017 Pages 619-624
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
  Abstract The basal plane of graphene can function as a selective barrier that is permeable to protons but impermeable to all ions and gases, stimulating its use in applications such as membranes, catalysis and isotope separation. Protons can chemically adsorb on graphene and hydrogenate it, inducing a conductor–insulator transition that has been explored intensively in graphene electronic devices. However, both processes face energy barriersand various strategies have been proposed to accelerate proton transport, for example by introducing vacancies, incorporating catalytic metalsor chemically functionalizing the lattice. But these techniques can compromise other properties, such as ion selectivity or mechanical stability. Here we show that independent control of the electric field,<italic>E</italic>, at around 1 V nm<sup>−1</sup>, and charge-carrier density,<italic>n</italic>, at around 1 × 10<sup>14</sup> cm<sup>−2</sup>, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on–off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of<italic>E</italic>and<italic>n</italic>, which is a new technique for the study of 2D electrode–electrolyte interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-06-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0028-0836 ISBN Additional Links
  Impact Factor 64.8 Times cited Open Access
  Notes This work was supported by UKRI (EP/X017745: M.L.-H; EP/X035891: A.M.), the Directed Research Projects Program of the Research and Innovation Center for Graphene and 2D Materials at Khalifa University (RIC2D-D001: M.L.-H., L.F.V. and D.B.), The Royal Society (URF\R1\201515: M.L.-H.) and the European Research Council (101071937: A.M.). Part of this work was supported by the Flemish Science Foundation (FWO-Vl, G099219N). A.M. acknowledges access to the UK national high-performance computing service (ARCHER2). Approved Most recent IF: 64.8; 2024 IF: 40.137
  Call Number CMT @ cmt @ Serial 9247
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
  Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
  Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
  Volume 114 Issue 48 Pages E10274-E10280
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000416891600007 Publication Date 2017-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.661 Times cited 18 Open Access
  Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
  Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R.
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
  Volume 117 Issue 10 Pages 5478-5485
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000519530400054 Publication Date 2020-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.1 Times cited 6 Open Access
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661
  Call Number UA @ admin @ c:irua:166452 Serial 6487
Permanent link to this record
 

 
Author Christiansen, T.; Cotte, M.; de Nolf, W.; Mouro, E.; Reyes-Herrera, J.; De Meyer, S.; Vanmeert, F.; Salvado, N.; Gonzalez, V.; Lindelof, P.E.; Mortensen, K.; Ryholt, K.; Janssens, K.; Larsen, S.
  Title Insights into the composition of ancient Egyptian red and black inks on papyri achieved by synchrotron-based microanalyses Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa
  Volume 117 Issue 45 Pages 27825-27835
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluo-rescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, microXRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused “coffee rings” surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb-3(CO3)(2)(OH)(2)] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000590753400016 Publication Date 2020-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.1 Times cited Open Access
  Notes Approved Most recent IF: 11.1; 2020 IF: 9.661
  Call Number UA @ admin @ c:irua:174323 Serial 8107
Permanent link to this record
 

 
Author Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V.F.; Solís, D.M.; Bals, S.; Cortajarena, A.L.; Castilla, J.; Liz-Marzán, L.M.
  Title Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality Type A1 Journal article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal P Natl Acad Sci Usa
  Volume 115 Issue 115 Pages 3225-3230
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Amyloid fibrils, which are closely associated with various neurodegenerative

diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no

apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease,

wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000428382400032 Publication Date 2018-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.661 Times cited 187 Open Access OpenAccess
  Notes We thank Prof. Dr. J.-P. Timmermans and the Antwerp Centre of Advanced Microscopy for providing access to the Tecnai G2 Spirit BioTWIN TEM. We also thank the Basque Biobank (Basque Foundation for Health Innovation and Research, BIOEF) for providing us with Parkinson’s disease-affected brain samples. J.K. acknowledges financial support from the European Commission under Marie Sklodowska-Curie Program H2020- MSCA-IF-2015708321. S.B. and A.L.C. acknowledge European Research Council Grants 335078 COLOURATOM and 648071 ProNANO. S.B. and L.M.L.-M. acknowledge funding from European Commission Grant EUSMI 731019. A.L.C., J.C., and L.M.L.-M. acknowledge funding from Spanish Ministry of Economy and Competitiveness (MINECO) Grants MAT2013-46101- R, AGL2015-65046-C2-1-R, and BIO2016-77367-C2-1-R. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:restricted); saraecas; ECASSara; Approved Most recent IF: 9.661
  Call Number EMAT @ emat @c:irua:150355UA @ admin @ c:irua:150355 Serial 4918
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G.
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa
  Volume 115 Issue 38 Pages 9515-9520
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000447224900057 Publication Date 2018-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059
Permanent link to this record
 

 
Author Martin, J.M.L.; El-Yazal, J.; François, J.P.; Gijbels, R.
  Title The structure and energetics of B3N2, B2N3, and BN4: symmetry breaking effects in B3N2 Type A1 Journal article
  Year 1995 Publication Molecular physics Abbreviated Journal Mol Phys
  Volume 85 Issue Pages 527-537
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1995RM01600007 Publication Date 2006-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-8976;1362-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.72 Times cited 19 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:12279 Serial 3276
Permanent link to this record
 

 
Author Martin, J.M.L.; Slanina, Z.; François, J.P.; Gijbels, R.
  Title The structure, energetics, and harmonic vibrations of B3N and BN3 Type A1 Journal article
  Year 1994 Publication Molecular physics Abbreviated Journal Mol Phys
  Volume 82 Issue Pages 155-164
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994NN66200010 Publication Date 2006-04-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-8976;1362-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.72 Times cited 19 Open Access
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:10254 Serial 3303
Permanent link to this record
 

 
Author Wadsak, M.; Constantinides, I.; Vittiglio, G.; Adriaens, A.; Janssens, K.; Schreiner, M.; Adams, F.C.; Brunella, P.; Wuttmann, M.
  Title Multianalytical study of patina formed on archaeological metal objects from Bliesbruck-Reinheim Type A1 Journal article
  Year 2000 Publication Microchimica acta Abbreviated Journal Microchim Acta
  Volume 133 Issue Pages 159-164
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000087797400024 Publication Date 2003-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.58 Times cited Open Access
  Notes Approved Most recent IF: 4.58; 2000 IF: 1.303
  Call Number UA @ admin @ c:irua:28228 Serial 5740
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Deutsch, F.; Godoi, R.H.M.; Spolnik, Z.; Wei, W.; Van Grieken, R.
  Title Application of EPMA and XRF for the investigation of particulate pollutants in the field of cultural heritage Type A1 Journal article
  Year 2008 Publication Microchimica acta Abbreviated Journal
  Volume 161 Issue 3/4 Pages 465-469
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000256175600029 Publication Date 2008-01-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:68798 Serial 7474
Permanent link to this record
 

 
Author Semenov, M.Y.; Spolnik, Z.; Van Grieken, R.
  Title Assessing the size-dependent chemical speciation of soil particles using electron probe X-ray microanalysis Type A1 Journal article
  Year 2007 Publication Microchimica acta Abbreviated Journal
  Volume 157 Issue 3/4 Pages 121-126
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000244691600001 Publication Date 2006-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:63400 Serial 7498
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Godoi, R.H.M.; Worobiec, A.; Spolnik, Z.; Krata, A.; Deutsch, F.; Van Grieken, R.
  Title Investigation of gaseous and particulate air pollutants at the Basilica Saint-Urbain in Troyes, related to the preservation of the medieval stained glass windows Type A1 Journal article
  Year 2008 Publication Microchimica acta Abbreviated Journal
  Volume 162 Issue 3/4 Pages 425-432
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000258194900015 Publication Date 2008-02-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:70072 Serial 8122
Permanent link to this record
 

 
Author Eeckhaoudt, S.; Van Grieken, R.E.; Cholewa, M.; Legge, G.J.F.
  Title Study of aluminium-exposed fish by scanning proton microprobe analysis Type A1 Journal article
  Year 1996 Publication Microchimica acta Abbreviated Journal
  Volume 122 Issue Pages 17-25
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1996TU79700002 Publication Date 2005-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-3672; 1436-5073 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:14640 Serial 8593
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title Adsorption of small molecules on graphene Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 40 Issue 4/5 Pages 860-862
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000265870200058 Publication Date 2008-12-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.163 Times cited 116 Open Access
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
  Call Number UA @ lucian @ c:irua:77030 Serial 65
Permanent link to this record
 

 
Author Li, B.; Partoens, B.; Peeters, F.M.; Magnus, W.
  Title Dielectric mismatch effect on coupled impurity states in a freestanding nanowire Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 40 Issue 3 Pages 446-448
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We studied the coupled impurity states in a freestanding semiconductor nanowire (NW), within the effective mass approximation and including the effect of the dielectric mismatch, by using finite element method. Bonding and anti-bonding states are found and their energies converge with increasing distance di between the two impurities. The dependence of the binding energy on the wire radius R and the distance di between the two impurities is investigated, and we compare it with the result of a freestanding NW that contains a single impurity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000264694700017 Publication Date 2008-07-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.163 Times cited 4 Open Access
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
  Call Number UA @ lucian @ c:irua:76410 Serial 690
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M.
  Title Neutral shallow donors near a metallic interface Type A1 Journal article
  Year 2009 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 40 Issue 4/5 Pages 753-755
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000265870200024 Publication Date 2009-02-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.163 Times cited 1 Open Access
  Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
  Call Number UA @ lucian @ c:irua:77029 Serial 2296
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
  Title Resonant tunneling in graphene microstructures Type A1 Journal article
  Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 39 Issue 3-4 Pages 534-536
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000255600600055 Publication Date 2007-08-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.163 Times cited 9 Open Access
  Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
  Call Number UA @ lucian @ c:irua:68850 Serial 2892
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
  Title Theoretical study of InAs/GaAs quantum dots grown on [11k] substrates in the presence of a magnetic field Type A1 Journal article
  Year 2006 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 37 Issue 12 Pages 1427-1429
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000242907400002 Publication Date 2006-07-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.163 Times cited Open Access
  Notes Approved Most recent IF: 1.163; 2006 IF: 0.651
  Call Number UA @ lucian @ c:irua:62325 Serial 3612
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
  Title Tuning of the optical properties of (11k) grown InAs quantum dots by the capping layer Type A1 Journal article
  Year 2008 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 39 Issue 3-4 Pages 359-361
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000255600600013 Publication Date 2007-09-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record
  Impact Factor 1.163 Times cited Open Access
  Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
  Call Number UA @ lucian @ c:irua:68849 Serial 3753
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
  Title Type II quantum dots in magnetic fields: excitonic behaviour Type A1 Journal article
  Year 2003 Publication Microelectronics journal Abbreviated Journal Microelectron J
  Volume 34 Issue Pages 347-350
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Luton Editor
  Language Wos 000183607400007 Publication Date 2003-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.163 Times cited 1 Open Access
  Notes Approved Most recent IF: 1.163; 2003 IF: 0.565
  Call Number UA @ lucian @ c:irua:62450 Serial 3790
Permanent link to this record
 

 
Author Vermeulen, M.; Janssens, K.; Sanyova, J.; Rahemi, V.; McGlinchey, C.; De Wael, K.
  Title Assessing the stability of arsenic sulfide pigments and influence of the binding media on their degradation by means of spectroscopic and electrochemical techniques Type A1 Journal article
  Year 2018 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume 138 Issue 138 Pages 82-91
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract In this paper, we used the semiconducting and lightfastness properties of synthetic and mineral arsenic sulfide pigments to study their stability by means of electrochemical and microfadometric techniques. A combination of these techniques shows that in the early stage of the degradation process, amorphous arsenic sulfides are more stable than both crystalline forms, while upon longer exposure time, amorphous pigments will fade more than both mineral pigments, making it less suitable. While the stability study was carried out on unbound pigments, the influence of the organic binder on the relative degradation of the arsenic sulfide pigments was investigated through a multi-analytical approach on pigment/binder mock-up paint samples. For this purpose, the formation of arsenic trioxide was assessed by micro Fourier transform infrared (μ-FTIR) spectroscopy while the influence of the binder on the formation of sulfates was studied by means of synchrotron radiation X-ray near edge structure (μ-XANES). Both techniques elucidate a higher stability of all pigments in gum arabic while the use of egg yolk as binder leads to the most degradation, most likely due to its sulfur-rich composition. In the context of the degradation of arsenic sulfide pigments, other binders such as animal glue, egg white or linseed oil show an intermediate impact.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000428103000010 Publication Date 2018-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 4 Open Access
  Notes ; This research is made possible with the support of the Belgian Science Policy Office (BELSPO, Brussels) through the research program Science for a Sustainable Development – SDD, “Long-term role and fate of metal-sulfides in painted works of art – S2ART” (grant number SD/RI/04A). We gratefully acknowledge Megane Willems (Institut Paul-Lambin) for her help with mu-FFIR analyses and realization of the mock-up paint samples. We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline Phoenix of the SLS. ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:150149 Serial 5482
Permanent link to this record
 

 
Author van der Snickt, G.; Legrand, S.; Caen, J.; Vanmeert, F.; Alfeld, M.; Janssens, K.
  Title Chemical imaging of stained-glass windows by means of macro X-ray fluorescence (MA-XRF) scanning Type A1 Journal article
  Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume 124 Issue Pages 615-622
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
  Abstract Since the recent development of a mobile setup, MA-XRF scanning proved a valuable tool for the non-invasive, technical study of paintings. In this work, the applicability of MA-XRF scanning for investigating stained-glass windows inside a conservation studio is assessed by analysis of a high-profile, well-studied late-mediaeval panel. Although accurate quantification of components is not feasible with this analytical imaging technique, plotting the detected intensities of K versus Ca in a scatter plot allowed distinguishing glass fragments of different compositional types within the same panel. In particular, clusters in the Ca/K correlation plot revealed the presence of two subtypes of potash glass and three subtypes of high lime low alkali glass. MA-XRF results proved consistent with previous quantitative SEM-EDX analysis on two samples and analytical-based theories on glass production in the Low Countries formulated in literature. A bi-plot of the intensities of the more energetic Rb-K versus Sr-K emission lines yielded a similar glass type differentiation and is here presented as suitable alternative in case the Ca/K signal ratio is affected by superimposed weathering crusts. Apart from identification of the chromophores responsible for the green, blue and red glass colors, contrasting the associated elemental distribution maps obtained on the exterior and interior side of the glass permitted discriminating between colored pot metal glass and multi-layered flashed glass as well. Finally, the benefit of obtaining compositional information from the entire surface, as opposed to point analysis, was illustrated by the discovery of what appears to be a green cobalt glass a feature that was previously missed on this well-studied stained-glass window, both by connoisseurs and spectroscopic sample analysis. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367755600074 Publication Date 2015-10-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 22 Open Access
  Notes ; The staff of the Museums of the City of Bruges, i.e. Director Till-Holger Borchert and Deputy Curator Kristel Van Audenaeren, are acknowledged for this pleasant collaboration and the authorization for the publication of the images in this article. This research was supported by the InBev-Baillet Latour fund. ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:131100 Serial 5514
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C.
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J
  Volume 124 Issue Pages 272-282
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000367755600042 Publication Date 2015-09-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 23 Open Access
  Notes ; ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:131099 Serial 5519
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Alfeld, M.; Noble, P.; van Loon, A.; Delaney, J.; Conover, D.; Zeibel, J.; Dik, J.
  Title Rembrandt's 'Saul and David' (c. 1652) : use of multiple types of smalt evidenced by means of non-destructive imaging Type A1 Journal article
  Year 2016 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume 126 Issue Pages 515-523
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The painting Saul and David, considered to date from c. 1652 and previously attributed to Rembrandt van Rijn and/or his studio, is a complex work of art that has been recently subjected to intensive investigation and conservation treatment. The goal of the research was to give insight into the painting's physical construction and condition in preparation for conservation treatment. It was also anticipated that analysis would shed light on authenticity questions and Rembrandt's role in the creation of the painting. The painting depicts the Old Testament figures of King Saul and David. At left is Saul, seated, holding a spear and wiping a tear from his eye with a curtain. David kneels before him at the right playing his harp. In the past, the large sections with the life-size figures were cut apart and later reassembled. A third piece of canvas was added to replace a missing piece of canvas above the head of David. As part of the investigation into the authenticity of the curtain area, a number of paint micro samples were examined with LM and SEM-EDX. Given that the earth, smalt and lake pigments used in the painting could not be imaged with traditional imaging techniques, the entire painting was also examined with state of the art non-destructive imaging techniques. Special attention was devoted to the presence of cobalt-containing materials, specifically the blue glass pigment smalt considered characteristic for the late Rembrandt. A combination of quantitative electron microprobe analysis and macroscopic X-ray fluorescence scanning revealed that three types of cobalt-containing materials are present in the painting. The first type is a cobalt drier that was found in the overpaint used to cover up the canvas inset and the joins that were added in the 19th century. The other two Co-containing materials are part of the original paint used by Rembrandt and comprise two varieties of smalt, a K-rich glass pigment that derives its gray-blue color by doping with Co-ions. Smalt paint with a higher Ni content (NiO:CoO ratio of around 1:4) was used to depict the blue stripes in Saul's colorful turban, while smalt with a lower Ni content was employed (NiO:CoO ratio of around 1:5) for the broad expanses of Saul's garments. The presence of two types of smalt not only supports the recent re-attribution of the painting to Rembrandt, but also that the picture was painted in two phases. Saul's dark red garment is painted in a rough, “loose” manner and the now discolored smalt-rich layer was found to have been partially removed during a past restoration treatment/s. In contrast, the blue-green smalt in the turban is much better preserved and provides a colorful accent. While the use of different types of smalt in a Rembrandt painting has been previously identified using quantitative EDX analysis of paint cross-sections, to the best of our knowledge this is the first time such a distinction has been observed in a 17th-century painting using non-destructive imaging techniques. In addition to the XRF-based non-invasive elemental mapping, hyperspectral imaging in the visual to near-infrared (VNIR) region was also carried out. (C) 2016 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000373647500063 Publication Date 2016-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN (down) 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 18 Open Access
  Notes ; This research is part of the ReVisualising late Rembrandt: Developing and Applying New Imaging Techniques research project, supported by the Science4Arts research program of the Netherlands Organisation for Scientific Research (NWO, The Hague, NL, ReVisRembrandt project) and the National Science Foundation (NSF, Washington DC, USA, award 1041827). We would like to thank colleagues of the Mauritshuis (The Hague, NL) and the Dutch Cultural Heritage Agency (RCE) in Rijswijk, NL for their support and assistance during the scanning of the Saul and David painting. The GOA project “SOLARPAINT” (University of Antwerp) and the Fund Baillet Latour (Brussels, B) are acknowledged for financial support to GvdS and KJ. We also like to acknowledge the help of Eliza Longhini and Stijn Legrand during some of the XRF scanning stages. ; Approved Most recent IF: 3.034
  Call Number UA @ admin @ c:irua:133258 Serial 5813
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: