toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Biscop,; Lin,; Boxem,; Loenhout,; Backer,; Deben,; Dewilde,; Smits,; Bogaerts,
  Title Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers
  Volume 11 Issue 9 Pages 1287
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000489719000072 Publication Date 2019-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 9 Open Access
  Notes the Research Foundation Flanders, 12S9218N – ; Universiteit Antwerpen, – ; Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:162097 Serial 5360
Permanent link to this record
 

 
Author Van Loenhout, J.; Flieswasser, T.; Freire Boullosa, L.; De Waele, J.; Van Audenaerde, J.; Marcq, E.; Jacobs, J.; Lin, A.; Lion, E.; Dewitte, H.; Peeters, M.; Dewilde, S.; Lardon, F.; Bogaerts, A.; Deben, C.; Smits, E.
  Title Cold Atmospheric Plasma-Treated PBS Eliminates Immunosuppressive Pancreatic Stellate Cells and Induces Immunogenic Cell Death of Pancreatic Cancer Cells Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers
  Volume 11 Issue 10 Pages 1597
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a low response to treatment and a five-year survival rate below 5%. The ineffectiveness of treatment is partly because of an immunosuppressive tumor microenvironment, which comprises tumor-supportive pancreatic stellate cells (PSCs). Therefore, new therapeutic strategies are needed to tackle both the immunosuppressive PSC and pancreatic cancer cells (PCCs). Recently, physical cold atmospheric plasma consisting of reactive oxygen and nitrogen species has emerged as a novel treatment option for cancer. In this study, we investigated the cytotoxicity of plasma-treated phosphate-buffered saline (pPBS) using three PSC lines and four PCC lines and examined the immunogenicity of the induced cell death. We observed a decrease in the viability of PSC and PCC after pPBS treatment, with a higher efficacy in the latter. Two PCC lines expressed and released damage-associated molecular patterns characteristic of the induction of immunogenic cell death (ICD). In addition, pPBS-treated PCC were highly phagocytosed by dendritic cells (DCs), resulting in the maturation of DC. This indicates the high potential of pPBS to trigger ICD. In contrast, pPBS induced no ICD in PSC. In general, pPBS treatment of PCCs and PSCs created a more immunostimulatory secretion profile (higher TNF-α and IFN-γ, lower TGF-β) in coculture with DC. Altogether, these data show that plasma treatment via pPBS has the potential to induce ICD in PCCs and to reduce the immunosuppressive tumor microenvironment created by PSCs. Therefore, these data provide a strong experimental basis for further in vivo validation, which might potentially open the way for more successful combination strategies with immunotherapy for PDAC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000498826000194 Publication Date 2019-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 6 Open Access
  Notes Universiteit Antwerpen, NA ; Fonds Wetenschappelijk Onderzoek, 11E7719N 1121016N 1S32316N 12S9218N 12E3916N ; Agentschap Innoveren en Ondernemen, 141433 ; Kom op tegen Kanker, NA ; Stichting Tegen Kanker, STK2014-155 ; The authors express their gratitude to Christophe Hermans, Céline Merlin, Hilde Lambrechts, and Hans de Reu for technical assistance; and to VITO for the use of the MSD reader (Mol, Belgium). Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:163328 Serial 5436
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bengtson, C.; Razzokov, J.; Smits, E.; Bogaerts, A.
  Title Modifying the Tumour Microenvironment: Challenges and Future Perspectives for Anticancer Plasma Treatments Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers
  Volume 11 Issue 12 Pages 1920
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000507382100097 Publication Date 2019-12-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes Figure 4 was created using resources from the ‘Mind the Graph’ platform, free trial version. Spheroid image obtained in collaboration with Sander Bekeschus (INP Greifswald, Germany); organoid image kindly provided by Christophe Deben (Center for Oncological Research, University of Antwerp, Belgium). Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:164892 Serial 5437
Permanent link to this record
 

 
Author Daems, N.; De Mot, B.; Choukroun, D.; Van Daele, K.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T.
  Title Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzer Type A1 Journal article
  Year 2019 Publication Sustainable energy & fuels Abbreviated Journal
  Volume 4 Issue 4 Pages 1296-1311
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract Nickel-containing N-doped carbons were synthesized for the electrochemical reduction of CO2 to CO, which is a promising approach to reduce the atmospheric CO2 levels and its negative impact on the environment. Unfortunately, poor performance (activity, selectivity and/or stability) is still a major hurdle for the economical implementation of this type of materials. The electrocatalysts were prepared through an easily up-scalable and easily tunable method based on the pyrolysis of Ni-containing N-doped carbons. Ni–N–AC–B1 synthesized with a high relative amount of nitrogen and nickel with respect to carbon, was identified as the most promising candidate for this reaction based on its partial CO current density (4.2 mA cm−2), its overpotential (0.57 V) and its faradaic efficiency to CO (>99%). This results in unprecedented values for the current density per g active sites (690 A g−1 active sites). Combined with its decent stability and its high performance in an actual electrolyzer setup, this makes it a promising candidate for the electrochemical reduction of CO2 to CO on a larger scale. Finally, the evaluation of this kind of material in a flow-cell setup has been limited and to the best of our knowledge never included an evaluation of several crucial parameters (e.g. electrolyte type, anode composition and membrane type) and is an essential investigation in the move towards up-scaling and ultimately industrial application of this technique. This study resulted in an optimal cell configuration, consisting of Pt as an anode, Fumatech® as the membrane and 1 M KHCO3 and 2 M KOH as catholyte and anolyte, respectively. In conclusion, this research offers a unique combination of electrocatalyst development and reactor optimization.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000518690900030 Publication Date 2019-12-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 14 Open Access OpenAccess
  Notes ; The authors acknowledge sponsoring from the research foundation of Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). J. Hereijgers was supported through a postdoctoral fellowship (28761) of the Research Foundation Flanders (FWO). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-.nanced by the European Fund for Regional Development in the frame of subsidiary contract nr 2S03-019. This work was further performed in the framework of the Catalisti cluster SBO project CO2PERATE (“All renewable CCU based on formic acid integrated in an industrial microgrid”), with the.nancial support of VLAIO (Flemish Agency for Innovation and Entrepreneurship). This project.nally received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). We thank Karen Leyssens for helping with the N<INF>2</INF> physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. ; sygma Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:165482 Serial 6311
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
  Title Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals Type A1 Journal article
  Year 2020 Publication Angewandte Chemie (International ed. Print) Abbreviated Journal Angew. Chem.
  Volume 132 Issue 132 Pages 953-960
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near‐field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single‐crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000505279500063 Publication Date 2020-01-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0044-8249 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi),Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Strucre Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding from the National Science Foundation (award number: 1602476), Research Corporation for Scietific Advancement (2017 Frontiers in Research Excellence and Discovery Award), and the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO).; sygma Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:166581 Serial 6336
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C.
  Title Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
  Year 2014 Publication Chemical Reviews Abbreviated Journal Chem. Rev.
  Volume 114 Issue 8 Pages 4041-4062
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2014-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2665 ISBN Additional Links
  Impact Factor (up) Times cited Open Access
  Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no
  Call Number PLASMANT @ plasmant @ Serial 6337
Permanent link to this record
 

 
Author Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J.
  Title Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal Journal of Solid State Chemistry
  Volume 273 Issue Pages 175-185
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000466261100026 Publication Date 2019-03-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no
  Call Number EMAT @ emat @c:irua:166445 Serial 6346
Permanent link to this record
 

 
Author Lumbeeck, G.; Delvaux, A.; Idrissi, H.; Proost, J.; Schryvers, D.
  Title Analysis of internal stress build-up during deposition of nanocrystalline Ni thin films using transmission electron microscopy Type A1 Journal article
  Year 2020 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
  Volume 707 Issue Pages 138076
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ni thin films sputter-deposited at room temperature with varying Ar pressures were investigated with automated crystal orientation mapping in a transmission electron microscope to uncover the mechanisms controlling the internal stress build-up recorded in-situ during deposition. Large grains were found to induce behaviour similar to a stress-free nucleation layer. The measurements of grain size in most of the Ni thin films are in agreement with the island coalescence model. Low internal stress was observed at low Ar pressure and was explained by the presence of large grains. Relaxation of high internal stress was also noticed at the highest Ar pressure, which was attributed to a decrease of Σ3 twin boundary density due to a low deposition rate. The results provide insightful information to better understand the relationship between structural boundaries and the evolution of internal stress upon deposition of thin films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000539312200011 Publication Date 2020-05-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes This work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Thin film deposition has been realised as part of the WallonHY project, funded by the Public Service of Wallonia – Department of Energy and Sustainable Building. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:169708 Serial 6370
Permanent link to this record
 

 
Author Maes, D.; Vancauteren, M.; Van Passel, S.
  Title Investigating market power in the Belgian pork production chain Type A1 Journal Article
  Year 2019 Publication Review of Agricultural, Food and Environmental Studies Abbreviated Journal Rev Agric Food Environ Stud
  Volume 100 Issue 1-4 Pages 93-117
  Keywords A1 Journal Article; Engineering Management (ENM) ;
  Abstract Belgian pork production has faced stagnating prices for decades. It remains unclear whether excessive market power from slaughterhouses or meat retailers has played a role in this trend. While market power studies can reveal some of the market dynamics in this setting, this type of research has not yet been applied to the Belgian pork market. The present paper investigates oligopolies and oligopsonies in the pork production sector. We build a new model that focuses on market power dynamics in the market for live pigs and distinguishes horizontal and vertical market power parameters, both for pig farmers and for slaughterhouses. The results follow from an empirical application using unique slaughterhouse data for 2001–2015. The results indicate that the farmers benefit from a significant power advantage in the live pig market, when very modest price demands are taken as a reference. The final market price of live pigs approaches the price requested by the farmers. On the other hand, the measured vertical market power also suggests that a pig farmer does not receive the (modest) full-wage-based salary. The market power of the slaughterhouses is also limited. Market power as a result of collusion—that is, horizontal market power—is present, but is not strong. However, there are significant differences between the slaughterhouses in terms of mark-up on the input prices. These differences reflect differences in company strategy, and this diversity further reduces the possibility to create sector-wide collusive behaviour.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-11-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2425-6870 ISBN Additional Links
  Impact Factor (up) Times cited Open Access
  Notes H2020 Food, 635577 ; TUL Impuls (transnational university Limburg) Interuniversity fund; Approved no
  Call Number ENM @ enm @ Serial 6377
Permanent link to this record
 

 
Author Sebhatu, K.T.; Gezahegn, T.W.; Berhanu, T.; Maertens, M.; Van Passel, S.; D’Haese, M.
  Title Conflict, fraud, and distrust in Ethiopian agricultural cooperatives Type A1 Journal Article
  Year 2020 Publication Journal of Co-operative Organization and Management Abbreviated Journal Journal of Co-operative Organization and Management
  Volume 8 Issue 1 Pages 100106
  Keywords A1 Journal Article; Agricultural cooperatives; Cooperative size; Conflict; Fraud; Distrust; Ethiopia; Engineering Management (ENM) ;
  Abstract Agricultural cooperatives are seen as an efficient way for smallholder farmers to create bargaining power in order to achieve poverty reduction and food security. However, the success of these cooperatives depends on their ability to maintain their social capital, which is at the core of collective action. A few studies have addressed issues of member participation, commitment, and trust, yet less is known about rural cooperatives in developing countries as a social organization. It is also unclear whether a relationship exists between cooperative size and the incidence of conflict, fraud, and distrust. Using unique data collected from 511 agricultural cooperatives in 12 districts of Tigray region in northern Ethiopia, this paper examines the effects of cooperative size on conflict, fraud, and distrust. We used instrumental variables (IV) probit estimation techniques, accounting for endogeneity of membership size, to confirm that cooperative size does affect the occurrence of conflict, fraud, and trust. The results also indicate that other influencing factors include: cooperative age, number of employees, payment of dividends based on transaction volume, and heterogeneity of member goals.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000536594400001 Publication Date 2020-04-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2213297X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes The authors would like to thank the office of the twelve districts, facilitators and Cooperative Promotion Agency staff for their collaboration in facilitating the field survey, most of all the chair- and vice-chairpersons of the study Agricultural Cooperatives who had to respond to all our questions with seriousness and patience. Approved Most recent IF: NA
  Call Number ENM @ enm @c:irua:170073 Serial 6379
Permanent link to this record
 

 
Author Sharafi, L.; Zarafshani, K.; Keshavarz, M.; Azadi, H.; Van Passel, S.
  Title Drought risk assessment: Towards drought early warning system and sustainable environment in western Iran Type A1 Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators
  Volume 114 Issue Pages 106276
  Keywords A1 Journal Article; Drought; Early warning system; Risk management; Vulnerability; Environmental risk; Resilient farming; Engineering Management (ENM) ;
  Abstract Prolonged drought is considered as a creeping natural hazard, which has created a financial burden and unsustainable environment in Iran. Moreover, the effect of drought phenomenon in rural areas is more extensive, causing significant challenges to the rural economy in general and agricultural production in particular. A common strategy to manage drought is based on crisis management (ex-ante). However, for effective drought management, risk management seems to be more in line with drought early warning systems. This quantitative study used risk assessment, which is the function of two elements such as hazard (SPI and SDI indices) and vulnerability (exposure, sensitivity, and adaptive capacity). This study aims to build the foundations for drought early warning systems in limited resource areas such as Kermanshah Township in the northwestern part of Iran. The population of this study comprised of wheat farmers in which 293 farmers were selected using multistage cluster sampling method. In the next step, the drought risk map for Kermanshah Township was developed, which revealed that the majority of villages are at intense environmental risk. The result of this study has implications for drought management practitioners. For example, the results can aid policymakers in the design of an early warning system in order to reduce risk and thus empower farmers toward resilient farming.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000559966500006 Publication Date 2020-04-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1470160X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number ENM @ enm @c:irua:170071 Serial 6380
Permanent link to this record
 

 
Author Fitawok, M.B.; Derudder, B.; Minale, A.S.; Van Passel, S.; Adgo, E.; Nyssen, J.
  Title Modeling the Impact of Urbanization on Land-Use Change in Bahir Dar City, Ethiopia: An Integrated Cellular Automata–Markov Chain Approach Type A1 Journal Article
  Year 2020 Publication Land Abbreviated Journal Land
  Volume 9 Issue 4 Pages 115
  Keywords A1 Journal Article; analytical hierarchy process; cellular automata; land-use change; Markov chain; urbanization; Engineering Management (ENM) ;
  Abstract The fast-paced urbanization of recent decades entails that many regions are facing seemingly uncontrolled land-use changes (LUCs) that go hand in hand with a range of environmental and socio-economic challenges. In this paper, we use an integrated cellular automata–Markov chain (CA–MC) model to analyze and predict the urban expansion of and its impact on LUC in the city of Bahir Dar, Ethiopia. To this end, the research marshals high-resolution Landsat images of 1991, 2002, 2011, and 2018. An analytical hierarchy process (AHP) method is then used to identify the biophysical and socioeconomic factors underlying the expansion in the research area. It is shown that, during the period of study, built-up areas are rapidly expanding in the face of an overall decline of the farmland and vegetation cover. Drawing on a model calibration for 2018, the research predicts the possible geographies of LUC in the Bahir Dar area for 2025, 2034, and 2045. It is predicted that the conversions of other land-use types into built-up areas will persist in the southern, southwestern, and northeastern areas of the sprawling city, which can mainly be traced back to the uneven geographies of road accessibility, proximity to the city center, and slope variables. We reflect on how our findings can be used to facilitate sustainable urban development and land-use policies in the Bahir Dar area.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000533901100026 Publication Date 2020-04-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2073-445X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes The authors would like to thank the VLIR-UOS project for funding this research through Bahir Dar University—Institutional University Cooperation (BDU-IUC) program. Approved Most recent IF: NA
  Call Number ENM @ enm @c:irua:169600 Serial 6381
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A.
  Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
  Year 2020 Publication Biomolecules Abbreviated Journal Biomolecules
  Volume 10 Issue 8 Pages 1114
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000578895600001 Publication Date 2020-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research
  Volume 2 Issue 2 Pages 023404
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000603642700008 Publication Date 2020-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 58 Open Access OpenAccess
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bogaerts, A.
  Title Plasma in Cancer Treatment Type Editorial
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 9 Pages 2617
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cancer is the second leading cause of death worldwide, and while science has advanced significantly to improve the treatment outcome and quality of life in cancer patients, there are still many issues with the current therapies, such as toxicity and the development of resistance to treatment [...]
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000581447500001 Publication Date 2020-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:172460 Serial 6413
Permanent link to this record
 

 
Author Verloy, R.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
  Title Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells Type A1 Journal article
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 10 Pages 2782
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000584150700001 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes Server Medical Art templates were used for creating figures. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:172454 Serial 6418
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; O'Leary, C.M.; Yang, H.; Nellist, P.D.
  Title Efficient Phase Contrast Imaging via Electron Ptychography, a Tutorial Type A1 Journal article
  Year 2019 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 25 Issue S2 Pages 2684-2685
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-08-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276 ISBN Additional Links UA library record
  Impact Factor (up) Times cited Open Access
  Notes Approved no
  Call Number EMAT @ emat @c:irua:172444 Serial 6424
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K.
  Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
  Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.
  Volume Issue Pages anse.202000012
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2020-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2629-2742 ISBN Additional Links UA library record
  Impact Factor (up) Times cited Open Access
  Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA
  Call Number AXES @ axes @c:irua:173031 Serial 6427
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A.
  Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
  Year 2020 Publication Cells Abbreviated Journal Cells
  Volume 9 Issue 10 Pages 2330
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000584186700001 Publication Date 2020-10-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 2 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429
Permanent link to this record
 

 
Author Lin, A.; Stapelmann, K.; Bogaerts, A.
  Title Advances in Plasma Oncology toward Clinical Translation Type Editorial
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 11 Pages 3283
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract This Special Issue on “Advances in Plasma Oncology Toward Clinical Translation” aims to bring together cutting-edge research papers within the field in the context of clinical translation and application [...]
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000592876800001 Publication Date 2020-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:173858 Serial 6434
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M.
  Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
  Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
  Volume 2 Issue 9 Pages 1246-1250
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000571390700022 Publication Date 2020-09-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 9 Open Access OpenAccess
  Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:171980 Serial 6439
Permanent link to this record
 

 
Author Clemen, R.; Heirman, P.; Lin, A.; Bogaerts, A.; Bekeschus, S.
  Title Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells Type A1 Journal article
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 12 Pages 3575
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000601901900001 Publication Date 2020-11-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access
  Notes This work was funded by the German Federal Ministry of Education and Research (BMBF), grant numbers 03Z22DN11 and 03Z22Di1; The authors acknowledge the technical assistance of Eric Freund, Julia Berner, Sanjeev Kumar Sagwal, Christina Wolff, Felix Niessner, Walison Brito, and Lea Miebach. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:173863 Serial 6442
Permanent link to this record
 

 
Author Kleinhans, K.; Hallemans, M.; Huysveld, S.; Thomassen, G.; Ragaert, K.; Van Geem, K.M.; Roosen, M.; Mys, N.; Dewulf, J.; De Meester, S.
  Title Development and application of a predictive modelling approach for household packaging waste flows in sorting facilities Type A1 Journal Article
  Year 2021 Publication Waste Management Abbreviated Journal Waste Management
  Volume 120 Issue Pages 290-302
  Keywords A1 Journal Article; Engineering Management (ENM) ;
  Abstract Household packaging waste sorting facilities consist of complex networks of processes to separate diverse waste streams. These facilities are a key first step to re-enter materials into the recycling chain. However, so far there are no general methods to predict the performance of such sorting facilities, i.e.

how efficiently the heterogeneous packaging waste is sorted into fractions with value for further recycling. In this paper, a model of the material flow in a sorting facility is presented, which allows changing the incoming waste composition, split factors on the sorting units as well as the setup of the sorting facility. The performance of the sorting facility is judged based on the purity of the output material (grade) and the recovery of the input material. A validation of the model was performed via a case study on Belgian post-consumer packaging waste with a selection of typical waste items that can be found in this stream. Moreover, the model was used to predict the possible sorting qualities of future Belgian postconsumer packaging waste after an extension of the allowed waste packaging items in the waste stream. Finally, a sensitivity analysis was performed on the split factors, which are a key data source in the model. Overall, the developed model is flexible and able to predict the performance of packaging waste sorting facilities as well as support waste management and design for recycling decisions, including future

design of packaging, to ensure proper sorting and separation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2020-12-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0956053X ISBN Additional Links
  Impact Factor (up) Times cited Open Access Not_Open_Access
  Notes We would like to thank Indaver (https://www.indaver.com/been/home/), especially Erik Huybrechts, Eric Goddaert, Eline Meyvis and Erik Moerman, for their great support on this research. Furthermore, we would like to acknowledge the help of Colruyt (https://www.colruyt.be/) and CEFLEX (https://ceflex.eu/) for the pre-studies for this research. Moreover, we would like to show our appreciation for the financial support by the Catalisti-ICON project (HBC.2018.0262) MATTER (Mechanical and Thermochemical Recycling of mixed plastic waste) funded by Flanders Innovation & Entrepreneurship (VLAIO). We also thank the Interreg 2 Seas program PlastiCity that is co-funded by the European Regional Development Fund under subsidy contract No. 2S05-021 and the province of East-Flanders for funding this research. Approved Most recent IF: NA
  Call Number ENM @ enm @ Serial 6667
Permanent link to this record
 

 
Author Marinov, D.; de Marneffe, J.-F.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; El Kazzi, S.; Nalin Mehta, A.; Wyndaele, P.-J.; Heyne, M.H.; Zhang, J.; With, P.C.; Banerjee, S.; Neyts, E.C.; Asselberghs, I.; Lin, D.; De Gendt, S.
  Title Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal npj 2D Mater Appl
  Volume 5 Issue 1 Pages 17
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H<sub>2</sub>plasma to clean the surface of monolayer WS<sub>2</sub>grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS<sub>2</sub>in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H<sub>2</sub>S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS<sub>2</sub>devices can be maintained by the combination of H<sub>2</sub>plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H<sub>2</sub>and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000613258900001 Publication Date 2021-01-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 752164. Ekaterina Voronina, Yuri Mankelevitch, and Tatyana Rakhimova are thankful to the Russian Science Foundation (RSF) for financial support (Grant No. 16-12-10361). This study was carried out using the equipment of the shared research facilities of high-performance computing resources at Lomonosov Moscow State University and the computational resources and services of the HPC core facility CalcUA of the University of Antwerp, and VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government. Patrick With gratefully acknowledges imec’s CTO office for financial support during his stay at imec. The authors thank Mr. Surajit Sutar (imec) for his help during sample electrical characterization, and Patrick Verdonck for lab processing. Jean-François de Marneffe thank Prof. Simone Napolitano from the Free University of Brussels for useful discussions on irreversibly adsorbed polymer layers, and Cédric Huyghebaert (imec) for his continuous support in the framework of the Graphene FET Flagship core project. All authors acknowledge the support of imec’s pilot line and materials characterization and analysis (MCA) group, namely Jonathan Ludwig, Stefanie Sergeant, Thomas Nuytten, Olivier Richard, and Thierry Conard. Finally, Daniil Marinov thank Mikhail Krishtab (imec/KU Leuven) for his help in selecting the optimal plasma etch system for this work. Part of this project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 649953. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:175871 Serial 6671
Permanent link to this record
 

 
Author Kamminga, M.E.; Batuk, M.; Hadermann, J.; Clarke, S.J.
  Title Misfit phase (BiSe)1.10NbSe2 as the origin of superconductivity in niobium-doped bismuth selenide Type A1 Journal article
  Year 2020 Publication Communications Materials Abbreviated Journal Commun Mater
  Volume 1 Issue 1 Pages 82
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Topological superconductivity is of great contemporary interest and has been proposed in doped Bi<sub>2</sub>Se<sub>3</sub>, in which electron-donating atoms such as Cu, Sr or Nb have been intercalated into the Bi<sub>2</sub>Se<sub>3</sub>structure. For Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>, with<italic>T</italic><sub>c</sub> ~ 3 K, it is assumed in the literature that Nb is inserted in the van der Waals gap. However, in this work an alternative origin for the superconductivity in Nb-doped Bi<sub>2</sub>Se<sub>3</sub>is established. In contrast to previous reports, it is deduced that Nb intercalation in Bi<sub>2</sub>Se<sub>3</sub>does not take place. Instead, the superconducting behaviour in samples of nominal composition Nb<sub><italic>x</italic></sub>Bi<sub>2</sub>Se<sub>3</sub>results from the (BiSe)<sub>1.10</sub>NbSe<sub>2</sub>misfit phase that is present in the sample as an impurity phase for small<italic>x</italic>(0.01 ≤ <italic>x</italic> ≤ 0.10) and as a main phase for large<italic>x</italic>(<italic>x</italic> = 0.50). The structure of this misfit phase is studied in detail using a combination of X-ray diffraction and transmission electron microscopy techniques.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000610580800001 Publication Date 2020-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2662-4443 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes M.E.K. was supported by the Netherlands Organisation for Scientific Research (NWO, grant code 019.181EN.003). We also acknowledge support from the EPSRC (EP/ R042594/1, EP/P018874/1, EP/M020517/1) and the Leverhulme Trust (RPG-2018-377). J.H. acknowledges support from the University of Antwerp through BOF Grant No. 31445. We thank DLS Ltd for beam time (EE18786), Dr Clare Murray for assistance on I11 and Dr Jon Wade from the Department of Earth Sciences, University of Oxford for performing the SEM measurements. We also thank Dr Michal Dušak and Dr Václav Petřiček for their advice concerning the use of the Jana2006 software. Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:176116 Serial 6705
Permanent link to this record
 

 
Author Lin, A.; Razzokov, J.; Verswyvel, H.; Privat-Maldonado, A.; De Backer, J.; Yusupov, M.; Cardenas De La Hoz, E.; Ponsaerts, P.; Smits, E.; Bogaerts, A.
  Title Oxidation of Innate Immune Checkpoint CD47 on Cancer Cells with Non-Thermal Plasma Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers
  Volume 13 Issue 3 Pages 579
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory for Experimental Hematology (LEH); Center for Oncological Research (CORE)
  Abstract Non-thermal plasma (NTP) therapy has been emerging as a promising cancer treatment strategy, and recently, its ability to locally induce immunogenic cancer cell death is being unraveled. We hypothesized that the chemical species produced by NTP reduce immunosuppressive surface proteins and checkpoints that are overexpressed on cancerous cells. Here, 3D in vitro tumor models, an in vivo mouse model, and molecular dynamics simulations are used to investigate the effect of NTP on CD47, a key innate immune checkpoint. CD47 is immediately modulated after NTP treatment and simulations reveal the potential oxidized salt-bridges responsible for conformational changes. Umbrella sampling simulations of CD47 with its receptor, signal-regulatory protein alpha (SIRPα), demonstrate that the induced-conformational changes reduce its binding affinity. Taken together, this work provides new insight into fundamental, chemical NTP-cancer cell interaction mechanisms and a previously overlooked advantage of present NTP cancer therapy: reducing immunosuppressive signals on the surface of cancer cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000614960600001 Publication Date 2021-02-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes We thank Erik Fransen (University of Antwerp; Antwerp, Belgium) for his help and guidance on the statistical analysis. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:176455 Serial 6709
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M.
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal
  Volume 33 Issue 1 Pages 102-116
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000610984700009 Publication Date 2020-12-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited 10 Open Access OpenAccess
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:176587 Serial 6732
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A.
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels
  Volume 5 Issue 6 Pages 1786-1800
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000631643300013 Publication Date 2021-02-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
  Title Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers
  Volume 13 Issue 8 Pages 1780
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000644001200001 Publication Date 2021-04-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746
Permanent link to this record
 

 
Author Logie, E.; Chirumamilla, C.S.; Perez-Novo, C.; Shaw, P.; Declerck, K.; Palagani, A.; Rangarajan, S.; Cuypers, B.; De Neuter, N.; Mobashar Hussain Urf Turabe, F.; Kumar Verma, N.; Bogaerts, A.; Laukens, K.; Offner, F.; Van Vlierberghe, P.; Van Ostade, X.; Berghe, W.V.
  Title Covalent Cysteine Targeting of Bruton’s Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers
  Volume 13 Issue 7 Pages 1618
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells’ uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA’s promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000638328000001 Publication Date 2021-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (up) Times cited Open Access OpenAccess
  Notes The authors thank Eva Lion, Head of Tumor Immunology Group of the Laboratory of Experimental Hematology (University of Antwerp), for kindly providing GC‐resistant U266 cells. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:177781 Serial 6751
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: