toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal article
  Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1616-301X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author Zillner, J.; Boyen, H.-G.; Schulz, P.; Hanisch, J.; Gauquelin, N.; Verbeeck, J.; Kueffner, J.; Desta, D.; Eisele, L.; Ahlswede, E.; Powalla, M. pdf  url
doi  openurl
  Title The role of SnF₂ additive on interface formation in all lead-free FASnI₃ perovskite solar cells Type A1 Journal article
  Year 2022 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 2109649-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tin-based perovskites are promising alternative absorber materials for leadfree perovskite solar cells but need strategies to avoid fast tin (Sn) oxidation. Generally, this reaction can be slowed down by the addition of tin fluoride (SnF2) to the perovskite precursor solution, which also improves the perovskite layer morphology. Here, this work analyzes the spatial distribution of the additive within formamidinium tin triiodide (FASnI(3)) films deposited on top of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layers. Employing time-of-flight secondary ion mass spectrometry and a combination of hard and soft X-ray photoelectron spectroscopy, it is found that Sn F2 preferably accumulates at the PEDOT:PSS/perovskite interface, accompanied by the formation of an ultrathin SnS interlayer with an effective thickness of approximate to 1.2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000779891000001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 22 Open Access OpenAccess  
  Notes J.Z. and H.-G.B. contributed equally to this work. This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 850937 (PERCISTAND). H.-G.B. and D.D. are very grateful to the Research Foundation Flanders (FWO) for funding the HAXPES-lab instrument within the HERCULES program for Large Research Infrastructure of the Flemish government. P.S. thanks the French Agence Nationale de la Recherche for funding under the contract number ANR-17-MPGA-0012. This work was supported by the Federal Ministry for Economic Affairs and Energy (BMWi) Germany under the contract number 03EE1038A (CAPITANO) and financed by the Ministry of Science, Research and the Arts of Baden-Württemberg as part of the sustainability financing of the projects of the Excellence Initiative II (KSOP). Approved Most recent IF: 19  
  Call Number UA @ admin @ c:irua:187969 Serial 7067  
Permanent link to this record
 

 
Author Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S.J.; Klose, F.; Jungbauer, M.; Moshnyaga, V. url  doi
openurl 
  Title High-TCInterfacial Ferromagnetism in SrMnO3/LaMnO3Superlattices Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv. Funct. Mater.  
  Volume Issue Pages 1808270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535358900008 Publication Date 2019-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1616301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.621 Times cited 26 Open Access  
  Notes The authors thank EU FP7 Framework (Project IFOX) and DFG (SFB 1073, TP B04, A02, Z02) for the financial support. J.V., K.M.C and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. The PNR experiment was funded by the Australian Nuclear Science and Technology Organization (proposal number P3985). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:162108 Serial 5294  
Permanent link to this record
 

 
Author Lin, S.; Shao, L.; Hui, C.; Song, Y.; Reddy, G.V.P.; Gielis, J.; Li, F.; Ding, Y.; Wei, Q.; Shi, P.; Reddy, G.V.P. url  doi
openurl 
  Title Why does not the leaf weight-area allometry of bamboos follow the 3/2-power law? Type A1 Journal article
  Year 2018 Publication Frontiers in plant science Abbreviated Journal  
  Volume 9 Issue Pages 583  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The principle of similarity (Thompson, 1917) states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A), density (ρ), length (L), thickness (T), and weight (W). Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3)/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431415100001 Publication Date 2018-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150948 Serial 8758  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S. pdf  url
doi  openurl
  Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 501-508  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.  
  Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374534100019 Publication Date 2016-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 51 Open Access  
  Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87  
  Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068  
Permanent link to this record
 

 
Author Deben, C.; Freire Boullosa, L.; Rodrigues Fortes, F.; Cardenas De La Hoz, E.; Le Compte, M.; Seghers, S.; Peeters, M.; Vanlanduit, S.; Lin, A.; Dijkstra, K.K.; Van Schil, P.; Hendriks, J.M.H.; Prenen, H.; Roeyen, G.; Lardon, F.; Smits, E. url  doi
openurl 
  Title Auranofin repurposing for lung and pancreatic cancer : low CA12 expression as a marker of sensitivity in patient-derived organoids, with potentiated efficacy by AKT inhibition Type A1 Journal article
  Year 2024 Publication Journal of Experimental and Clinical Cancer Research Abbreviated Journal  
  Volume 43 Issue 1 Pages 88-15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Background This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. Methods Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. Results The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. Conclusion Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001190581500001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1756-9966 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204924 Serial 9136  
Permanent link to this record
 

 
Author Hawrylak, P.; Peeters, F.; Ensslin, K. pdf  doi
openurl 
  Title Carbononics : integrating electronics, photonics and spintronics with graphene quantum dots Preface Type Editorial
  Year 2016 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 10 Issue 10 Pages 11-12  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wiley-v c h verlag gmbh Place of Publication Weinheim Editor  
  Language Wos 000368814500002 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.032  
  Call Number UA @ lucian @ c:irua:131600 Serial 4146  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. url  doi
openurl 
  Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
  Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume 13 Issue 7 Pages 1970028  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1862-6254 ISBN Additional Links  
  Impact Factor 3.032 Times cited Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032  
  Call Number EMAT @ emat @ Serial 5358  
Permanent link to this record
 

 
Author Wang, J.; Nguyen, M.D.; Gauquelin, N.; Verbeeck, J.; Do, M.T.; Koster, G.; Rijnders, G.; Houwman, E. url  doi
openurl 
  Title On the importance of the work function and electron carrier density of oxide electrodes for the functional properties of ferroelectric capacitors Type A1 Journal article
  Year 2020 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume 14 Issue 14 Pages 1900520  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is important to understand the effect of the interfaces between the oxide electrode layers and the ferroelectric layer on the polarization response for optimizing the device performance of all-oxide ferroelectric devices. Herein, the effects of the oxide La0.07Ba0.93SnO3 (LBSO) as an electrode material in an PbZr0.52Ti0.48O3 (PZT) ferroelectric capacitor are compared with those of the more commonly used SrRuO3 (SRO) electrode. SRO (top)/PZT/SRO (bottom), SRO/PZT/LBSO, and SRO/PZT/2 nm SRO/LBSO devices are fabricated. Only marginal differences in crystalline properties, determined by X-ray diffraction and scanning transmission electron microscopy, are found. High-quality polarization loops are obtained, but with a much larger coercive field for the SRO/PZT/LBSO device. In contrast to the SRO/PZT/SRO device, the polarization decreases strongly with increasing field cycling. This fatigue problem can be remedied by inserting a 2 nm SRO layer between PZT and LBSO. It is argued that strongly increased charge injection into the PZT occurs at the bottom interface, because of the low PZT/LBSO interfacial barrier and the much lower carrier density in LBSO, as compared with that in SRO, causing a low dielectric constant, depleted layer in LBSO. The charge injection creates a trapped space charge in the PZT, causing the difference in fatigue behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000506195600001 Publication Date 2019-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by Nederlandse Organisatie voor Wetenschappelijk Onderzoek through grant no.13HTSM01. ; Approved Most recent IF: 2.8; 2020 IF: 3.032  
  Call Number UA @ admin @ c:irua:165681 Serial 6316  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. pdf  url
doi  openurl
  Title Stabilization of the perovskite phase in the Y-Bi-O system by using a BaBiO₃ buffer layer Type A1 Journal article
  Year 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800679  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch of 12% with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y-Bi-O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477671800005 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved no  
  Call Number UA @ admin @ c:irua:181236 Serial 6889  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Srinivasu, K.; Korneychuk, S.; Turner, S.; Drijkoningen, S.; Pobedinskas, P.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K. pdf  doi
openurl 
  Title Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 213 Issue 10 Pages 2654-2661  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Utilization of Au and nanocrystalline diamond ( NCD) as interlayers noticeably modifies the microstructure and field electron emission ( FEE) properties of hexagonal boron nitride nanowalls ( hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3V mu m(-1), attaining FEE current density of 2.58mAcm(-2) and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride ( aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388321500017 Publication Date 2016-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 5 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. K. J. Sankaran, P. Pobedinskas, and S. Turner are FWO Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:144644UA @ admin @ c:irua:144644 Serial 4655  
Permanent link to this record
 

 
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y. pdf  url
doi  openurl
  Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 4443-4450  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395616200038 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess  
  Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @ c:irua:141720 Serial 4472  
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H. pdf  doi
openurl 
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 29 Pages 16289-16295  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680445800055 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:180455 Serial 6978  
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A. pdf  doi
openurl 
  Title Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 8 Pages 3890-3900  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000332188100004 Publication Date 2014-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 57 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:115571 Serial 352  
Permanent link to this record
 

 
Author Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; Abakumov, A.M.; Zubavichus, Y.V.; Gaskov, A.M.; doi  openurl
  Title Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue 45 Pages 23858-23867  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of palladium- and ruthenium-based clusters on nanocrystalline tin dioxide interaction with oxygen was studied by temperature-programmed oxygen isotopic exchange with mass-spectrometry detection. The modification of aqueous sol-gel prepared SnO2 by palladium and, to a larger extent, by ruthenium, increases surface oxygen concentration on the materials. The revealed effects on oxygen exchange-lowering the threshold temperature, separation of surface oxygen contribution to the process, increase of heteroexchange rate and oxygen diffusion coefficient, decrease of activation energies of exchange and diffusion-were more intensive for Ru-modified SnO2 than in the case of SnO2/Pd. The superior promoting activity of ruthenium on tin dioxide interaction with oxygen was interpreted by favoring the dissociative O-2 adsorption and increasing the oxygen mobility, taking into account the structure and chemical composition of the modifier clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000327110500046 Publication Date 2013-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:112706 Serial 2924  
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T.Y.; Guarochico, V.; Cai, J.; Neumann, C.; Winter, A.; Mohn, M.; Lee, J.H.; Lin, J.; Kaiser, U.; Grigorieva, I., V; Suenaga, K.; Ozyilmaz, B.; Cheng, H.-M.; Ren, W.; Turchanin, A.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M. pdf  url
doi  openurl
  Title Proton and Li-Ion permeation through graphene with eight-atom-ring defects Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 14 Issue 6 Pages 7280-7286  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes similar to 1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of similar to 0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000543744100086 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 53 Open Access  
  Notes ; The work was supported by the Lloyd's Register Foundation, EPSRC-EP/N010345/1, the European Research Council, the Graphene Flagship, the Deutsche Forschungsgemeinschaft project TRR 234 “CataLight” (Project B7, Grant No. 364549901), and the research infrastructure Grant No. INST 275/25 7-1 FUGG. E.G. and L.M. acknowledge the EPSRC NowNANO programme for funding. ; Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number UA @ admin @ c:irua:170708 Serial 6586  
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L. pdf  url
doi  openurl
  Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 7 Pages 10775-10981  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000679406500006 Publication Date 2021-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 538 Open Access OpenAccess  
  Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180553 Serial 6846  
Permanent link to this record
 

 
Author Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C. url  doi
openurl 
  Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 5329-5339  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953440900001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196097 Serial 7390  
Permanent link to this record
 

 
Author Xu, X.; Vereecke, G.; Chen, C.; Pourtois, G.; Armini, S.; Verellen, N.; Tsai, W.K.; Kim, D.W.; Lee, E.; Lin, C.Y.; Van Dorpe, P.; Struyf, H.; Holsteyns, F.; Moshchalkov, V.; Indekeu, J.; De Gendt, S.; doi  openurl
  Title Capturing wetting states in nanopatterned silicon Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 1 Pages 885-893  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Spectacular progress in developing advanced Si circuits with reduced size, along the track of Moore's law, has been relying on necessary developments in wet cleaning of nanopatterned Si wafers to provide contaminant free surfaces. The most efficient cleaning is achieved when complete wetting can be realized. In this work, ordered arrays of silicon nanopillars on a hitherto unexplored small scale have been used to study the wetting behavior on nanomodulated surfaces in a substantial range of surface treatments and geometrical parameters. With the use of optical reflectance measurements, the nanoscale water imbibition depths have been measured and the transition to the superhydrophobic Cassie-Baxter state has been accurately determined. For pillars of high aspect ratio (about 15), the transition occurs even when the surface is grafted with a hydrophilic functional group. We have found a striking consistent deviation between the contact angle measurements and the straightforward application of the classical wetting models. Molecular dynamics simulations show that these deviations can be attributed to the long overlooked atomic-scale surface perturbations that are introduced during the nanofabrication process. When the transition condition is approached, transient states of partial imbibition that characterize intermediate states between the Wenzel and Cassie-Baxter states are revealed in our experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330542900092 Publication Date 2013-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 39 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:114871 Serial 276  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; Deben, C. url  doi
openurl 
  Title Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis Type A1 Journal article
  Year 2022 Publication Jove-Journal Of Visualized Experiments Abbreviated Journal Jove-J Vis Exp  
  Volume Issue 190 Pages 1-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification. ,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000928020400010 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1940-087x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.2  
  Call Number UA @ admin @ c:irua:193168 Serial 7271  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Schmidt, A.; Lin, A.; Weltmann, K.-D.; Wende, K.; Bogaerts, A.; Bekeschus, S. url  doi
openurl 
  Title ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy Type A1 Journal article
  Year 2019 Publication Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev  
  Volume 2019 Issue Pages 1-29  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from<italic>in silico</italic>analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and<italic>in vitro</italic>and<italic>in vivo</italic>experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493001000003 Publication Date 2019-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.593 Times cited Open Access  
  Notes KW and SB acknowledge funding by the German Federal Ministry of Education and Research (grant numbers 03Z22DN11 and 03Z22DN12). The work of SB is further supported by the European Social Fund (grant number ESF/14-BM-A55-0006). APM and AB acknowledge funding by the Methusalem Project. AL acknowledges funding from the Research Foundation Flanders (grant number 12S9218N). APM thanks Yury Gorbanev for his assistance with the preparation of this review. Approved Most recent IF: 4.593  
  Call Number PLASMANT @ plasmant @c:irua:163476 Serial 5373  
Permanent link to this record
 

 
Author Lin, A.; Biscop, E.; Breen, C.; Butler, S.J.; Smits, E.; Bogaerts, A.; Jakovljevic, V. pdf  url
doi  openurl
  Title Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy Type A1 Journal article
  Year 2020 Publication Oxidative Medicine And Cellular Longevity Abbreviated Journal Oxid Med Cell Longev  
  Volume 2020 Issue Pages 1-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Non-thermal plasma (NTP), an ionized gas generated at ambient pressure and temperature, has been an emerging technology for medical applications. Through controlled delivery of reactive oxygen and nitrogen species (ROS/RNS), NTP can elicit hormetic cellular responses, thus stimulating broad therapeutic effects. To enable clinical translation of the promising preclinical research into NTP therapy, a deeper understanding of NTP interactions with clinical substrates is profoundly needed. Since NTP-generated ROS/RNS will inevitably interact with blood in several clinical contexts, understanding their stability in this system is crucial. In this study, two medically relevant NTP delivery modalities were used to assess the stability of NTP-generated ROS/RNS in three aqueous solutions with increasing organic complexities: phosphate-buffered saline (PBS), blood plasma (BP), and processed whole blood. NTP-generated RNS collectively (NO2−, ONOO−), H2O2, and ONOO− exclusively were analyzed over time. We demonstrated that NTP-generated RNS and H2O2 were stable in PBS but scavenged by different components of the blood. While RNS remained stable in BP after initial scavenging effects, it was completely reduced in processed whole blood. On the other hand, H2O2 was completely scavenged in both liquids over time. Our previously developed luminescent probe europium(III) was used for precision measurement of ONOO− concentration. NTP-generated ONOO− was detected in all three liquids for up to at least 30 seconds, thus highlighting its therapeutic potential. Based on our results, we discussed the necessary considerations to choose the most optimal NTP modality for delivery of ROS/RNS to and via blood in the clinical context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600343500001 Publication Date 2020-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.593 Times cited Open Access  
  Notes This work was supported in part by the Research Foundation Flanders grant 12S9218N (A.L.) ,12S9221N (A.L) and G044420N (A.B. and A.L). This work was also supported by the Methusalem grant (A.B.). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:174000 Serial 6658  
Permanent link to this record
 

 
Author Conings, B.; Bretschneider, S.A.; Babayigit, A.; Gauquelin, N.; Cardinaletti, I.; Manca, J.V.; Verbeeck, J.; Snaith, H.J.; Boyen, H.-G. url  doi
openurl 
  Title Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 8092-8099  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The power conversion efficiency of halide perovskite solar cells is heavily dependent on the perovskite layer being sufficiently smooth and pinhole-free. It has been shown that these features can be obtained even when starting out from rough and discontinuous perovskite film, by briefly exposing it to methylamine (MA) vapor. The exact underlying physical mechanisms of this phenomenon are, however, still unclear. By investigating smooth, MA treated films, based on very rough and discontinuous reference films of methylammonium triiode (MAPbI3), considering their morphology, crystalline features, local conductive properties, and charge carrier lifetime, we unravel the relation between their characteristic physical qualities and their performance in corresponding solar cells. We discover that the extensive improvement in photovoltaic performance upon MA treatment is a consequence of the induced morphological enhancement of the perovskite layer, together with improved electron injection into TiO2, which in fact compensates for an otherwise compromised bulk electronic quality, simultaneously caused by the MA treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396186000025 Publication Date 2017-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 43 Open Access OpenAccess  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by FWO and Imec. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. The authors thank Tim Vangerven for Urbach energy determination, and Johnny Baccus and Jan Mertens for technical support. Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:140849 Serial 4422  
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 20974-20980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404090000079 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 4 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621  
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M. url  doi
openurl 
  Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 37 Pages 42208-42214  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852647100001 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 4 Open Access OpenAccess  
  Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:190619 Serial 7206  
Permanent link to this record
 

 
Author Ni, S.; Houwman, E.; Gauquelin, N.; Chezganov, D.; Van Aert, S.; Verbeeck, J.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Stabilizing perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 thin films by fast deposition and tensile mismatched growth template Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 10 Pages 12744-12753  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001176343700001 Publication Date 2024-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1944-8244 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.5 Times cited Open Access  
  Notes We would like to acknowledge the Netherlands Organization for Scientific Research (NWO) for the financial support of this work. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717-ESTEEM3. Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:204754 Serial 9174  
Permanent link to this record
 

 
Author Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 22166-22171  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.  
  Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363001500007 Publication Date 2015-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 13 Open Access  
  Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949  
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Li, Y.; Zhang, L.; Lin, S.; Gielis, J. url  doi
openurl 
  Title A general leaf area geometric formula exists for plants evidence from the simplified Gielis equation Type A1 Journal article
  Year 2018 Publication Forests (19994907) Abbreviated Journal  
  Volume 9 Issue 11 Pages 714  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Plant leaves exhibit diverse shapes that enable them to utilize a light resource maximally. If there were a general parametric model that could be used to calculate leaf area for different leaf shapes, it would help to elucidate the adaptive evolutional link among plants with the same or similar leaf shapes. We propose a simplified version of the original Gielis equation (SGE), which was developed to describe a variety of object shapes ranging from a droplet to an arbitrary polygon. We used this equation to fit the leaf profiles of 53 species (among which, 48 bamboo plants, 5 woody plants, and 10 geographical populations of a woody plant), totaling 3310 leaves. A third parameter (namely, the floating ratio c in leaf length) was introduced to account for the case when the theoretical leaf length deviates from the observed leaf length. For most datasets, the estimates of c were greater than zero but less than 10%, indicating that the leaf length predicted by the SGE was usually smaller than the actual length. However, the predicted leaf areas approximated their actual values after considering the floating ratios in leaf length. For most datasets, the mean percent errors of leaf areas were lower than 6%, except for a pooled dataset with 42 bamboo species. For the elliptical, lanceolate, linear, obovate, and ovate shapes, although the SGE did not fit the leaf edge perfectly, after adjusting the parameter c, there were small deviations of the predicted leaf areas from the actual values. This illustrates that leaves with different shapes might have similar functional features for photosynthesis, since the leaf areas can be described by the same equation. The anisotropy expressed as a difference in leaf shape for some plants might be an adaptive response to enable them to adapt to different habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451310300054 Publication Date 2018-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156324 Serial 7389  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: