toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N. pdf  url
doi  openurl
  Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 14 Issue 14 Pages 801-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000358530100022 Publication Date 2015-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 39.737 Times cited 170 Open Access  
  Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503  
  Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163  
Permanent link to this record
 

 
Author Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 425-431  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.  
  Address MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372591700017 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 39.737 Times cited 273 Open Access  
  Notes We would like to acknowledge Dr. Evert Houwman for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010- 246102 IFOX. J.V. and S.V.A. acknowledges funding from FWO project G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103- N13), and Calculations have been done on the Vienna Scientific Cluster (VSC).; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 39.737  
  Call Number c:irua:133190 c:irua:133190UA @ admin @ c:irua:133190 Serial 4041  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: