|   | 
Details
   web
Records
Author Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B.R.; Houthoofd, K.J.; Eloy, P.; Gaigneaux, E.M.; Van Tendeloo, G.; Thybaut, J.W.; Marin, G.B.; Denayer, J.F.M.; Baron, G.V.; Jacobs, P.A.; Kirschhock, C.E.A.; Martens, J.A.;
Title Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods Type A1 Journal article
Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 13 Issue 36 Pages 10070-10077
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000251855200006 Publication Date 2007-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 52 Open Access
Notes Approved Most recent IF: 5.317; 2007 IF: 5.330
Call Number UA @ lucian @ c:irua:67320 Serial 1268
Permanent link to this record
 

 
Author Tsoufis, T.; Georgakilas, V.; Ke, X.; Van Tendeloo, G.; Rudolf, P.; Gournis, D.
Title Incorporation of pure fullerene into organoclays : towards C60-pillared clay structures Type A1 Journal article
Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 19 Issue 24 Pages 7937-7943
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al3+ ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorptiondesorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000319825500035 Publication Date 2013-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 3 Open Access
Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 5.317; 2013 IF: 5.696
Call Number UA @ lucian @ c:irua:107347 Serial 1599
Permanent link to this record
 

 
Author Kalidindi, S.B.; Hyunchul, O.; Hirscher, M.; Esken, D.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title Metal@COFs : covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material Type A1 Journal article
Year 2012 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 18 Issue 35 Pages 10848-10856
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(eta 3-C3H5)(eta 5-C5H5)]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4 +/- 0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metalorganic frameworks (MOFs). The studies show that the H2 capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000307782800013 Publication Date 2012-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 88 Open Access
Notes Fwo Approved Most recent IF: 5.317; 2012 IF: 5.831
Call Number UA @ lucian @ c:irua:100469 Serial 2007
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G.
Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 21 Issue 21 Pages 16792-16795
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.
Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366501600011 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 5 Open Access
Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731
Call Number c:irua:129215 Serial 3964
Permanent link to this record
 

 
Author Kirsanova, M.A.; Reshetova, L.N.; Olenev, A.V.; Abakumov, A.M.; Shevelkov, A.V.
Title Semiclathrates of the GePTe system : synthesis and crystal structures Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 17 Issue 20 Pages 5719-5726
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Novel compounds [Ge46−xPx]Tey (13.9≤x≤15.6, 5.92≤y≤7.75) with clathrate-like structures have been prepared and structurally characterized. They crystallize in the space group Fmequation image with the unit cell parameter changing from 20.544(2) to 20.698(2) Å (Z=8) on going from x=13.9 to x=15.6. Their crystal structure is composed of a covalently bonded Ge[BOND]P framework that hosts tellurium atoms in the guest positions and can be viewed as a peculiar variant of the type I clathrate superstructure. In contrast to the conventional type I clathrates, [Ge46−xPx]Tey contain tricoordinated (3b) atoms and no vacancies in the framework positions. As a consequence of the transformation of the framework, the majority of the guest tellurium atoms form a single covalent bond with the host framework and thus the title compounds are the first representative of semiclathrates with covalent bonding. A comparison is made with silicon clathrates and the evolution of the crystal structure upon changing the tellurium content is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000290216000028 Publication Date 2011-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 17 Open Access
Notes Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:89773 Serial 2981
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leither-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y.
Title Spatial separation of covalent, ionic, and metallic interactions in Mg11Rh18B8 and Mg3Rh5B3 Type A1 Journal article
Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 19 Issue 52 Pages 17860-17870
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystal structures of Mg11Rh18B8 and Mg3Rh5B3 have been investigated by using single-crystal X-ray diffraction. Mg11Rh18B8: space group P4/mbm; a=17.9949(7), c=2.9271(1)angstrom; Z=2. Mg3Rh5B3: space group Pmma; a=8.450(2), b=2.8644(6), c=11.602(2)angstrom; Z=2. Both crystal structures are characterized by trigonal prismatic coordination of the boron atoms by rhodium atoms. The [BRh6] trigonal prisms form arrangements with different connectivity patterns. Analysis of the chemical bonding by means of the electron-localizability/electron-density approach reveals covalent BRh interactions in these arrangements and the formation of BRh polyanions. The magnesium atoms that are located inside the polyanions interact ionically with their environment, whereas, in the structure parts, which are mainly formed by Mg and Rh atoms, multicenter (metallic) interactions are observed. Diamagnetic behavior and metallic electron transport of the Mg11Rh18B8 and Mg3Rh5B3 phases are in agreement with the bonding picture and the band structure.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000328531000028 Publication Date 2013-12-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 5 Open Access
Notes Approved Most recent IF: 5.317; 2013 IF: 5.696
Call Number UA @ lucian @ c:irua:113697 Serial 3064
Permanent link to this record
 

 
Author Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.V.; Presniakov, I.A.; Prots, Y.; Baitinger, M.; Schnelle, W.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Grin, Y.; Shevelkov, A.V.
Title Sn20.5-3.5As22I8: a largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity Type A1 Journal article
Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 13 Issue 18 Pages 5090-5099
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000247708300005 Publication Date 2007-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 44 Open Access
Notes Approved Most recent IF: 5.317; 2007 IF: 5.330
Call Number UA @ lucian @ c:irua:65684 Serial 3556
Permanent link to this record
 

 
Author Lin, K.; Lebedev, O.I.; Van Tendeloo, G.; Jacobs, P.A.; Pescarmona, P.P.
Title Titanosilicate beads with hierarchical porosity : synthesis and application as epoxidation catalysts Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 16 Issue 45 Pages 13509-13518
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Porous titanosilicate beads with a diameter of 0.51.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H2O2. With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000285398400029 Publication Date 2010-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 38 Open Access
Notes Iap; Goa Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:88153 Serial 3668
Permanent link to this record
 

 
Author Yang, X.-Y.; Tian, G.; Chen, L.-H.; Li, Y.; Rooke, J.C.; Wei, Y.-X.; Liu, Z.-M.; Deng, Z.; Van Tendeloo, G.; Su, B.-L.
Title Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance Type A1 Journal article
Year 2011 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 17 Issue 52 Pages 14987-14995
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Preparation and characterization of well-organized zeolitic nanocrystal aggregates with an interconnected hierarchically micromesomacro porous system are described. Amorphous nanoparticles in bimodal aluminosilicates were directly transformed into highly crystalline nanosized zeolites, as well as acting as scaffold template. All pores on three length scales incorporated in one solid body are interconnected with each other. These zeolitic nanocrystal aggregates with hierarchically micromesomacroporous structure were thoroughly characterized. TEM images and 29Si NMR spectra showed that the amorphous phase of the initial material had been completely replaced by nanocrystals to give a micromesomacroporous crystalline zeolitic structure. Catalytic testing demonstrated their superiority due to the highly active sites and the presence of interconnected micromesomacroporosity in the cracking of bulky 1,3,5-triisopropylbenzene (TIPB) compared to traditional zeolite catalysts. This synthesis strategy was extended to prepare various zeolitic nanocrystal aggregates (ZSM-5, Beta, TS-1, etc.) with well-organized hierarchical micromesomacroporous structures.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000298547300035 Publication Date 2011-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 61 Open Access
Notes Approved Most recent IF: 5.317; 2011 IF: 5.925
Call Number UA @ lucian @ c:irua:96274 Serial 3913
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 22 Issue 22 Pages 3304-3311
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000371419200001 Publication Date 2016-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 43 Open Access
Notes Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:132347 Serial 4192
Permanent link to this record
 

 
Author Sun, Z.; Madej, E.; Wiktor; Sinev, I.; Fischer, R.A.; Van Tendeloo, G.; Muhler, M.; Schuhmann, W.; Ventosa, E.
Title One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries Type A1 Journal article
Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 21 Issue 21 Pages 16154-16161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li-ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene through high-pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon-coated iron oxide, while the graphene acts as a high-surface-area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative-electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000363890700036 Publication Date 2015-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 8 Open Access
Notes Approved Most recent IF: 5.317; 2015 IF: 5.731
Call Number UA @ lucian @ c:irua:129510 Serial 4218
Permanent link to this record
 

 
Author Roesler, C.; Dissegna, S.; Rechac, V.L.; Kauer, M.; Guo, P.; Turner, S.; Ollegott, K.; Kobayashi, H.; Yamamoto, T.; Peeters, D.; Wang, Y.; Matsumura, S.; Van Tendeloo, G.; Kitagawa, H.; Muhler, M.; Llabres i Xamena, F.X.; Fischer, R.A.
Title Encapsulation of bimetallic metal nanoparticles into robust zirconium-based metal-organic frameworks : evaluation of the catalytic potential for size-selective hydrogenation Type A1 Journal article
Year 2017 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 23 Issue 15 Pages 3583-3594
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The realization of metal nanoparticles (NPs) with bimetallic character and distinct composition for specific catalytic applications is an intensively studied field. Due to the synergy between metals, most bimetallic particles exhibit unique properties that are hardly provided by the individual monometallic counterparts. However, as small-sized NPs possess high surface energy, agglomeration during catalytic reactions is favored. Sufficient stabilization can be achieved by confinement of NPs in porous support materials. In this sense, metal-organic frameworks (MOFs) in particular have gained a lot of attention during the last years; however, encapsulation of bimetallic species remains challenging. Herein, the exclusive embedding of preformed core-shell PdPt and RuPt NPs into chemically robust Zr-based MOFs is presented. Microstructural characterization manifests partial retention of the core-shell systems after successful encapsulation without harming the crystallinity of the microporous support. The resulting chemically robust NP@UiO-66 materials exhibit enhanced catalytic activity towards the liquid-phase hydrogenation of nitrobenzene, competitive with commercially used Pt on activated carbon, but with superior size-selectivity for sterically varied substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000397502900010 Publication Date 2016-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 13 Open Access Not_Open_Access
Notes ; This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft (DFG). ; Approved Most recent IF: 5.317
Call Number UA @ lucian @ c:irua:142485 Serial 4653
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S.
Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J
Volume Issue Pages chem.202100029-15
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652651400001 Publication Date 2021-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.317 Times cited 15 Open Access OpenAccess
Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317
Call Number UA @ admin @ c:irua:177495 Serial 6787
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Fang, C.M.; Xu, Q.; Tichelaar, F.D.; Hanlon, D.N.; Sietsma, J.; Zandbergen, H.W.
Title Characterization of NbC and (Nb, Ti)N nanoprecipitates in TRIP assisted multiphase steels Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 19 Pages 7406-7415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiphase steels utilising composite strengthening may be further strengthened via grain refinement or precipitation by the addition of microalloying elements. In this study a Nb microalloyed steel comprising martensite, bainite and retained austenite has been studied. By means of transmission electron microscopy (TEM) we have investigated the size distribution and the structural properties of (Nb, Ti)N and NbC precipitates, their occurrence in the various steel phases, and their relationship with the Fe matrix. (Nb, Ti)N precipitates were found in ferrite, martensite, and bainite, while NbC precipitates were found only in ferrite. All NbC precipitates were found to be small (520 nm in size) and to have a face centred cubic (fcc) crystal structure with lattice parameter a = 4.36 ± 0.05 Å. In contrast, the (Nb, Ti)N precipitates were found to have a broader size range (5150 nm) and to have a fcc crystal structure with lattice parameter a = 8.09 ± 0.05 Å. While the NbC precipitates were found to be randomly oriented, the (Nb, Ti)N precipitates have a well-defined NishiyamaWasserman orientation relationship with the ferrite matrix. An analysis of the lattice mismatch suggests that the latter precipitates have a high potential for effective strengthening. Density functional theory calculations were performed for various stoichiometries of NbCx and NbxTiyNz phases and the comparison with experimental data indicates that both the carbides and nitrides are deficient in C and N content.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000296405200026 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 58 Open Access
Notes Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:93297 Serial 328
Permanent link to this record
 

 
Author Tirumalasetty, G.K.; van Huis, M.A.; Kwakernaak, C.; Sietsma, J.; Sloof, W.G.; Zandbergen, H.W.
Title Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel Type A1 Journal article
Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 60 Issue 3 Pages 1311-1321
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of the XRD and EBSD results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material. The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant factor contributing to enhancement of the ductility. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301157900054 Publication Date 2011-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 80 Open Access
Notes Approved Most recent IF: 5.301; 2012 IF: 3.941
Call Number UA @ lucian @ c:irua:97210 Serial 630
Permanent link to this record
 

 
Author Wang, X.; Kustov, S.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains Type A1 Journal article
Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 82 Issue 82 Pages 224-233
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In order to take advantage of both grain refinement and precipitation hardening effects, nanoscaled Ni4Ti3 precipitates are introduced in a Ti50.8 at.% Ni alloy with micron-sized grains (average grain size of 1.7 μm). Calorimetry, electrical resistance studies and thermomechanical tests were employed to study the transformation behavior and functional properties in relation to the obtained microstructure. A significant suppression of martensite transformation by the obtained microstructure is observed. The thermomechanical tests show that the advantageous properties of both grain refinement and precipitation hardening are combined in the developed materials, resulting in superior shape memory characteristics and stability of pseudoelasticity. It is concluded that introducing nanoscaled Ni4Ti3 precipitates into small grains is a new approach to improve the functional properties of NiTi shape memory alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000347017800021 Publication Date 2014-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 51 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2015 IF: 4.465
Call Number c:irua:120469 Serial 824
Permanent link to this record
 

 
Author Yang, Z.; Tirry, W.; Lamoen, D.; Kulkova, S.; Schryvers, D.
Title Electron energy-loss spectroscopy and first-principles calculation studies on a Ni-Ti shape memory alloy Type A1 Journal article
Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 56 Issue 3 Pages 395-404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000253020900011 Publication Date 2007-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 20 Open Access
Notes Goa; Ec Rtn; Fwo Approved Most recent IF: 5.301; 2008 IF: 3.729
Call Number UA @ lucian @ c:irua:67462 Serial 931
Permanent link to this record
 

 
Author Berg, L.K.; Gjønnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R.
Title GP-zones in Al-Zn-Mg alloys and their role in artificial aging Type A1 Journal article
Year 2001 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 49 Issue Pages 3443-3451
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000171445700006 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 261 Open Access
Notes Approved Most recent IF: 5.301; 2001 IF: 2.658
Call Number UA @ lucian @ c:irua:48363 Serial 1361
Permanent link to this record
 

 
Author Colla, M.-S.; Wang, B.; Idrissi, H.; Schryvers, D.; Raskin, J.-P.; Pardoen, T.
Title High strength-ductility of thin nanocrystalline palladium films with nanoscale twins : on-chip testing and grain aggregate model Type A1 Journal article
Year 2012 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 60 Issue 4 Pages 1795-1806
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The mechanical behaviour of thin nanocrystalline palladium films with an ∼30 nm in plane grain size has been characterized on chip under uniaxial tension. The films exhibit a large strain hardening capacity and a significant increase in the strength with decreasing thickness. Transmission electron microscopy has revealed the presence of a moderate density of growth nanotwins interacting with dislocations. A semi-analytical grain aggregate model is proposed to investigate the impact of different contributions to the flow behaviour, involving the effect of twins, of grain size and of the presence of a thin surface layer. This model provides guidelines to optimizing the strength/ductility ratio of the films.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301989500035 Publication Date 2012-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 38 Open Access
Notes Iap Approved Most recent IF: 5.301; 2012 IF: 3.941
Call Number UA @ lucian @ c:irua:94213 Serial 1465
Permanent link to this record
 

 
Author Malard, B.; Pilch, J.; Sittner, P.; Delville, R.; Curfs, C.
Title In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1542-1556
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Microstructural changes taking place during the heat treatment of cold-worked NiTi alloy are of key interest in shape memory alloy technology, since they are responsible for setting the austenite shape and functional properties of the heat-treated alloy. In this work, microstructural evolution during non-conventional electropulse heat treatment of thin NiTi filaments was investigated in a unique high-speed in situ synchrotron X-ray diffraction experiment with simultaneous evaluation of the tensile force and electrical resistivity of the treated wire. The in situ results provide direct experimental evidence on the evolution of the internal stress and density of defects during fast heating from 20 °C to ∼700 °C. This evidence is used to characterize a sequence of dynamic recovery and recrystallization processes responsible for the microstructure and superelastic functional property changes during the electropulse treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100023 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 48 Open Access
Notes Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:98372 Serial 1583
Permanent link to this record
 

 
Author Rotaru, G.-M.; Tirry, W.; Sittner, P.; van Humbeeck, J.; Schryvers, D.
Title Microstructural study of equiatomic PtTi martensite and the discovery of a new long-period structure Type A1 Journal article
Year 2007 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 55 Issue 13 Pages 4447-4454
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000248436400021 Publication Date 2007-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 7 Open Access
Notes Fwo G.0465.05; Multimat Approved Most recent IF: 5.301; 2007 IF: 3.624
Call Number UA @ lucian @ c:irua:65849 Serial 2047
Permanent link to this record
 

 
Author Delville, R.; Malard, B.; Pilch, J.; Schryvers, D.
Title Microstructure changes during non-conventional heat treatment of thin NiTi wires by pulsed electric current studied by transmission electron microscopy Type A1 Journal article
Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 58 Issue 13 Pages 4503-4515
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy, electrical resistivity measurements and mechanical testing were employed to investigate the evolution of microstructure and functional superelastic properties of 0.1 mm diameter as-drawn NiTi wires subjected to a non-conventional heat treatment by controlled electric pulse currents. This method enables a better control of the recovery and recrystallization processes taking place during the heat treatment and accordingly a better control on the final microstructure. Using a stepwise approach of millisecond pulse annealing, it is shown how the microstructure evolves from a severely deformed state with no functional properties to an optimal nanograined microstructure (2050 nm) that is partially recovered through polygonization and partially recrystallized and that has the best functional properties. Such a microstructure is highly resistant against dislocation slip upon cycling, while microstructures annealed for longer times and showing mostly recrystallized grains were prone to dislocation slip, particularly as the grain size exceeds 200 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000279787100020 Publication Date 2010-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 110 Open Access
Notes Multimat; FWO IAA Approved Most recent IF: 5.301; 2010 IF: 3.791
Call Number UA @ lucian @ c:irua:83279 Serial 2062
Permanent link to this record
 

 
Author Bartova, B.; Wiese, N.; Schryvers, D.; Chapman, J.N.; Ignacova, S.
Title Microstructure of precipitates and magnetic domain structure in an annealed Co38Ni33Al29 shape memory alloy Type A1 Journal article
Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 56 Issue 16 Pages 4470-4476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructure of a Co38Ni33Al29 ferromagnetic shape memory alloy was determined by conventional transmission electron microscopy (TEM), electron diffraction studies together with advanced microscopy techniques and in situ Lorentz microscopy. Rod-like precipitates, 1060 nm long, of hexagonal close-packed -Co were confirmed to be present by high-resolution TEM. The orientation relationship between the precipitates and B2 matrix is described by the Burgers orientation relationship. The crystal structure of the martensite obtained after cooling is tetragonal L10 with a (111) twinning plane. The magnetic domain structure was determined during an in situ cooling experiment using the Fresnel mode of Lorentz microscopy. While transformation proceeds from B2 austenite to L10 martensite, new domains are nucleated, leading to a decrease in domain width, with the magnetization lying predominantly along a single direction. It was possible to completely describe the relationship between magnetic domains and crystallographic directions in the austenite phase though complications existed for the martensite phase.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000259931300033 Publication Date 2008-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 23 Open Access
Notes Multimat Approved Most recent IF: 5.301; 2008 IF: 3.729
Call Number UA @ lucian @ c:irua:72321 Serial 2072
Permanent link to this record
 

 
Author Boullay, P.; Schryvers, D.; Ball, J.M.
Title Nano-structures at martensite macrotwin interfaces in Ni65Al35 Type A1 Journal article
Year 2003 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 51 Issue 5 Pages 1421-1436
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35 material are investigated using transmission electron microscopy. The observed structures are interpreted in view of possible formation mechanisms for these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular {110} austenite planes, enclose a final angle larger or smaller than 90degrees. Two different configurations, a crossing and a step type are described. Depending on the actual case, tapering, bending and tip splitting of the smaller microtwinvariants are observed. The most reproducible deformations occur in a region of approximately 5-10 nm width around the interface while a variety of structural defects are observed further away from the interface. These structures and deformations are interpreted in terms of the coalescence of two separately nucleated microtwinned martensite plates and the need to accommodate remaining stresses. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000181677700018 Publication Date 2003-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 31 Open Access
Notes Approved Most recent IF: 5.301; 2003 IF: 3.059
Call Number UA @ lucian @ c:irua:48364 Serial 2248
Permanent link to this record
 

 
Author Potapov, P.L.; Ochin, P.; Pons, J.; Schryvers, D.
Title Nanoscale inhomogeneities in melt-spun Ni-Al Type A1 Journal article
Year 2000 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 48 Issue Pages 3833-3845
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000089632800003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 28 Open Access
Notes Approved Most recent IF: 5.301; 2000 IF: 2.166
Call Number UA @ lucian @ c:irua:48362 Serial 2265
Permanent link to this record
 

 
Author Idrissi, H.; Renard, K.; Ryelandt, L.; Schryvers, D.; Jacques, P.J.
Title On the mechanism of twin formation in FeMnC TWIP steels Type A1 Journal article
Year 2010 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 58 Issue 7 Pages 2464-2476
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although it is well known that FeMnC TWIP steels exhibit high work-hardening rates, the elementary twinning mechanisms controlling the plastic deformation of these steels have still not been characterized. The aim of the present study is to analyse the extended defects related to the twinning occurrence using transmission electron microscopy. Based on these observations, the very early stage of twin nucleation can be attributed to the pole mechanism with deviation proposed by Cohen and Weertman or to the model of Miura, Takamura and Narita, while the twin growth is controlled by the pole mechanism proposed by Venables. High densities of sessile Frank dislocations are observed within the twins at the early stage of deformation, which can affect the growth and the stability of the twins, but also the strength of these twins and their interactions with the gliding dislocations present in the matrix. This experimental evidence is discussed and compared to recent results in order to relate the defects analysis to the macroscopic behaviour of this category of material.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276523200018 Publication Date 2010-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 244 Open Access
Notes Iap Approved Most recent IF: 5.301; 2010 IF: 3.791
Call Number UA @ lucian @ c:irua:82270 Serial 2441
Permanent link to this record
 

 
Author Viart, N.; Sayed Hassan, R.; Ulhaq-Bouillet, C.; Meny, C.; Panissod, P.; Loison, J.L.; Versini, G.; Huber, F.; Pourroy, G.; Verbeeck, J.; Van Tendeloo, G.
Title Oxidation processes at the metal/oxide interface in CoFe2/CoFe2O4 bilayers deposited by pulsed laser deposition Type A1 Journal article
Year 2006 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 54 Issue 1 Pages 191-196
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract CoFe2/CoFe2O4 bilayers were made by pulsed laser ablation of a CoFe2 target on Si(I 0 0) substrates. The metallic layer was deposited first, in vacuum. The oxide was then deposited in an oxidizing O-2:N-2 (20:80) atmosphere. Two different procedures were used for the introduction of the oxidizing atmosphere in the deposition chamber: the laser ablation of the target was either stopped (discontinuous deposition process) or maintained (continuous deposition process) during the 20 min necessary for the establishment of the desired O-2:N-2 pressure. In both cases, the different electronegativities of Fe and Co cause an important modification of the Fe/Co ratio at the metal/oxide interface, with a depletion of Fe in the metal region and of Co in the oxide region. In the continuous procedure, the combination of the kinetic energy given by the ablation process to the Fe and Co adatoms with the one they get from their different affinity towards oxidation allows the formation of a low roughness metal/oxide interface with a high (111) preferred orientation of the CoFe2O4 layer, an induced re-crystallisation of the metal layer underneath and an unusual antiferromagnetic metal/oxide magnetic coupling. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000233784500021 Publication Date 2005-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 5 Open Access
Notes Approved Most recent IF: 5.301; 2006 IF: 3.549
Call Number UA @ lucian @ c:irua:56043UA @ admin @ c:irua:56043 Serial 2540
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.
Title Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi Type A1 Journal article
Year 2005 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 53 Issue 4 Pages 1041-1049
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000226774500014 Publication Date 2004-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 97 Open Access
Notes Approved Most recent IF: 5.301; 2005 IF: 3.430
Call Number UA @ lucian @ c:irua:55686 Serial 2750
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1780-1789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100045 Publication Date 2010-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:85533 Serial 2766
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D.
Title Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 74 Issue Pages 85-95
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338621400009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 5.301 Times cited 21 Open Access
Notes Approved Most recent IF: 5.301; 2014 IF: 4.465
Call Number UA @ lucian @ c:irua:118334 Serial 3028
Permanent link to this record