toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yasui, Y.; Lahabi, K.; Fernández Becerra, V.; Fermin, R.; Anwar, M.S.; Yonezawa, S.; Terashima, T.; Milošević, M.V.; Aarts, J.; Maeno, Y. url  doi
openurl 
  Title Spontaneous emergence of Josephson junctions in homogeneous rings of single-crystal Sr₂RuO₄ Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal  
  Volume 5 Issue 1 Pages 21-28  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The chiral p-wave order parameter in Sr2RuO4 would make it a special case amongst the unconventional superconductors. A consequence of this symmetry is the possible existence of superconducting domains of opposite chirality. At the boundary of such domains, the locally suppressed condensate can produce an intrinsic Josephson junction. Here, we provide evidence of such junctions using mesoscopic rings, structured from Sr2RuO4 single crystals. Our order parameter simulations predict such rings to host stable domain walls across their arms. This is verified with transport experiments on loops, with a sharp transition at 1.5 K, which show distinct critical current oscillations with periodicity corresponding to the flux quantum. In contrast, loops with broadened transitions at around 3 K are void of such junctions and show standard Little-Parks oscillations. Our analysis demonstrates the junctions are of intrinsic origin and makes a compelling case for the existence of superconducting domains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525721000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 10 Open Access  
  Notes ; The authors would like to thank S. Goswami, A. Singh, M. Kupryianov, S. Bakurskiy, J. Jobst, T. Nakamura, K. Adachi, Y. Liu, and Y. Asano for valuable discussions and comments, and F. Hubler, Y. Nakamura, and Y. Yamaoka for their technical contribution. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Topological Materials Science” (KAKENHI Grant Nos. JP15H05852, JP15K21717, JP15H05851), JSPS-EPSRC Core-to-Core program (A. Advanced Research Network), JSPS research fellow (KAKENHI Grant No. JP16J10404), Grant-in-Aid JSPS KAKENHI JP26287078 and JP17H04848, and the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. V.F.B. acknowledges support from the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168553 Serial 6613  
Permanent link to this record
 

 
Author Benito Llorens, J.; Embon, L.; Correa, A.; Gonzalez, J.D.; Herrera, E.; Guillamon, I.; Luccas, R.F.; Azpeitia, J.; Mompean, F.J.; Garcia-Hernandez, M.; Munuera, C.; Aragon Sanchez, J.; Fasano, Y.; Milošević, M.V.; Suderow, H.; Anahory, Y. url  doi
openurl 
  Title Observation of a gel of quantum vortices in a superconductor at very low magnetic fields Type A1 Journal article
  Year 2020 Publication Physical review research Abbreviated Journal  
  Volume 2 Issue 1 Pages 013329  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A gel consists of a network of particles or molecules formed for example using the sol-gel process, by which a solution transforms into a porous solid. Particles or molecules in a gel are mainly organized on a scaffold that makes up a porous system. Quantized vortices in type-II superconductors mostly form spatially homogeneous ordered or amorphous solids. Here we present high-resolution imaging of the vortex lattice displaying dense vortex clusters separated by sparse or entirely vortex-free regions in beta-Bi2Pd superconductor. We find that the intervortex distance diverges upon decreasing the magnetic field and that vortex lattice images follow a multifractal behavior. These properties, characteristic of gels, establish the presence of a novel vortex distribution, distinctly different from the well-studied disordered and glassy phases observed in high-temperature and conventional superconductors. The observed behavior is caused by a scaffold of one-dimensional structural defects with enhanced stress close to the defects. The vortex gel might often occur in type-II superconductors at low magnetic fields. Such vortex distributions should allow to considerably simplify control over vortex positions and manipulation of quantum vortex states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000602698100008 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 14 Open Access  
  Notes ; We acknowledge support, discussions and critical reading of the manuscript from Eli Zeldov, who also devised and setup the SOT system. We also acknowledge critical reading and suggestions of Vladimir Kogan and Alexander Buzdin. Work performed in Spain was supported by the MINECO (FIS2017-84330-R, MAT2017-87134-C2-2-R, RYC-2014-16626 and RYC-2014-15093) and by the Region of Madrid through programs NANOFRONTMAG-CM (S2013/MIT-2850) and MAD2D-CM (S2013/ MIT-3007). The SEGAINVEX at UAM is also acknowledged as well as PEOPLE, Graphene Flagship, NMP programs of EU (Grant Agreements FP7-PEOPLE-2013-CIG 618321, 604391 and AMPHIBIAN H2020-NMBP-03-2016 NMP3-SL 2012-310516). Work in Israel was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802952). Y.F. acknowledges the support of grant PICT 2017-2182 from the ANPCyT. R.F.L. acknowledges the support of grant PICT 2017-2898 from the ANPCyT. E.H. acknowledges support of Departamento Administrativo de Ciencia, Tecnologia e Innovacion, COLCIENCIAS (Colombia) Programa de estancias Postdoctorales convocatoria 784-2017 and the Cluster de investigacin en ciencias y tecnologas convergentes de la Universidad Central (Colombia). I.G. was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 679080). M.V.M. acknowledges support from Research FoundationFlanders (FWO). The international collaboration on this work was fostered by the EU-COST Action CA16218 Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies (NANOCOHYBRI). J.D.G. and M.V.M. gratefully acknowledge support from the Research Fund (FONCIENCIAS) of Universidad del Magdalena. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:175138 Serial 6694  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A. url  doi
openurl 
  Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2021 Publication Physical review letters Abbreviated Journal  
  Volume 127 Issue 10 Pages 106801  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692200800020 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181599 Serial 6896  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N. url  doi
openurl 
  Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 2 Pages 024004-24008  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171649400004 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204404 Serial 9141  
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E. pdf  doi
openurl 
  Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type A1 Journal article
  Year 2024 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 46 Issue Pages 104169-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206950300001 Publication Date 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205977 Serial 9150  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Floquet engineering of axion and high-Chern number phases in a topological insulator under illumination Type A1 Journal article
  Year 2024 Publication SciPost Physics Core Abbreviated Journal  
  Volume 7 Issue 7 Pages 024-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum anomalous Hall, high-Chern number, and axion phases in topological insulators are characterized by its Chern invariant C (respectively, C = 1, integer C > 1, and C = 0 with half-quantized Hall conductance of opposite signs on top and bottom surfaces). They are of recent interest because of novel fundamental physics and prospective applications, but identifying and controlling these phases has been challenging in practice. Here we show that these states can be created and switched between in thin films of Bi2Se3 by Floquet engineering, using irradiation by circularly polarized light. We present the calculated phase diagrams of encountered topological phases in Bi2Se3, as a function of wavelength and amplitude of light, as well as sample thickness, after properly taking into account the penetration depth of light and the variation of the gap in the surface states. These findings open pathways towards energy-efficient optoelectronics, advanced sensing, quantum information processing and metrology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001217885300001 Publication Date 2024-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205972 Serial 9151  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title Goodenough-Kanamori-Anderson high-temperature ferromagnetism in tetragonal transition-metal xenes Type A1 Journal article
  Year 2024 Publication 2D materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 035013-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Seminal Goodenough-Kanamori-Anderson (GKA) rules provide an inceptive understanding of the superexchange interaction of two magnetic metal ions bridged with an anion, and suggest fostered ferromagnetic interaction for orthogonal bridging bonds. However, there are no examples of two-dimensional (2D) materials with structure that optimizes the GKA arguments towards enhanced ferromagnetism and its critical temperature. Here we reveal that an ideally planar GKA ferromagnetism is indeed stable in selected tetragonal transition-metal xenes (tTMXs), with Curie temperature above 300 K found in CrC and MnC. We provide the general orbitally-resolved analysis of magnetic interactions that supports the claims and sheds light at the mechanisms dominating the magnetic exchange process in these structures. Furthermore, we propose the set of three GKA-like rules that will guarantee room temperature ferromagetnism. With recent advent of epitaxially-grown tetragonal 2D materials, our findings earmark tTMXs for facilitated spintronic and magnonic applications, or as a desirable magnetic constituent of functional 2D heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208053200001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205464 Serial 9153  
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094507-94511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199651500001 Publication Date 2024-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205491 Serial 9158  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tailoring weak and metallic phases in a strong topological insulator by strain and disorder : conductance fluctuations signatures Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 4 Pages 045129-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport measurements are readily used to probe different phases in disordered topological insulators (TIs), where determining topological invariants explicitly is challenging. On that note, universal conductance fluctuations (UCF) theory asserts the conductance G for an ensemble has a Gaussian distribution, and that standard deviation 8G depends solely on the symmetries and dimensions of the system. Using a real-space tight -binding Hamiltonian on a system with Anderson disorder, we explore conductance fluctuations in a thin Bi2Se3 film and demonstrate the agreement of their behavior with UCF hypotheses. We further show that magnetic field applied out-of-plane breaks the time -reversal symmetry and transforms the system's Wigner-Dyson class from root symplectic to unitary, increasing 8G by 2. Finally, we reveal that while Bi2Se3 is a strong TI, weak TI and metallic phases can be stabilized in presence of strain and disorder, and detected by monitoring the conductance fluctuations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001173938400008 Publication Date 2024-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204765 Serial 9177  
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L. pdf  doi
openurl 
  Title Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 14 Pages 4108-4116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001193010700001 Publication Date 2024-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205553 Serial 9180  
Permanent link to this record
 

 
Author Doria, M.M.; de Romaguera, A.R.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Domain coexistence of magnetism and superconductivity : appearance of confined vortex loops Type P1 Proceeding
  Year 2008 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 97 Issue Pages 012070-012070,4  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A magnetic moment inside an extreme type II superconductor can have three, but not one or two, confined vortex loops near to the core. For a sub-micron superconducting particle the confined vortex loops eventually break up and reach the surface turning into external vortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276054100070 Publication Date 2008-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99232 Serial 747  
Permanent link to this record
 

 
Author Engbarth, M.; Milošević, M.V.; Bending, S.J.; Nasirpouri, F. pdf  doi
openurl 
  Title Geometry-guided flux behaviour in superconducting Pb microcrystals Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052048  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrochemistry offers highly flexible routes to fabrication of a wide variety of mesostructures, including three-dimensional (3D) crystallites, thin films and nanowires. Using this method we have grown various 3D superconducting Pb mesostructures with vastly different morphologies. We present here results on a truncated(half)-icosahedron with a hexagonal base and a tripod structure with a triangular base. Using Hall probe magnetometry we have obtained magnetisation curves for these structures at several temperatures and see evidence of geometry-driven flux entry and exit as well as flux trapping caused by specific sample geometries. We also observe behaviour that we interpret in terms of the formation of giant vortices, bearing in mind that bulk Pb is a type-I superconducting material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor (up) Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106138 Serial 1332  
Permanent link to this record
 

 
Author Bending, S.J.; Milošević, M.V.; Moshchalkov, V.V. isbn  openurl
  Title Polarity-dependent vortex pinning and spontaneous vortex-antivortex structures in superconductor/ferromagnet hybrids Type H1 Book chapter
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 299-322  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-15136-1 Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106139 Serial 2659  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. openurl 
  Title Vortex-antivortex ionic crystals in superconducting films with magnetic pinning arays Type A1 Journal article
  Year 2004 Publication Physicalia magazine Abbreviated Journal  
  Volume 26 Issue Pages 355-370  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Gent Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0770-0520 ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:57241 Serial 3852  
Permanent link to this record
 

 
Author Bending, S.J.; Neal, J.S.; Milošević, M.V.; Potenza, A.; san Emeterio, L.; Marrows, C.H. url  doi
openurl 
  Title Vortex-antivortex 'molecular crystals' in hybrid ferromagnet/superconductor structures Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052019  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used high resolution Hall probe microscopy to image vortex-antivortex (V-AV) 'molecules' induced in superconducting Pb films by the stray fields from square arrays of ferromagnetic Co/Pt dots. We have directly observed spontaneous V-AV pairs and studied how they interact with added 'free' (anti)fluxons in an applied magnetic field. We observe a rich variety of subtle phenomena arising from competing symmetries in our system which can either drive added antivortices to join AV shells around nanomagnets or stabilise the translationally symmetric AV lattice between the dots. Added vortices annihilate AV shells, leading eventually to a stable 'nulling' state with no free fluxons, which should exhibit a strongly (field-)enhanced critical current. At higher densities we actually observe vortex shells around the magnets, stabilised by the asymmetric anti-pinning potential. Our experimental findings are in good agreement with Ginzburg-Landau calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106136 Serial 3855  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. openurl 
  Title Vortex-antivortex molecules near a magnetic disk on top of a superconducting film Type A1 Journal article
  Year 2003 Publication Physicalia magazine Abbreviated Journal  
  Volume 25 Issue Pages 185-197  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Gent Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0770-0520 ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:57240 Serial 3858  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. url  doi
openurl 
  Title Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi2Sr2CaCu2O8+δ disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor (up) Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106137 Serial 3881  
Permanent link to this record
 

 
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
  Year 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 51 Issue 8 Pages 082903,1-082903,29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000281905000026 Publication Date 2010-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.077 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291  
  Call Number UA @ lucian @ c:irua:84880 Serial 106  
Permanent link to this record
 

 
Author Goncalves, W.C.; Sardella, E.; Becerra, V.F.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Numerical solution of the time dependent Ginzburg-Landau equations for mixed (d plus s)-wave superconductors Type A1 Journal article
  Year 2014 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 55 Issue 4 Pages 041501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000336084100001 Publication Date 2014-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488;1089-7658; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.077 Times cited 6 Open Access  
  Notes ; We thank the Brazilian Agency FAPESP and Flemish Science Foundation (FSF) (FWO-Vlaanderen) for financial support. M. V. M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 1.077; 2014 IF: 1.243  
  Call Number UA @ lucian @ c:irua:117728 Serial 2407  
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
  Year 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 24 Issue 1/2 Pages 905-910  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000289855700150 Publication Date 2010-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.18 Times cited 2 Open Access  
  Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650  
  Call Number UA @ lucian @ c:irua:89930 Serial 130  
Permanent link to this record
 

 
Author Guidini, A.; Flammia, L.; Milošević, M.V.; Perali, A. pdf  doi
openurl 
  Title BCS-BEC crossover in quantum confined superconductors Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 711-715  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ultranarrow superconductors are in the strong quantum confinement regime with formation of multiple coherent condensates associated with the many subbands of the electronic structure. Here, we analyze the multiband BCS-BEC crossover induced by the chemical potential tuned close to a subband bottom, in correspondence of a superconducting shape resonance. The evolution of the condensate fraction and of the pair correlation length in the ground state as functions of the chemical potential demonstrates the tunability of the BCS-BEC crossover for the condensate component of the selected subband. The extension of the crossover regime increases when the pairing strength and/or the characteristic energy of the interaction get larger. Our results indicate the coexistence of large and small Cooper pairs in the crossover regime, leading to the optimal parameter configuration for high transition temperature superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000371089500034 Publication Date 2015-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.18 Times cited 12 Open Access  
  Notes ; We acknowledge A. Bianconi and A.A. Shanenko for useful discussions. A.P. acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. M.V.M. acknowledges support from the Research Foundation – Flanders (FWO) and the Special Research Funds of the University of Antwerp (BOF-UA). A.P. and M.V.M. acknowledge the collaboration within the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:132287 Serial 4143  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 605-609  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000371089500013 Publication Date 2016-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.18 Times cited 7 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:132286 Serial 4195  
Permanent link to this record
 

 
Author Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A. doi  openurl
  Title Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 3081-3086  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000390030600016 Publication Date 2016-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.18 Times cited 11 Open Access  
  Notes ; We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milosevic acknowledges support from Research Foundation – Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:140347 Serial 4461  
Permanent link to this record
 

 
Author Ludu, A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Vortex states in axially symmetric superconductors in applied magnetic field Type A1 Journal article
  Year 2012 Publication Sn – 0378-4754 Abbreviated Journal Math Comput Simulat  
  Volume 82 Issue 7 Pages 1258-1270  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. We present examples of the resulting vortex structure for a solid and perforated superconducting cylinder. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303097000009 Publication Date 2012-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4754; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.218 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.218; 2012 IF: 0.836  
  Call Number UA @ lucian @ c:irua:98300 Serial 3887  
Permanent link to this record
 

 
Author Chen, Z.; Kong, M.; Milošević, M.V.; Wu, Y. doi  openurl
  Title Ground state configurations of two-dimensional plasma crystals under long-range attractive particle interaction force Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 67 Issue 5 Pages 439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000183154800014 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.28 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:57249 Serial 1385  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title The structure and manipulation of vortex states in a superconducting square with 2 × 2 blind holes Type A1 Journal article
  Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 139 Issue 1 Pages 229-238  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000228853900021 Publication Date 2005-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.3 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.3; 2005 IF: 0.753  
  Call Number UA @ lucian @ c:irua:57246 Serial 3284  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex-antivortex lattices in superconducting films with magnetic pinning arrays Type A1 Journal article
  Year 2005 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 139 Issue 1 Pages 257-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 2005-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291;1573-7357; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.3 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1.3; 2005 IF: 0.753  
  Call Number UA @ lucian @ c:irua:57245 Serial 3853  
Permanent link to this record
 

 
Author Milošević, M.V.; Yampolskii, S.V.; Peeters, F.M. doi  openurl
  Title The vortex-magnetic dipole interaction in the London approximation Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 321-331  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900014 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44987 Serial 3868  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 311-320  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900013 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor (up) 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44988 Serial 3875  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: