|   | 
Details
   web
Records
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages (down) 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author Galván Moya, J.E.; Lucena, D.; Ferreira, W.P.; Peeters, F.M.
Title Magnetic particles confined in a modulated channel : structural transitions tunable by tilting a magnetic field Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 3 Pages (down) 032309-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground state of colloidal magnetic particles in a modulated channel are investigated as a function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential, and the commensurability factor of the system. Interestingly, we found first-and second-order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A reentrant behavior is found between two-and four-chain configurations, with continuous second-order transitions. Novel configurations are found consisting of frozen solitons of defects. By changing the orientation and/or strength of the magnetic field and/or the strength and periodicity of the substrate potential, the system transits through different phases.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000333702800015 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, CNPq, CAPES, FUNCAP (Pronex grant), the collaborative program CNPq-FWO-Vl, and the Brazilian program Science Without Borders CsF. Computational resources were provided by HPC infrastructure of University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:117217 Serial 1886
Permanent link to this record
 

 
Author Lucena, D.; Galván Moya, J.E.; Ferreira, W.P.; Peeters, F.M.
Title Single-file and normal diffusion of magnetic colloids in modulated channels Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 3 Pages (down) 032306-32309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000333646400005 Publication Date 2014-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 5 Open Access
Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the collaborative program CNPq-FWO-Vl, and the Brazilian program Science Without Borders (CsF). D. Lucena acknowledges fruitful discussions with W. A. Munoz, V. F. Becerra, E. C. Euan-Diaz, and M. R. Masir. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:116865 Serial 3020
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H.
Title Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 3 Pages (down) 032101-32107
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334220300002 Publication Date 2014-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 18 Open Access
Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:115555 Serial 3641
Permanent link to this record
 

 
Author Tinck, S.; Neyts, E.C.; Bogaerts, A.
Title Fluorinesilicon surface reactions during cryogenic and near room temperature etching Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 51 Pages (down) 30315-30324
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cyrogenic etching of silicon is envisaged to enable better control over plasma processing in the microelectronics industry, albeit little is known about the fundamental differences compared to the room temperature process. We here present molecular dynamics simulations carried out to obtain sticking probabilities, thermal desorption rates, surface diffusion speeds, and sputter yields of F, F2, Si, SiF, SiF2, SiF3, SiF4, and the corresponding ions on Si(100) and on SiF13 surfaces, both at cryogenic and near room temperature. The different surface behavior during conventional etching and cryoetching is discussed. F2 is found to be relatively reactive compared to other species like SiF03. Thermal desorption occurs at a significantly lower rate under cryogenic conditions, which results in an accumulation of physisorbed species. Moreover, ion incorporation is often observed for ions with energies of 30400 eV, which results in a relatively low net sputter yield. The obtained results suggest that the actual etching of Si, under both cryogenic and near room temperature conditions, is based on the complete conversion of the Si surface to physisorbed SiF4, followed by subsequent sputtering of these molecules, instead of direct sputtering of the SiF03 surface.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000347360200101 Publication Date 2014-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 11 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:122957 Serial 1239
Permanent link to this record
 

 
Author Buffière, M.; Zaghi, A.E.; Lenaers, N.; Batuk, M.; Khelifi, S.; Drijkoningen, J.; Hamon, J.; Stesmans, A.; Kepa, J.; Afanas’ev, V.V.; Hadermann, J.; D’Haen, J.; Manca, J.; Vleugels, J.; Meuris, M.; Poortmans, J.;
Title Effect of binder content in Cu-In-Se precursor ink on the physical and electrical properties of printed CuInSe2 solar cells Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 47 Pages (down) 27201-27209
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Printed chalcopyrite thin films have attracted considerable attention in recent years due to their potential in the high-throughput production of photovoltaic devices. To improve the homogeneity of printed CuInSe2 (CISe) layers, chemical additives such as binder can be added to the precursor ink. In this contribution, we investigate the influence of the dicyandiamide (DCDA) content, used as a binder in the precursor ink, on the physical and electrical properties of printed CISe solar cells. It is shown that the use of the binder leads to a dense absorber, composed of large CISe grains close to the surface, while the bulk of the layer consists of CISe crystallites embedded in a CuxS particle based matrix, resulting from the limited sintering of the precursor in this region. The expected additional carbon contamination of the CISe layer due to the addition of the binder appears to be limited, and the optical properties of the CISe layer are similar to the reference sample without additive. The electrical characterization of the corresponding CISe/CdS solar cells shows a degradation of the efficiency of the devices, due to a modification in the predominant recombination mechanisms and a limitation of the space charge region width when using the binder; both effects could be explained by the inhomogeneity of the bulk of the CISe absorber and high defect density at the CISe/CuxS-based matrix interface.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345722400003 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121332 Serial 801
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Verbeeck, J.
Title Measuring the orbital angular momentum of electron beams Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue Pages (down) 025803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000332224100014 Publication Date 2014-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 42 Open Access
Notes Vortex; FP7; Countatoms; ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:114577UA @ admin @ c:irua:114577 Serial 1972
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 4 Issue 49 Pages (down) 25650-25657
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338434500025 Publication Date 2014-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 3 Open Access OpenAccess
Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 47 Issue 2 Pages (down) 025205-25209
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000329108000013 Publication Date 2013-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 51 Open Access
Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
Call Number UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Gillis, S.; Jaykka, J.; Milošević, M.V.
Title Vortex states in mesoscopic three-band superconductors Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages (down) 024512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using multicomponent Ginzburg-Landau simulations, we show a plethora of vortex states possible in mesoscopic three-band superconductors. We find that mesoscopic confinement stabilizes chiral states, with nontrivial phase differences between the band condensates, as the ground state of the system. As a consequence, we report the broken-symmetry vortex states, the chiral states where vortex cores in different band condensates do not coincide (split-core vortices), as well as fractional-flux vortex states with broken time-reversal symmetry.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333653800001 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO). Critical remarks of Lucia Komendova are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:128885 Serial 4611
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Peeters, F.M.; van Duin, A.C.T.
Title Stabilized silicene within bilayer graphene : a proposal based on molecular dynamics and density-functional tight-binding calculations Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 2 Pages (down) 024107-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Freestanding silicene is predicted to display comparable electronic properties as graphene. However, the yet synthesized silicenelike structures have been only realized on different substrates which turned out to exhibit versatile crystallographic structures that are very different from the theoretically predicted buckled phase of freestanding silicene. This calls for a different approach where silicene is stabilized using very weakly interacting surfaces. We propose here a route by using graphene bilayer as a scaffold. The confinement between the flat graphene layers results in a planar clustering of Si atoms with small buckling, which is energetically unfavorable in vacuum. Buckled hexagonal arrangement of Si atoms similar to freestanding silicene is observed for large clusters, which, in contrast to Si atoms on metallic surfaces, is only very weakly van der Waals coupled to the graphene layers. These clusters are found to be stable well above room temperature. Our findings, which are supported by density-functional tight-binding calculations, show that intercalating bilayer graphene with Si is a favorable route to realize silicene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332226200002 Publication Date 2014-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 43 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoc Fellowship/299855. One of us (F. M. P.) acknowledges discussions with Professor Hongjun Gao. G. R. B acknowledges the support of the King Fahd University of Petroleum and Minerals, Saudi Arabia, under the TPRG131-CS-15 DSR project. A.C.T.vD acknowledges funding from AFOSR Grants No. FA9550-10-1-0563 and No. FA9550-11-1-0158. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115829 Serial 3140
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 40 Pages (down) 23402-23408
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000343016800067 Publication Date 2014-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access
Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:121113 Serial 2711
Permanent link to this record
 

 
Author Sobrino Fernandez, M.; Misko, V.R.; Peeters, F.M.
Title Self-assembly of Janus particles confined in a channel Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 89 Issue 2 Pages (down) 022306-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. Here, we consider a two-dimensional model of Janus disks consisting of a hydrophobic semicircle and an electro-negatively charged one. Placed in a solution, the hydrophobic sides will attract each other while the charged sides will give rise to a repulsive force. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment using a one dimensional harmonic confinement potential. The interest to this system is first of all due to the fact that it could serve as a simple model for membrane formation. Indeed, the recently synthesized new class of artificial amphiphiles, known as Janus dendrimers, were shown to self-assemble in bilayer structures mimicking biological membranes. In turn, Janus particles that combine the amphiphilicity and colloidal rigidity serve as a good model for Janus dendrimers. A variety of ordered membrane-like morphologies are found consisting of single and multiple chain configurations with different orientations of the particles with respect to each other that we summarize in a phase diagram.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000332179900009 Publication Date 2014-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and by the “Odysseus” program of the Flemish government and FWO-Vl. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:115858 Serial 2971
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Native point defects in CuIn1-xGaxSe2 : hybrid density functional calculations predict the origin of p- and n-type conductivity Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 40 Pages (down) 22299-22308
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have performed a first-principles study of the p- and n-type conductivity in CuIn1−xGaxSe2 due to native point defects, based on the HSE06 hybrid functional. Band alignment shows that the band gap becomes larger with x due to the increasing conduction band minimum, rendering it hard to establish n-type conductivity in CuGaSe2. From the defect formation energies, we find that In/GaCu is a shallow donor, while VCu, VIn/Ga and CuIn/Ga act as shallow acceptors. Using the total charge neutrality of ionized defects and intrinsic charge carriers to determine the Fermi level, we show that under In-rich growth conditions InCu causes strongly n-type conductivity in CuInSe2. Under increasingly In-poor growth conditions, the conductivity type in CuInSe2 alters to p-type and compensation of the acceptors by InCu reduces, as also observed in photoluminescence experiments. In CuGaSe2, the native acceptors pin the Fermi level far away from the conduction band minimum, thus inhibiting n-type conductivity. On the other hand, CuGaSe2 shows strong p-type conductivity under a wide range of Ga-poor growth conditions. Maximal p-type conductivity in CuIn1−xGaxSe2 is reached under In/Ga-poor growth conditions, in agreement with charge concentration measurements on samples with In/Ga-poor stoichiometry, and is primarily due to the dominant acceptor CuIn/Ga.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343072800042 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 43 Open Access
Notes ; We gratefully acknowledge financial support from the science fund FWO-Flanders through project G.0150.13. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules foundation and the Flemish Government (EWI Department). We also like to thank Prof. S. Siebentritt of the University of Luxembourg for a presentation of her work on GIGS during a visit to our research group and for helpful discussions of our results. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:120465 Serial 2284
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages (down) 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
Volume 1 Issue Pages (down) 021004
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000353650400004 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 58 Open Access
Notes Approved Most recent IF: 6.937; 2014 IF: NA
Call Number UA @ lucian @ c:irua:134432 Serial 4530
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J.
Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 33 Pages (down) 17724-17733
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000341064800041 Publication Date 2014-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 23 Open Access
Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118263 Serial 1469
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B.
Title The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 30 Pages (down) 17092-17103
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000343839000031 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access
Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:121175 Serial 3575
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; Van Tendeloo, G.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G.
Title Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 105 Issue 1 Pages (down) 17003-17005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show the stabilization of a tetragonal rocksalt structure with an elongated c-axis such that c/a similar to 1.34 and the Cu-O-Cu bond angle similar to 180 degrees, pointing to metastable six-fold coordinated Cu. X-ray absorption spectroscopy demonstrates that the hole at the Cu site for the CuO is localized in 3d(x2-y2) orbital unlike the well-studied monoclinic CuO phase. The experimental confirmation of the tetragonal structure of CuO opens up new avenues to explore electronic and magnetic properties of six-fold coordinated Cu. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000331197100015 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 15 Open Access
Notes This work was carried out with financial support from the AFOSR and EOARD projects (project No.: FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No. 246791 – COUNTATOMS, ERC Starting Grant 278510 VORTEX, Grant No. NMP3-LA-2010-246102 IFOX and an Integrated Infrastructure Initiative, reference No. 312483-ESTEEM2. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. YT acknowledges support from the National Science Foundation (DMR-0747896). WS was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. ECASJO_; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:115806UA @ admin @ c:irua:115806 Serial 722
Permanent link to this record
 

 
Author Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M.
Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 136 Issue 48 Pages (down) 16932-16939
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000345883900040 Publication Date 2014-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 13 Open Access
Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
Call Number UA @ lucian @ c:irua:121331 Serial 1169
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 31 Pages (down) 16771-16779
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000340075700048 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G.
Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 29 Pages (down) 16209-16217
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339540700073 Publication Date 2014-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 47 Open Access
Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118129 Serial 3398
Permanent link to this record
 

 
Author Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P.
Title Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 29 Pages (down) 15995-16002
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nonlinear absorption of Ag atomic clusters and nanoparticles dispersed in a transparent oxyfluoride glass host has been studied. The as-prepared glass, containing 0.15 atom % Ag, shows an absorption band in the UV/violet attributed to the presence of amorphous Ag atomic nanoclusters with an average size of 1.2 nm. Upon heat treatment the Ag nanoclusters coalesce into larger nanoparticles that show a surface plasmon absorption band in the visible. Open aperture z-scan experiments using 480 nm nanosecond laser pulses demonstrated nonsaturated and saturated nonlinear absorption with large nonlinear absorption indices for the Ag nanoclusters and nanoparticles, respectively. These properties are promising, e.g., for applications in optical limiting and objects contrast enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339540700049 Publication Date 2014-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 43 Open Access
Notes FWO; Methusalem; funding from the European Research Council under the seventh Framework Program (FP7); ERC Grant 246791 COUNTATOMS and the EC project IFOX. Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118626 Serial 2353
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 28 Pages (down) 15356-15362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339368700031 Publication Date 2014-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 41 Open Access OpenAccess
Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644
Permanent link to this record
 

 
Author Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Van Haesendonck, C.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.;
Title The superconducting proximity effect in epitaxial Al/Pb nanocomposites Type A1 Journal article
Year 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 27 Issue 1 Pages (down) 015008-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have investigated the superconducting properties of Pb nanoparticles with a diameter ranging from 8 to 20 nm, synthesized by Pb+ ion implantation in a crystalline Al matrix. A detailed structural characterization of the nanocomposites reveals the highly epitaxial relation between the Al crystalline matrix and the Pb nanoparticles. The Al/Pb nanocomposites display a single superconducting transition, with the critical temperature T-c increasing with the Pb content. The dependence of T-c on the Pb/Al volume ratio was compared with theoretical models of the superconducting proximity effect based on the bulk properties of Al and Pb. A very good correspondence with the strong-coupling proximity effect model was found, with an electron-phonon coupling constant in the Pb nanoparticles slightly reduced compared to bulk Pb. Our result differs from other studies on Pb nanoparticle based proximity systems where weak-coupling models were found to better describe the T-c dependence. We infer that the high interface quality resulting from the ion implantation synthesis method is a determining factor for the superconducting properties. Critical field and critical current measurements support the high quality of the nanocomposite superconducting films.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000328275000010 Publication Date 2013-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 2 Open Access Not_Open_Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO), the KU Leuven BOF Concerted Research Action programs (GOA/09/006, the KU Leuven BOF CREA/12/015 project, and GOA/14/007) and the EU FP7 program SPIRIT (227012). TP and KH are postdoctoral research fellow and doctoral fellow of the FWO. ; Approved Most recent IF: 2.878; 2014 IF: 2.325
Call Number UA @ lucian @ c:irua:112833 Serial 3599
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C.
Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 24 Pages (down) 14991-14998
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000345458200051 Publication Date 2014-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 41 Open Access OpenAccess
Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:122227 Serial 169
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 1 Pages (down) 014522
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341233800010 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119266 Serial 1938
Permanent link to this record
 

 
Author Mikhailova, D.; Reichel, P.; Tsirlin, A.A.; Abakumov, A.M.; Senyshyn, A.; Mogare, K.M.; Schmidt, M.; Kuo, C.Y.; Pao, C.W.; Pi, T.W.; Lee, J.F.; Hu, Z.; Tjeng, L.H.;
Title Oxygen-driven competition between low-dimensional structures of Sr3CoMO6 and Sr3CoMO7-\delta with M = Ru,Ir Type A1 Journal article
Year 2014 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 43 Issue 37 Pages (down) 13883-13891
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have realized a reversible structure transformation of one-dimensional 1D K4CdCl6-type Sr3CoMO6 with the Co2+/M4+ cation ordering into the two-dimensional 2D double layered Ruddlesden-Popper structure Sr3CoMO7-delta with a random distribution of Co and M (with M = Ru, Ir) upon increasing the partial oxygen pressure. The combined soft and hard X-ray absorption spectroscopy studies show that under transformation, Co and M cations were oxidized to Co3+ and M5+. During oxidation, high-spin Co2+ in Sr3CoMO6 first transforms into high-spin Co3+ in oxygen-deficient Sr3CoMO7-delta, and then further transforms into low-spin Co3+ in fully oxidized Sr3CoMO7 upon further increasing the partial pressure of oxygen. The 1D Sr3CoMO6 compound is magnetically ordered at low temperatures with the magnetic moments lying along the c-axis. Their alignment is parallel for Sr3CoRuO6 and antiparallel for Sr3CoIrO6. The 2D compounds reveal a spin-glass-like behavior related to the random distribution of magnetic cations in the structure.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000342074100009 Publication Date 2014-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 7 Open Access
Notes Approved Most recent IF: 4.029; 2014 IF: 4.197
Call Number UA @ lucian @ c:irua:119960 Serial 2545
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Sougrati, M.-T.; Courty, M.; Doublet, M.-L.; Tarascon, J.-M.
Title An oxysulfate Fe2O(SO4)2 electrode for sustainable Li-based batteries Type A1 Journal article
Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 136 Issue 36 Pages (down) 12658-12666
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-performing Fe-based electrodes for Li-based batteries are eagerly pursued because of the abundance and environmental benignity of iron, with especially great interest in polyanionic compounds because of their flexibility in tuning the Fe3+/Fe2+ redox potential. We report herein the synthesis and structure of a new Fe-based oxysulfate phase, Fe2O(SO4)(2), made at low temperature from abundant elements, which electrochemically reacts with nearly 1.6 Li atoms at an average voltage of 3.0 V versus Li+/Li, leading to a sustained reversible capacity of similar to 125 mAh/g. The Li insertiondeinsertion process, the first ever reported in any oxysulfate, entails complex phase transformations associated with the position of iron within the FeO6 octahedra. This finding opens a new path worth exploring in the quest for new positive electrode materials.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341544600029 Publication Date 2014-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 11 Open Access
Notes Approved Most recent IF: 13.858; 2014 IF: 12.113
Call Number UA @ lucian @ c:irua:119906 Serial 96
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, T.; Stosic, B.; Lessa, R.; Milošević, M.V.
Title Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation Type A1 Journal article
Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
Volume 90 Issue 1 Pages (down) 012312
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze the combined effect of three ingredients of an aggregation model-surface tension, particle flow and particle source-representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
Language Wos 000341245400009 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 3 Open Access
Notes ; This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251 /2010-7, and No. 306719/2012-6). M.V.M. acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/11-5. The crystal structure appearing in Fig. 11 was provided courtesy of L. dos Santos, UFPE, Brazil. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
Call Number UA @ lucian @ c:irua:119267 Serial 1708
Permanent link to this record