toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C. pdf  url
doi  openurl
  Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
  Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume Issue Pages 7541-7549  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823193100001 Publication Date 2022-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles  
  Impact Factor (up) 12.9 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9  
  Call Number EMAT @ emat @c:irua:189000 Serial 7073  
Permanent link to this record
 

 
Author Yang, S.; Liu, Z.; An, H.; Arnouts, S.; de Ruiter, J.; Rollier, F.; Bals, S.; Altantzis, T.; Figueiredo, M.C.; Filot, I.A.W.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Near-unity electrochemical CO₂ to CO conversion over Sn-doped copper oxide nanoparticles Type A1 Journal article
  Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 12 Issue 24 Pages 15146-15156  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bimetallic electrocatalysts have emerged as a viable strategy to tune the electrocatalytic CO2 reduction reaction (eCO2RR) for the selective production of valuable base chemicals and fuels. However, obtaining high product selectivity and catalyst stability remain challenging, which hinders the practical application of eCO2RR. In this work, it was found that a small doping concentration of tin (Sn) in copper oxide (CuO) has profound influence on the catalytic performance, boosting the Faradaic efficiency (FE) up to 98% for carbon monoxide (CO) at -0.75 V versus RHE, with prolonged stable performance (FE > 90%) for up to 15 h. Through a combination of ex situ and in situ characterization techniques, the in situ activation and reaction mechanism of the electrocatalyst at work was elucidated. In situ Raman spectroscopy measurements revealed that the binding energy of the crucial adsorbed *CO intermediate was lowered through Sn doping, thereby favoring gaseous CO desorption. This observation was confirmed by density functional theory, which further indicated that hydrogen adsorption and subsequent hydrogen evolution were hampered on the Sn-doped electrocatalysts, resulting in boosted CO formation. It was found that the pristine electrocatalysts consisted of CuO nanoparticles decorated with SnO2 domains, as characterized by ex situ high-resolution scanning transmission electron microscopy and X-ray photoelectron spectroscopy measurements. These pristine nanoparticles were subsequently in situ converted into a catalytically active bimetallic Sn-doped Cu phase. Our work sheds light on the intimate relationship between the bimetallic structure and catalytic behavior, resulting in stable and selective oxide-derived Sn-doped Cu electrocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000900052400001 Publication Date 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 12.9 Times cited 16 Open Access OpenAccess  
  Notes B.M.W., S.Y., M.C.F., E.J.M.H., and W.v.d.S. acknowledge support from the Strategic UU-TU/e Alliance project ?Joint Centre for Chemergy Research?. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO) . Z.L. acknowledges financial support of the China Scholarship Council and the Netherlands Organization for Scientific Research for access to computa-tional resources for carrying out the DFT calculations reported in this work. S.A. and T.A. acknowledge funding from theUniversity of Antwerp Research fund (BOF) . The authors also thank Dr. Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, Utrecht University) for helpful technical support. Sander Deelen (Faculty of Science, Utrecht University) is acknowledged for the design of the in situ XRD cell. Approved Most recent IF: 12.9  
  Call Number UA @ admin @ c:irua:192742 Serial 7325  
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. url  doi
openurl 
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
  Year 2023 Publication Small Abbreviated Journal  
  Volume Issue Pages 2206712  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914725800001 Publication Date 2023-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.3 Times cited 1 Open Access OpenAccess  
  Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:194299 Serial 7247  
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. pdf  url
doi  openurl
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
  Year 2023 Publication Small Abbreviated Journal Small  
  Volume 19 Issue 12 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record  
  Impact Factor (up) 13.3 Times cited Open Access Not_Open_Access  
  Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:200859 Serial 8960  
Permanent link to this record
 

 
Author Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. pdf  url
doi  openurl
  Title Applications of reticular diversity in metal-organic frameworks : an ever-evolving state of the art Type A1 Journal article
  Year 2021 Publication Coordination Chemistry Reviews Abbreviated Journal Coordin Chem Rev  
  Volume 430 Issue Pages 213655  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) are exciting materials due to their extensive applicability in a multitude of modern technological fields. Their most prominent characteristic and primary origin of their widespread success is the exceptional variety of their structures, which we termed 'reticular diversity'. Naturally, the ever-emerging applications of MOFs made it increasingly common that researchers from various areas delve into reticular chemistry to overcome their scientific challenges. This confers a crucial role to comprehensive overviews capable of providing newcomers with the knowledge of the state of the art, as well as with the key physics and chemistry considerations needed to design MOFs for a specific application. In this review, we commit to this purpose by outlining the fundamental understanding needed to carefully navigate MOFs' reticular diversity in their main fields of application, namely hostguest chemistry, chemical sensing, electronics, photophysics, and catalysis. Such knowledge and a meticulous, open-minded approach to the design of MOFs paves the way for their most innovative and successful applications, and for the global advancement of the research areas they are employed in. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615299000008 Publication Date 2020-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-8545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.324 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.324  
  Call Number UA @ admin @ c:irua:176731 Serial 6715  
Permanent link to this record
 

 
Author Watanabe, Y.; Hyeon-Deuk, K.; Yamamoto, T.; Yabuuchi, M.; Karakulina, O.M.; Noda, Y.; Kurihara, T.; Chang, I.-Y.; Higashi, M.; Tomita, O.; Tassel, C.; Kato, D.; Xia, J.; Goto, T.; Brown, C.M.; Shimoyama, Y.; Ogiwara, N.; Hadermann, J.; Abakumov, A.M.; Uchida, S.; Abe, R.; Kageyama, H. url  doi
openurl 
  Title Polyoxocationic antimony oxide cluster with acidic protons Type A1 Journal article
  Year 2022 Publication Science Advances Abbreviated Journal  
  Volume 8 Issue 24 Pages eabm5379-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H(10.)7Sb(32.1)O(44)][H2.1Sb2.1I8O6][Sb0.76I6](2)center dot 25H(2)O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812533800008 Publication Date 2022-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.6  
  Call Number UA @ admin @ c:irua:189689 Serial 7091  
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M. doi  openurl
  Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 36 Pages 12658-12666  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000341544600029 Publication Date 2014-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 11 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:119906 Serial 96  
Permanent link to this record
 

 
Author Palgrave, R.G.; Borisov, P.; Dyer, M.S.; McMitchell, S.R.C.; Darling, G.R.; Claridge, J.B.; Batuk, M.; Tan, H.; Tian, H.; Verbeeck, J.; Hadermann, J.; Rosseinsky, M.J.; pdf  doi
openurl 
  Title Artificial construction of the layered Ruddlesden-Popper manganite La2Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 18 Pages 7700-7714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposition has been used to artificially construct the n = 3 Ruddlesden Popper structure La2Sr2Mn3O10 in epitaxial thin film form by sequentially layering La1-xSrxMnO3 and SrO unit cells aided by in situ reflection high energy electron diffraction monitoring. The interval deposition technique was used to promote two-dimensional SrO growth. X-ray diffraction and cross-sectional transmission electron microscopy indicated that the trilayer structure had been formed. A site ordering was found to differ from that expected thermodynamically, with the smaller Sr2+ predominantly on the R site due to kinetic trapping of the deposited cation sequence. A dependence of the out-of-plane lattice parameter on growth pressure was interpreted as changing the oxygen content of the films. Magnetic and transport measurements on fully oxygenated films indicated a frustrated magnetic ground state characterized as a spin glass-like magnetic phase with the glass temperature T-g approximate to 34 K. The magnetic frustration has a clear in-plane (ab) magnetic anisotropy, which is maintained up to temperatures of 150 K. Density functional theory calculations suggest competing antiferromagnetic and ferromagnetic long-range orders, which are proposed as the origin of the low-temperature glassy state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000303696200029 Publication Date 2012-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 27 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:98947UA @ admin @ c:irua:98947 Serial 153  
Permanent link to this record
 

 
Author Tran, M.L.; Centeno, S.P.; Hutchison, J.A.; Engelkamp, H.; Liang, D.; Van Tendeloo, G.; Sels, B.F.; Hofkens, J.; Uji-i, H. pdf  doi
openurl 
  Title Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 51 Pages 17240-17241  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A simple and low-cost method to create metal−metal hybrid nanostructures possessing fairly regularly spaced hot-spots of surface plasmon resonances is proposed. The nanohybrid structure was prepared via self-assembly during a simple drop-casting procedure, using chemically synthesized silver nanowires and silver nanoparticles prepared in a single batch of a polyol process. Wide field illumination of these nanohybrids produced hot-spots with spacings of around 500 nm to 1 ìm. The intensity of the emission/scattering from the hot-spots fluctuates over time. The proposed structure can be useful for the development of molecular-sensors or as a substrate for surface enhanced Raman/fluorescence spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000263320600018 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 51 Open Access  
  Notes Fwo – G.0366.06; Fwo – Iap-Vi/27 Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:75946 Serial 498  
Permanent link to this record
 

 
Author Wee, L.H.; Wiktor, C.; Turner, S.; Vanderlinden, W.; Janssens, N.; Bajpe, S.R.; Houthoofd, K.; Van Tendeloo, G.; De Feyter, S.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Copper benzene tricarboxylate metal-organic framework with wide permanent mesopores stabilized by keggin polyoxometallate ions Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 26 Pages 10911-10919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Porous solids with organized multiple porosity are of scientific and technological importance for broadening the application range from traditional areas of catalysis and adsorption/separation to drug release and biomedical imaging. Synthesis of crystalline porous materials offering a network of uniform micro- and mesopores remains a major scientific challenge. One strategy is based on variation of synthesis parameters of microporous networks, such as, for example, zeolites or metal organic frameworks (MOFs). Here, we show the rational development of an hierarchical variant of the microporous cubic Cu-3(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate) HKUST-1 MOF having strictly repetitive S inn wide mesopores separated by uniform microporous walls in a single crystal structure. This new material coined COK-15 (COK = Centrum voor Oppervlaktechemie en Katalyse) was synthesized via a dual-templating approach. Stability was enhanced by Keggin type phosphotungstate (HPW) systematically occluded in the cavities constituting the walls between the mesopores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305863900037 Publication Date 2012-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 83 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:100330 Serial 514  
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E. pdf  doi
openurl 
  Title F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 48 Pages 19362-19365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297606500027 Publication Date 2011-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 114 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93628 Serial 1164  
Permanent link to this record
 

 
Author Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M. pdf  url
doi  openurl
  Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 48 Pages 16932-16939  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345883900040 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:121331 Serial 1169  
Permanent link to this record
 

 
Author Navulla, A.; Tsirlin, A.A.; Abakumov, A.M.; Shpanchenko, R.V.; Zhang, H.; Dikarev, E.V. doi  openurl
  Title Fluorinated heterometallic \beta-diketonates as volatile single-source precursors for the synthesis of low-valent mixed-metal fluorides Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 4 Pages 692-694  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexafluoroacetylacetonates that contain lead and divalent first-row transition metals, PbM(hfac)4 (M = Ni (1), Co (2), Mn (3), Fe (4), and Zn (5)), have been synthesized. Their heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating−bridging fashion. Compounds 1−5 are highly volatile and decompose below 350 °C. Fluorinated heterometallic β-diketonates have been used for the first time as volatile single-source precursors for the preparation of mixed-metal fluorides. Complex fluorides of composition Pb2MF6 have been obtained by decomposition of 1−5 in a two-zone furnace under low-pressure nitrogen flow. Lead−transition metal fluorides conform to orthorhombically distorted Aurivillius-type structure with layers of corner-sharing [MF6] octahedra separated by α-PbO-type (Pb2F2) blocks. Pb2NiF6 and Pb2CoF6 were found to exhibit magnetic ordering below 80 and 43 K, respectively. The ordering is antiferromagnetic, with a weak, uncompensated moment due to the canting of spins. The Pb2MF6 fluorides represent a new class of prospective magnetoelectric materials combining transition metals and lone-pair main-group cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000287295300015 Publication Date 2010-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 28 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:88820 Serial 1236  
Permanent link to this record
 

 
Author Herkelrath, S.J.C.; Saratovsky, I.; Hadermann, J.; Clarke, S.J. doi  openurl
  Title Fragmentation of an infinite ZnO2 square plane into discrete [ZnO2]2- linear units in the oxyselenide Ba2ZnO2Ag2Se2 Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 44 Pages 14426-14427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of single crystal X-ray diffraction, neutron powder diffraction, electron diffraction and Zn−K-edge EXAFS data show that Ba2ZnO2Ag2Se2 contains unusual isolated [ZnO2]2− moieties resulting from fragmentation of a ZnO2 infinite plane placed under tension.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000260533400037 Publication Date 2008-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:72947 Serial 1273  
Permanent link to this record
 

 
Author Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S.B.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title GaN@ZIF-8 : selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 41 Pages 16370-16373  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microporous zeolitic imidazolate framework [Zn(MeIM)2; ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH3)3NGaH3]. The obtained inclusion compound [(CH3)3NGaH3]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H2GaNH2)3@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N2 sorption measurements. The data give evidence for the presence of GaN nanoparticles (13 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000295997500014 Publication Date 2011-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 82 Open Access  
  Notes Hercules Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93582 Serial 1315  
Permanent link to this record
 

 
Author Ustarroz, J.; Hammons, J.A.; Altantzis, T.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title A generalized electrochemical aggregative growth mechanism Type A1 Journal article
  Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 135 Issue 31 Pages 11550-11561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the VolmerWeber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000323019400034 Publication Date 2013-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 124 Open Access  
  Notes Fow; Hercules Approved Most recent IF: 13.858; 2013 IF: 11.444  
  Call Number UA @ lucian @ c:irua:109453 Serial 1323  
Permanent link to this record
 

 
Author Dixon, E.; Hadermann, J.; Ramos, S.; Goodwin, A.L.; Hayward, M.A. doi  openurl
  Title Mn(I) in an extended oxide : the synthesis and characterization of La1-xCaxMnO2+\delta (0.6\leq x\leq1) Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 45 Pages 18397-18405  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reduction of La1xCaxMnO3 (0.6 ≤ x ≤ 1) perovskite phases with sodium hydride yields materials of composition La1xCaxMnO2+δ. The calcium-rich phases (x = 0.9, 1) adopt (La0.9Ca0.1)0.5Mn0.5O disordered rocksalt structures. However local structure analysis using reverse Monte Carlo refinement of models against pair distribution functions obtained from neutron total scattering data reveals lanthanum-rich La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases adopt disordered structures consisting of an intergrowth of sheets of MnO6 octahedra and sheets of MnO4 tetrahedra. X-ray absorption data confirm the presence of Mn(I) centers in La1xCaxMnO2+δ phases with x < 1. Low-temperature neutron diffraction data reveal La1xCaxMnO2+δ (x = 0.6, 0.67, 0.7) phases become antiferromagnetically ordered at low temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297381200065 Publication Date 2011-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 33 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:94030 Serial 2094  
Permanent link to this record
 

 
Author Justo, Y.; Goris, B.; Sundar Kamal, J.; Geiregat, P.; Bals, S.; Hens, Z. pdf  doi
openurl 
  Title Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 12 Pages 5484-5487  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb cations in PbS quantum rods made from CdS quantum rods by successive complete cationic exchange reactions are partially re-exchanged for Cd cations. Using STEM-HAADF, we show that this leads to the formation of unique multiple dot-in-rod PbS/CdS heteronanostructures, with a photoluminescence quantum yield of 4555%. We argue that the formation of multiple dot-in-rods is related to the initial polycrystallinity of the PbS quantum rods, where each PbS crystallite transforms in a separate PbS/CdS dot-in-dot. Effective mass modeling indicates that electronic coupling between the different PbS conduction band states is feasible for the multiple dot-in-rod geometries obtained, while the hole states remain largely uncoupled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302489500015 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 41 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:96957 Serial 2226  
Permanent link to this record
 

 
Author Li, M.R.; Adem, U.; McMitchell, S.R.C.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; Schiffmann, F.; Cora, F.; Slater, B.; Burnett, T.L.; Cain, M.G.; Abakumov, A.M.; Van Tendeloo, G.; Thomas, M.F.; Rosseinsky, M.J.; Claridge, J.B.; doi  openurl
  Title A polar corundum oxide displaying weak ferromagnetism at room temperature Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 8 Pages 3737-3747  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K-this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000301161600027 Publication Date 2012-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 48 Open Access  
  Notes Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:97200 Serial 2658  
Permanent link to this record
 

 
Author Subban, C.V.; Ati, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Janot, R.; Tarascon, J.-M. doi  openurl
  Title Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates : LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-Ion batteries Type A1 Journal article
  Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 135 Issue 9 Pages 3653-3661  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li+ at an average potential of 3.6 V vs Li+/Li-0, slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li+/Li-0. Besides, these compounds can be easily made at temperatures near 200 degrees C via a synthesis process that enlists a new intermediate phase of composition M-3(SO4)(2)(OH)(2) (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000315936700056 Publication Date 2013-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 53 Open Access  
  Notes Approved Most recent IF: 13.858; 2013 IF: 11.444  
  Call Number UA @ lucian @ c:irua:108283 Serial 2708  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W.E.; Lebedev, O.I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.H.; Chaudret, B.; Fischer, R.A.; pdf  doi
openurl 
  Title Ruthenium nanoparticles inside porous (Zn40(bdC)(3)) by hydrogenolysis of adsorbed (Ru(cod)(cot)): a solid-state reference system for surfactant-stabilized ruthenium colloids Type A1 Journal article
  Year 2008 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 19 Pages 6119-6130  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000255620200018 Publication Date 2008-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 272 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:68851 Serial 2934  
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Calvaresi, M.; Bals, S.; Kooi, B.; Van Tendeloo, G.; Rudolf, P.; Zerbetto, F.; Prato, M. doi  openurl
  Title A simple road for the transformation of few-layer graphene into MWNTs Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 32 Pages 13310-13315  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the direct formation of multiwalled carbon nanotubes (MWNT) by ultrasonication of graphite in dimethylformamide (DMF) upon addition of ferrocene aldehyde (Fc-CHO). The tubular structures appear exclusively at the edges of graphene layers and contain Fe clusters. Pc in conjunction with benzyl aldehyde, or other Fc derivatives, does not induce formation of NT. Higher amounts of Fc-CHO added to the dispersion do not increase significantly MWNT formation. Increasing the temperature reduces the amount of formation of MWNTs and shows the key role of ultrasound-induced cavitation energy. It is concluded that Fc-CHO first reduces the concentration of radical reactive species that slice graphene into small moieties, localizes itself at the edges of graphene, templates the rolling up of a sheet to form a nanoscroll, where it remains trapped, and finally accepts and donates unpaired electron to the graphene edges and converts the less stable scroll into a MWNT. This new methodology matches the long held notion that CNTs are rolled up graphene layers. The proposed mechanism is general and will lead to control the production of carbon nanostructures by simple ultrasonication treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000307487200034 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 56 Open Access  
  Notes This work was supported by the University of Trieste, the Italian Ministry of Education MIUR (cofin Prot. 20085M27SS), the European Union through the ERC grant No. 246791 – COUNTATOMS, the grant agreement for an Integrated Infrastructure Initiative N. 262348 ESMI, and the “Graphene-based electronics” research program of the Foundation for Fundamental Research on Matter (FOM). Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:101109 Serial 3003  
Permanent link to this record
 

 
Author Gál, Z.A.; Rutt, O.J.; Smura, C.F.; Overton, T.P.; Barrier, N.; Clarke, S.J.; Hadermann, J. pdf  doi
openurl 
  Title Structural chemistry and metamagnetism of an homologous series of layered manganese oxysulfides Type A1 Journal article
  Year 2006 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 128 Issue 26 Pages 8530-8540  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000238590000040 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 39 Open Access  
  Notes Iap V-1 Approved Most recent IF: 13.858; 2006 IF: 7.696  
  Call Number UA @ lucian @ c:irua:60030 Serial 3225  
Permanent link to this record
 

 
Author Kneller, J.M.; Soto, R.J.; Surber, S.E.; Colomer, J.F.; Fonseca, A.; Nagy, J.B.; Van Tendeloo, G.; Pietrass, T. pdf  doi
openurl 
  Title TEM and laser-polarized 129Xe NMR characterization of oxidatively purified carbon nanotubes Type A1 Journal article
  Year 2000 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 122 Issue 43 Pages 10591-10597  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiwall carbon nanotubes are produced by decomposition of acetylene at 600 degreesC on metal catalysts supported on NaY zeolite. The support and the metal are eliminated by dissolving them in aqueous hydrofluoric acid (HF). Two methods were used to eliminate the pyrolitic carbon: oxidation in air at 500 degreesC and oxidation by potassium permanganate in acidic solution at 70 degreesC. The progress and efficacy of the purification methods are verified by TEM. The properties of the purified multiwalled carbon nanotubes are probed using C-13 and Xe-129 NMR spectroscopy under continuous-flow optical-pumping conditions. Xenon is shown to penetrate the interior of the nanotubes. A distribution of inner tube diameters gives rise to chemical shift dispersion. When the temperature is lowered, an increasing fraction of xenon resides inside the nanotubes and is not capable of exchanging with xenon in the interparticle space. In the case of the permanganate-oxidized sample, rapid xenon relaxation is attributed to interaction with residual MnO2 nanoparticles in the interior of the tubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000165205000011 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 53 Open Access  
  Notes Approved Most recent IF: 13.858; 2000 IF: 6.025  
  Call Number UA @ lucian @ c:irua:95741 Serial 3473  
Permanent link to this record
 

 
Author Hyett, G.; Barrier, N.; Clarke, S.J.; Hadermann, J. doi  openurl
  Title Topotactic oxidative and reductive control of the structures and properties of layered manganese oxychalcogenides Type A1 Journal article
  Year 2007 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 129 Issue 36 Pages 11192-11201  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000249372400055 Publication Date 2007-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 12 Open Access  
  Notes Approved Most recent IF: 13.858; 2007 IF: 7.885  
  Call Number UA @ lucian @ c:irua:65592 Serial 3680  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Adkin, J.J.; Hayward, M.A. doi  openurl
  Title Topotactic reduction as a route to new close-packed anion deficient perovskites: structure and magnetism of 4H-BaMnO2+x Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 30 Pages 10598-10604  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The anion-deficient perovskite 4H-BaMnO2+x has been obtained by a topotactic reduction, with LiH, of the hexagonal perovskite 4H-BaMnO3−x. The crystal structure of 4H-BaMnO2+x was solved using electron diffraction and X-ray powder diffraction and further refined using neutron powder diffraction (S.G. Pnma, a = 10.375(2) Å, b = 9.466(2) Å, c = 11.276(3) Å, at 373 K). The orthorhombic superstructure arises from the ordering of oxygen vacancies within a 4H (chch) stacking of close packed c-type BaO2.5 and h-type BaO1.5 layers. The ordering of the oxygen vacancies transforms the Mn2O9 units of face-sharing MnO6 octahedra into Mn2O7 (two corner-sharing tetrahedra) and Mn2O6 (two edge-sharing tetrahedra) groups. The Mn2O7 and Mn2O6 groups are linked by corner-sharing into a three-dimensional framework. The structures of the BaO2.5 and BaO1.5 layers are different from those observed previously in anion-deficient perovskites providing a new type of order pattern of oxygen atoms and vacancies in close packed structures. Magnetization measurements and neutron diffraction data reveal 4H-BaMnO2+x adopts an antiferromagnetically ordered state below TN ≈ 350 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000268644400056 Publication Date 2009-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 25 Open Access  
  Notes Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:77928 Serial 3681  
Permanent link to this record
 

 
Author Ati, M.; Sathiya, M.; Boulineau, S.; Reynaud, M.; Abakumov, A.; Rousse, G.; Melot, B.; Van Tendeloo, G.; Tarascon, J.-M. doi  openurl
  Title Understanding and promoting the rapid preparation of the triplite-phase of LiFeSO4F for use as a large-potential Fe cathode Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 134 Issue 44 Pages 18380-18387  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of new electrode materials, which are composed of Earth-abundant elements and that can be made via eco-efficient processes, is becoming absolutely necessary for reasons of sustainable production. The 3.9 V triplite-phase of LiFeSO4F, compared to the 3.6 V tavorite-phase, could satisfy this requirement provided the currently complex synthetic pathway can be simplified. Here, we present our work aiming at better understanding the reaction mechanism that govern its formation as a way to optimize its preparation. We first demonstrate, using complementary X-ray diffraction and transmission electron microscopy studies, that triplite-LiFeSO4F can nucleate from tavorite-LiFeSO4F via a reconstructive process whose kinetics are significantly influenced by moisture and particle morphology. Perhaps the most spectacular finding is that it is possible to prepare electrochemically active triplite-LiFeSO4F from anhydrous precursors using either reactive spark plasma sintering (SPS) synthesis in a mere 20 min at 320 degrees C or room temperature ball milling for 3 h. These new pathways appear to be strongly driven by the easy formation of a disordered phase with higher entropy, as both techniques trigger disorder via rapid annealing steps or defect creation. Although a huge number of phases adopts the tavorite structure-type, this new finding offers both a potential way to prepare new compositions in the triplite structure and a wealth of opportunities for the synthesis of new materials which could benefit many domains beyond energy storage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000310720900041 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 36 Open Access  
  Notes Approved Most recent IF: 13.858; 2012 IF: 10.677  
  Call Number UA @ lucian @ c:irua:105147 Serial 3802  
Permanent link to this record
 

 
Author McCalla, E.; Sougrati, M.T.; Rousse, G.; Berg, E.J.; Abakumov, A.; Recham, N.; Ramesha, K.; Sathiya, M.; Dominko, R.; Van Tendeloo, G.; Novák, P.; Tarascon, J.M.; doi  openurl
  Title Understanding the roles of anionic redox and oxygen release during electrochemical cycling of lithium-rich layered Li4FeSbO6 Type A1 Journal article
  Year 2015 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 137 Issue 137 Pages 4804-4814  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Li-rich oxides continue to be of immense interest as potential next generation Li-ion battery positive electrodes, and yet the role of oxygen during cycling is still poorly understood. Here, the complex electrochemical behavior of Li4FeSbO6 materials is studied thoroughly with a variety of methods. Herein, we show that oxygen release occurs at a distinct voltage plateau from the peroxo/superoxo formation making this material ideal for revealing new aspects of oxygen redox processes in Li-rich oxides. Moreover, we directly demonstrate the limited reversibility of the oxygenated species (O-2(n-); n = 1, 2, 3) for the first time. We also find that during charge to 4.2 V iron is oxidized from +3 to an unusual +4 state with the concomitant formation of oxygenated species. Upon further charge to 5.0 V, an oxygen release process associated with the reduction of iron +4 to +3 is present, indicative of the reductive coupling mechanism between oxygen and metals previously reported. Thus, in full state of charge, lithium removal is fully compensated by oxygen only, as the iron and antimony are both very close to their pristine states. Besides, this charging step results in complex phase transformations that are ultimately destructive to the crystallinity of the material. Such findings again demonstrate the vital importance of fully understanding the behavior of oxygen in such systems. The consequences of these new aspects of the electrochemical behavior of lithium-rich oxides are discussed in detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000353177100036 Publication Date 2015-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 86 Open Access  
  Notes Approved Most recent IF: 13.858; 2015 IF: 12.113  
  Call Number c:irua:126019 Serial 3805  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3493-3500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.  
  Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372477700034 Publication Date 2016-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 13.858 Times cited 57 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858  
  Call Number c:irua:131923 c:irua:131923 Serial 4018  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: