|   | 
Details
   web
Records
Author Bia, P.; Caratelli, D.; Mescia, L.; Gielis, J.
Title Analysis and synthesis of supershaped dielectric lens antennas Type A1 Journal article
Year 2015 Publication IET microwaves, antennas and propagation Abbreviated Journal
Volume 9 Issue 14 Pages 1497-1504
Keywords A1 Journal article; Engineering sciences. Technology; Mass communications; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel class of supershaped dielectric lens antennas, whose geometry is described by the three-dimensional (3D) Gielis formula, is introduced and analysed. To this end, a hybrid modelling approach based on geometrical and physical optics is adopted in order to efficiently analyse the multiple wave reflections occurring within the lens and to evaluate the relevant impact on the radiation properties of the antenna under analysis. The developed modelling procedure has been validated by comparison with numerical results already reported in the literature and, afterwards, applied to the electromagnetic characterisation of Gielis dielectric lens antennas with shaped radiation pattern. Furthermore, a dedicated optimisation algorithm based on quantum particle swarm optimisation has been developed for the synthesis of 3D supershaped lens antennas with single feed, as well as with beamforming capabilities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364491200002 Publication Date 2015-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1751-8725 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:128659 Serial 7441
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Fougerolle, Y.; Ricci, P.E.; Tavkelidze, I.; Gerats, T.
Title Universal natural shapes : from unifying shape description to simple methods for shape analysis and boundary value problems Type A1 Journal article
Year 2012 Publication PLoS ONE Abbreviated Journal
Volume 7 Issue 9 Pages e29324-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309517500001 Publication Date 2012-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1932-6203 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:102202 Serial 8711
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 9 Pages 8643-8649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411918200012 Publication Date 2017-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access
Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
Call Number UA @ lucian @ c:irua:146770 Serial 4895
Permanent link to this record
 

 
Author Li, D.Y.; Zeng, Y.J.; Batuk, D.; Pereira, L.M.C.; Ye, Z.Z.; Fleischmann, C.; Menghini, M.; Nikitenko, S.; Hadermann, J.; Temst, K.; Vantomme, A.; Van Bael, M.J.; Locquet, J.P.; Van Haesendonck, C.;
Title Relaxor ferroelectricity and magnetoelectric coupling in ZnOCo nanocomposite thin films : beyond multiferroic composites Type A1 Journal article
Year 2014 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 6 Issue 7 Pages 4737-4742
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract ZnOCo nanocomposite thin films are synthesized by combination of pulsed laser deposition of ZnO and Co ion implantation. Both superparamagnetism and relaxor ferroelectricity as well as magnetoelectric coupling in the nanocomposites have been demonstrated. The unexpected relaxor ferroelectricity is believed to be the result of the local lattice distortion induced by the incorporation of the Co nanoparticles. Magnetoelectric coupling can be attributed to the interaction between the electric dipole moments and the magnetic moments, which are both induced by the incorporation of Co. The introduced ZnOCo nanocomposite thin films are different from conventional strain-mediated multiferroic composites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334572800018 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 21 Open Access
Notes Approved Most recent IF: 7.504; 2014 IF: 6.723
Call Number UA @ lucian @ c:irua:117063 Serial 2864
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C.
Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages 22166-22171
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.
Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000363001500007 Publication Date 2015-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 13 Open Access
Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
Year 2019 Publication Electronics (Basel) Abbreviated Journal
Volume 8 Issue 1 Pages 37
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000457142800037 Publication Date 2019-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:157203 Serial 7765
Permanent link to this record
 

 
Author Caratelli, D.; Gielis, J.; Tavkhelidze, I.; Ricci, P.E.
Title Spherical harmonic solution of the Robin problem for the Helmholtz equation in a supershaped shell Type A1 Journal article
Year 2013 Publication Applied mathematics Abbreviated Journal
Volume 4 Issue 1a Pages 263-270
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called superformula introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2013-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2152-7385 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107177 Serial 8576
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E.
Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.
Volume 1 Issue 6 Pages 1184-1191
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2771-9855 ISBN Additional Links UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:201011 Serial 8975
Permanent link to this record
 

 
Author Mescia, L.; Lamacchia, C.M.; Chiapperino, M.A.; Bia, P.; Gielis, J.; Caratelli, D.
Title Design of irregularly shaped lens antennas including supershaped feed Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June, 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 169-173
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A new class of irregularly shaped dielectric lens antennas with a supershaped microstrip antenna feeder is presented and detailed in this work. The surface of the lens antenna and the feeder shape have been modelled by using the three and two-dimensional Gielis formula, respectively. The antenna design has been carried out by integrating an home-made software tool with the CST Microwave Studio®. The radiation properties of the whole antenna system have been evaluated using a dedicated high-frequency technique based on the tube tracing approximation. Moreover, the effects due to the multiple internal reflections have been properly modeled. The proposed model was applied to study unusual and complex lens antenna systems with the aim to design special radiation characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769300021 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-1-72813-403-1; 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169169 Serial 7766
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Multiphysics modelling of membrane electroporation in irregularly shaped cells Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2992-2998
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electroporation is a non-thermal electromagnetic phenomenon widely used in medical diseases treatment. Different mathematical models of electroporation have been proposed in literature to study pore evolution in biological membranes. This paper presents a nonlinear dispersive multiphysic model of electroporation in irregular shaped biological cells in which the spatial and temporal evolution of the pores size is taken into account. The model solves Maxwell and asymptotic Smoluchowski equations and it describes the dielectric dispersion of cell media using a Debye-based relationship. Furthermore, the irregular cell shape has been modeled using the Gielis superformula. Taking into account the cell in mitosis phase, the electroporation process has been studied comparing the numerical results pertaining the model with variable pore radius with those in which the pore radius is supposed constant. The numerical analysis has been performed exposing the biological cell to a rectangular electric pulse having duration of 10 μs. The obtained numerical results highlight considerable differences between the two different models underling the need to include into the numerical algorithm the differential equation modeling the spatial and time evolution of the pores size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302159 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169170 Serial 8288
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D.
Title Relevance of the cell membrane modelling for accurate analysis of the pulsed electric field-induced electroporation Type P1 Proceeding
Year 2019 Publication Progress in Electromagnetic Research Symposium (PIERS) T2 – 2019 PhotonIcs & Electromagnetics Research Symposium – Spring (PIERS-Spring), 17-20 June 2019, Rome, Italy Abbreviated Journal
Volume Issue Pages 2985-2991
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In this work, a nonlinear dispersive multiphysic model based on Maxwell and asymptotic Smoluchowsky equations has been developed to analyze the electroporation phenomenon induced by pulsed electric field on biological cells. The irregular plasma membrane geometry has been modeled by incorporating in the numerical algorithm the Gielis superformula as well as the dielectric dispersion of the plasma membrane has been modeled using the multi-relaxation Debye-based relationship. The study has been carried out with the aim to compare our model implementing a thin plasma membrane with the simplified model in which the plasma membrane is modeled as a distributed impedance boundary condition. The numerical analysis has been performed exposing the cell to external electric pulses having rectangular shapes. By an inspection of the obtained results, significant differences can be highlighted between the two models confirming the need to incorporate the effective thin membrane into the numerical algorithm to well predict the cell response to the pulsed electric fields in terms of transmembrane voltages and pore densities, especially when the cell is exposed to external nanosecond pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000550769302158 Publication Date 2020-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-1-72813-404-8; 978-1-72813-403-1 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:169171 Serial 8469
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Gielis, J.; Caratelli, D.
Title Advanced particle swarm optimization methods for electromagnetics Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 109-122 T2 - Proceedings of the 1st International
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electromagnetic design problems involve optimizing multiple parameters that are nonlinearly related to objective functions. Traditional optimization techniques require significant computational resources that grow exponentially as the problem size increases. Therefore, a method that can produce good results with moderate memory and computational resources is desirable. Bioinspired optimization methods, such as particle swarm optimization (PSO), are known for their computational efficiency and are commonly used in various scientific and technological fields. In this article we explore the potential of advanced PSO-based algorithms to tackle challenging electromagnetic design and analysis problems faced in real-life applications. It provides a detailed comparison between conventional PSO and its quantum-inspired version regarding accuracy and computational costs. Additionally, theoretical insights on convergence issues and sensitivity analysis on parameters influencing the stochastic process are reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid modeling approach, based on the unified geometrical description enabled by the Gielis Transformation, is applied in combination with a suitable quantum PSO-based algorithm, along with a geometrical tube tracing and physical optics technique for solving the inverse problem aimed at identifying the geometrical parameters that yield optimal antenna performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201048 Serial 9002
Permanent link to this record