toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials
  Volume 11 Issue 11 Pages (up) 1304
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000444112800041 Publication Date 2018-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Verhulst, S.L.; de Backer, J.; Van Gaal, L.; de Backer, W.; Desager, K.
  Title Adenotonsillectomy as first-line treatment for sleep-disordered breathing in obese children Type L1 Letter to the editor
  Year 2008 Publication American journal of respiratory and critical care medicine Abbreviated Journal Am J Resp Crit Care
  Volume 177 Issue 12 Pages (up) 1399
  Keywords L1 Letter to the editor; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1073-449x; 1535-4970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.204 Times cited Open Access
  Notes Approved Most recent IF: 13.204; 2008 IF: 9.792
  Call Number UA @ lucian @ c:irua:68864 Serial 59
Permanent link to this record
 

 
Author de Backer, A.; Van Aert, S.; van Dyck, D.
  Title High precision measurements of atom column positions using model-based exit wave reconstruction Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 111 Issue 9/10 Pages (up) 1475-1482
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract In this paper, it has been investigated how to measure atom column positions as accurately and precisely as possible using a focal series of images. In theory, it is expected that the precision would considerably improve using a maximum likelihood estimator based on the full series of focal images. As such, the theoretical lower bound on the variances of the unknown atom column positions can be attained. However, this approach is numerically demanding. Therefore, maximum likelihood estimation has been compared with the results obtained by fitting a model to a reconstructed exit wave rather than to the full series of focal images. Hence, a real space model-based exit wave reconstruction technique based on the channelling theory is introduced. Simulations show that the reconstructed complex exit wave contains the same amount of information concerning the atom column positions as the full series of focal images. Only for thin samples, which act as weak phase objects, this information can be retrieved from the phase of the reconstructed complex exit wave.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000300461200004 Publication Date 2011-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 8 Open Access
  Notes Fwo Approved Most recent IF: 2.843; 2011 IF: 2.471
  Call Number UA @ lucian @ c:irua:91879 Serial 1438
Permanent link to this record
 

 
Author De Backer, J.; Maric, D.; Zuhra, K.; Bogaerts, A.; Szabo, C.; Vanden Berghe, W.; Hoogewijs, D.
  Title Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response Type A1 Journal article
  Year 2022 Publication Antioxidants Abbreviated Journal Antioxidants
  Volume 11 Issue 8 Pages (up) 1548
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
  Abstract Despite recent advances in melanoma treatment, there are still patients that either do not respond or develop resistance. This unresponsiveness and/or acquired resistance to therapy could be explained by the fact that some melanoma cells reside in a dedifferentiated state. Interestingly, this dedifferentiated state is associated with greater sensitivity to ferroptosis, a lipid peroxidation-reliant, iron-dependent form of cell death. Cytoglobin (CYGB) is an iron hexacoordinated globin that is highly enriched in melanocytes and frequently downregulated during melanomagenesis. In this study, we investigated the potential effect of CYGB on the cellular sensitivity towards (1S, 3R)-RAS-selective lethal small molecule (RSL3)-mediated ferroptosis in the G361 melanoma cells with abundant endogenous expression. Our findings show that an increased basal ROS level and higher degree of lipid peroxidation upon RSL3 treatment contribute to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB knockdown also triggers activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome and subsequent induction of pyroptosis target genes. Altogether, we show that silencing of CYGB expression modulates cancer therapy sensitivity via regulation of ferroptosis and pyroptosis cell death signaling pathways.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000846411000001 Publication Date 2022-08-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2076-3921 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 7
  Call Number PLASMANT @ plasmant @c:irua:190686 Serial 7102
Permanent link to this record
 

 
Author Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A.
  Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
  Year 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol
  Volume 182 Issue Pages (up) 1724-1736
  Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000675794700005 Publication Date 2021-05-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.671 Times cited Open Access OpenAccess
  Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671
  Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S.
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 13 Issue Pages (up)
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000612999200029 Publication Date 2020-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367
  Call Number EMAT @ emat @c:irua:174858 Serial 6665
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Devolder, A.; Vanderveken, O.; Verhulst, S.; Salgado, R.; Germonpré, P.; Partoens, B.; Wuyts, F.; Parizel, P.; de Backer, W.
  Title Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging Type A1 Journal article
  Year 2007 Publication Journal of biomechanics Abbreviated Journal J Biomech
  Volume 40 Issue 10 Pages (up) 2207-2213
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000248468000011 Publication Date 2006-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.664 Times cited 86 Open Access
  Notes Approved Most recent IF: 2.664; 2007 IF: 2.897
  Call Number UA @ lucian @ c:irua:62425 Serial 523
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A.
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol
  Volume 163 Issue Pages (up) 2405-2414
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000579839600233 Publication Date 2020-09-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.2 Times cited Open Access
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419
Permanent link to this record
 

 
Author de Backer, J.W.; Vanderveken, O.M.; Vos, W.G.; Devolder, A.; Verhulst, S.L.; Verbraecken, J.A.; Parizel, P.M.; Braem, M.J.; van de Heyning, P.H.; de Backer, W.A.
  Title Functional imaging using computational fluid dynamics to predict treatment success of mandibular advancement devices in sleep-disordered breathing Type A1 Journal article
  Year 2007 Publication Journal of biomechanics Abbreviated Journal J Biomech
  Volume 40 Issue 16 Pages (up) 3708-3714
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Translational Neurosciences (TNW)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000251845100020 Publication Date 2007-08-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9290; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.664 Times cited 66 Open Access
  Notes Approved Most recent IF: 2.664; 2007 IF: 2.897
  Call Number UA @ lucian @ c:irua:64860 Serial 1299
Permanent link to this record
 

 
Author Goris, B.; de Backer, A.; Van Aert, S.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G.; Bals, S.
  Title Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals Type A1 Journal article
  Year 2013 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 13 Issue 9 Pages (up) 4236-4241
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A thorough understanding of the three-dimensional (3D) atomic structure and composition of coreshell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in coreshell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000330158900043 Publication Date 2013-08-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 90 Open Access
  Notes FWO; 246791 COUNTATOMS; 267867 PLASMAQUO; 262348 ESMI; 312483 ESTEEM2; Hercules 3; esteem2_jra4 Approved Most recent IF: 12.712; 2013 IF: 12.940
  Call Number UA @ lucian @ c:irua:110036 Serial 3650
Permanent link to this record
 

 
Author Arteaga Cardona, F.; Jain, N.; Popescu, R.; Busko, D.; Madirov, E.; Arús, B.A.; Gerthsen, D.; De Backer, A.; Bals, S.; Bruns, O.T.; Chmyrov, A.; Van Aert, S.; Richards, B.S.; Hudry, D.
  Title Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 14 Issue 1 Pages (up) 4462
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF<sub>4</sub>) or heterogeneous (CaF<sub>2</sub>) shell domains on optically-active α-NaYF<sub>4</sub>:Yb:Er (with and without Ce<sup>3+</sup>co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm<sup>2</sup>; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001037058500022 Publication Date 2023-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess
  Notes D.H. would like to thank Dominique Ectors (Bruker AXS GmbH, Karlsruhe, Germany) for assistance and discussion on the PXRD data and TOPAS evaluations. The authors would like to acknowledge the financial support provided by the Helmholtz Association via: i) the Professorial Recruitment Initiative Funding (B.S.R.); ii) the Research Field Energy – Program Materials and Technologies for the Energy Transition – Topic 1 Photovoltaics (F.A.C., D.B., E.M., B.S.R., D.H.). This project received funding from the European Union’s Horizon 2020 innovation programme under grant agreement 823717. This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). The authors acknowledge financial support from the ResearchFoundation Flanders (FWO, Belgium) through project fundings (G.0346.21 N to S.V.A. and S.B.) and a postdoctoral grant (A.D.B.). The authors (B.A.A., O.T.B. and A.C.) acknowledge funding from the Helmholtz Zentrum München, the DFG-Emmy Noether program (BR 5355/2-1) and from the CZI Deep Tissue Imaging (DTI-0000000248). The authors (O.T.B. and D.H.) would like to thank the Helmholtz Imaging (ZT-I-PF-4-038-BENIGN). Approved Most recent IF: 16.6; 2023 IF: 12.124
  Call Number EMAT @ emat @c:irua:198158 Serial 8808
Permanent link to this record
 

 
Author Goris, B.; de Beenhouwer, J.; de Backer, A.; Zanaga, D.; Batenburg, K.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Aert, S.; Bals, S.; Sijbers, J.; Van Tendeloo, G.
  Title Measuring lattice strain in three dimensions through electron microscopy Type A1 Journal article
  Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 15 Issue 15 Pages (up) 6996-7001
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
  Abstract The three-dimensional (3D) atomic structure of nanomaterials, including strain, is crucial to understand their properties. Here, we investigate lattice strain in Au nanodecahedra using electron tomography. Although different electron tomography techniques enabled 3D characterizations of nanostructures at the atomic level, a reliable determination of lattice strain is not straightforward. We therefore propose a novel model-based approach from which atomic coordinates are measured. Our findings demonstrate the importance of investigating lattice strain in 3D.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington Editor
  Language Wos 000363003100108 Publication Date 2015-09-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 87 Open Access OpenAccess
  Notes Fwo; 335078 Colouratom; 267867 Plasmaquo; 312483 Esteem2; 262348 Esmi; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
  Call Number c:irua:127639 c:irua:127639 Serial 1965
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C.
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
  Volume 12 Issue 7 Pages (up) 8788-8794
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000515214300101 Publication Date 2020-02-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.5 Times cited Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504
  Call Number EMAT @ emat @c:irua:167770 Serial 6398
Permanent link to this record
 

 
Author De Backer, A.; Jones, L.; Lobato, I.; Altantzis, T.; Goris, B.; Nellist, P.D.; Bals, S.; Van Aert, S.
  Title Three-dimensional atomic models from a single projection using Z-contrast imaging: verification by electron tomography and opportunities Type A1 Journal article
  Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 9 Issue 9 Pages (up) 8791-8798
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In order to fully exploit structure–property relations of nanomaterials, three-dimensional (3D) characterization at the atomic scale is often required. In recent years, the resolution of electron tomography has reached the atomic scale. However, such tomography typically requires several projection images demanding substantial electron dose. A newly developed alternative circumvents this by counting the number of atoms across a single projection. These atom counts can be used to create an initial atomic model with which an energy minimization can be applied to obtain a relaxed 3D reconstruction of the nanoparticle. Here, we compare, at the atomic scale, this single projection reconstruction approach with tomography and find an excellent agreement. This new approach allows for the characterization of beam-sensitive materials or where the acquisition of a tilt series is impossible. As an example, the utility is illustrated by the 3D atomic scale characterization of a nanodumbbell on an in situ heating holder of limited tilt range.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000404614700031 Publication Date 2017-06-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 33 Open Access OpenAccess
  Notes The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, G.0368.15N, and WO.010.16N) and postdoctoral grants to T. Altantzis, A. De Backer, and B. Goris. S. Bals acknowledges financial support from the European Research Council (Starting Grant No. COLOURATOM 335078). Funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiatieve-I3) is acknowledged. The authors would also like to thank Luis Liz-Marzán, Marek Grzelczak, and Ana Sánchez-Iglesias for sample provision. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.367
  Call Number EMAT @ emat @ c:irua:144436UA @ admin @ c:irua:144436 Serial 4617
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S.
  Title StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
  Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal J. Phys.: Conf. Ser.
  Volume 902 Issue Pages (up) 012013
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
  Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000416370700013 Publication Date 2017-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access OpenAccess
  Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:147188 Serial 4764
Permanent link to this record
 

 
Author De Backer, A.; De Wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting: What are the limits? Type P1 Proceeding
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal
  Volume 644 Issue 644 Pages (up) 012034
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atom-counting diagnosed by combining a thorough statistical method and detailed image simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000366826200034 Publication Date 2015-10-13
  Series Editor Series Title Abbreviated Series Title Electron Microscopy and Analysis Group Conference (EMAG), JUN 02-JUL 02, 2015, Manchester, ENGLAND
  Series Volume Series Issue Edition
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N, G.0369.15N, and G.0374.15N) and a PhD research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3), ERC Starting Grant 278510 Vortex, and the UK Engineering and Physical Sciences Research Council (EP/K032518/1). The authors acknowledge Johnson-Matthey for providing the sample and PhD funding to K E MacArthur. A Rosenauer is acknowledged for providing the STEMsim program.; esteem2jra2; ECASJO; Approved Most recent IF: NA
  Call Number c:irua:130314 c:irua:130314 Serial 4050
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Martinez, G.T.; Béché, A.; MacArthur, K.E.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Quantitative annular dark field scanning transmission electron microscopy for nanoparticle atom-counting : what are the limits? Type A1 Journal article
  Year 2015 Publication Journal of physics : conference series Abbreviated Journal
  Volume 644 Issue Pages (up) 012034-4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Quantitative atomic resolution annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique for nanoparticle atom-counting. However, a lot of nanoparticles provide a severe characterisation challenge because of their limited size and beam sensitivity. Therefore, quantitative ADF STEM may greatly benefit from statistical detection theory in order to optimise the instrumental microscope settings such that the incoming electron dose can be kept as low as possible whilst still retaining single-atom precision. The principles of detection theory are used to quantify the probability of error for atom-counting. This enables us to decide between different image performance measures and to optimise the experimental detector settings for atom-counting in ADF STEM in an objective manner. To demonstrate this, ADF STEM imaging of an industrial catalyst has been conducted using the near-optimal detector settings. For this experiment, we discussed the limits for atomcounting diagnosed by combining a thorough statistical method and detailed image simulations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:129198 Serial 4506
Permanent link to this record
 

 
Author Horemans, B.; Van Holsbeke, C.; Vos, W.; Darchuk, L.; Novakovic, V.; Fontan, A.C.; de Backer, J.; van Grieken, R.; de Backer, W.; De Wael, K.
  Title Particle deposition in airways of chronic respiratory patients exposed to an urban aerosol Type A1 Journal article
  Year 2012 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
  Volume 46 Issue 21 Pages (up) 12162-12169
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract Urban atmospheres in modern cities carry characteristic mixtures of particulate pollution which are potentially aggravating for chronic respiratory patients (CRP). Although air quality surveys can be detailed, the obtained information is not always useful to evaluate human health effects. This paper presents a novel approach to estimate particle deposition rates in airways of CRP, based on real air pollution data. By combining computational fluid dynamics with physical-chemical characteristics of particulate pollution, deposition rates are estimated for particles of different toxicological relevance, that is, minerals, iron oxides, sea salts, ammonium salts, and carbonaceous particles. Also, it enables some qualitative evaluation of the spatial, temporal, and patient specific effects on the particle dose upon exposure to the urban atmosphere. Results show how heavy traffic conditions increases the deposition of anthropogenic particles in the trachea and lungs of respiratory patients (here, +0.28 and +1.5 μg·h1, respectively). In addition, local and synoptic meteorological conditions were found to have a strong effect on the overall dose. However, the pathology and age of the patient was found to be more crucial, with highest deposition rates for toxic particles in adults with a mild anomaly, followed by mild asthmatic children and adults with severe respiratory dysfunctions (7, 5, and 3 μg·h1, respectively).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000310665000082 Publication Date 2012-10-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.198 Times cited 5 Open Access
  Notes ; We are grateful for the financial support of n.v. Vooruitzicht. Furthermore, co-workers at the environmental analysis research group are acknowledged for their help in the fieldwork. ; Approved Most recent IF: 6.198; 2012 IF: 5.257
  Call Number UA @ lucian @ c:irua:101411 Serial 2557
Permanent link to this record
 

 
Author Gonnissen, J.; de Backer, A.; den Dekker, A.J.; Martinez, G.T.; Rosenauer, A.; Sijbers, J.; Van Aert, S.
  Title Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 105 Issue 6 Pages (up) 063116
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract We report an innovative method to explore the optimal experimental settings to detect light atoms from scanning transmission electron microscopy (STEM) images. Since light elements play a key role in many technologically important materials, such as lithium-battery devices or hydrogen storage applications, much effort has been made to optimize the STEM technique in order to detect light elements. Therefore, classical performance criteria, such as contrast or signal-to-noise ratio, are often discussed hereby aiming at improvements of the direct visual interpretability. However, when images are interpreted quantitatively, one needs an alternative criterion, which we derive based on statistical detection theory. Using realistic simulations of technologically important materials, we demonstrate the benefits of the proposed method and compare the results with existing approaches.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000341188700073 Publication Date 2014-08-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes FWO (G.0393.11; G.0064.10; and G.0374.13); European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 312483 (ESTEEM2); esteem2_jra2 Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:118333 Serial 2482
Permanent link to this record
 

 
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A.
  Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 87 Issue 6 Pages (up) 064107-6
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000315144700006 Publication Date 2013-02-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 106 Open Access
  Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:105674 Serial 2718
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D.
  Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 122 Issue 6 Pages (up) 066101
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458824200008 Publication Date 2019-02-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 3 Open Access OpenAccess
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462
  Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156
Permanent link to this record
 

 
Author de Backer, J.W.; Vos, W.G.; Germonpré, P.; Salgado, R.; Parizel, P.M.; de Backer, W.
  Title Clinical applications of image-based airway computational fluid dynamics: assessment of inhalation medication and endobronchial devices Type A3 Journal article
  Year 2009 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers Abbreviated Journal
  Volume 7262 Issue Pages (up) 72621p,1-72621p,9
  Keywords A3 Journal article; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
  Abstract Computational fluid dynamics (CFD) is a technique that is used increasingly in the biomedical field. Solving the flow equations numerically provides a convenient way to assess the efficiency of therapies and devices, ranging from cardiovascular stents and heart valves to hemodialysis workflows. Also in the respiratory field CFD has gained increasing interest, especially through the combination of three dimensional image reconstruction which results in highend patient-specific models. This paper provides an overview of clinical applications of CFD through image based modeling, resulting from recent studies performed in our center. We focused on two applications: assessment of the efficiency of inhalation medication and analysis of endobronchial valve placement. In the first application we assessed the mode of action of a novel bronchodilator in 10 treated patients and 4 controls. We assessed the local volume increase and resistance change based on the combination of imaging and CFD. We found a good correlation between the changes in volume and resistance coming from the CFD results and the clinical tests. In the second application we assessed the placement and effect of one way endobronchial valves on respiratory function in 6 patients. We found a strong patientspecific result of the therapy where in some patients the therapy resulted in complete atelectasis of the target lobe while in others the lobe remained inflated. We concluded from these applications that CFD can provide a better insight into clinically relevant therapies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2009-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:79497 Serial 374
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A.
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year 2023 Publication Drug resistance updates Abbreviated Journal
  Volume 67 Issue Pages (up) 100914
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000925156500001 Publication Date 2022-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 24.3 Times cited Open Access OpenAccess
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240
Permanent link to this record
 

 
Author De Backer, J.; Lin, A.; Berghe, W.V.; Bogaerts, A.; Hoogewijs, D.
  Title Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response Type A1 Journal article
  Year 2022 Publication Redox Biology Abbreviated Journal Redox Biol
  Volume 55 Issue Pages (up) 102399
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)
  Abstract Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in me­lanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intra­ molecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2–related factor 2 (NRF2). The knock­ down and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto unde­ scribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of in­ terest either as a biomarker or as a candidate for future targeted therapies in melanoma.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000844595100002 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.4 Times cited Open Access OpenAccess
  Notes This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221 N (Abraham Lin) and G044420 N (Abraham Lin and Annemie Bogaerts). Joey De Backer acknowledges a visiting fellowship from the University of Fribourg. David Hoogewijs acknowledges support by the Swiss National Science Foundation (grants 31003A173000 and 310030207460). Approved Most recent IF: 11.4
  Call Number PLASMANT @ plasmant @c:irua:190635 Serial 7101
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Varambhia, A.; Nellist, P.D.; Van Aert, S.
  Title Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
  Volume 124 Issue 10 Pages (up) 106105
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000519718100015 Publication Date 2020-03-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.6 Times cited Open Access OpenAccess
  Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. L.J. acknowledges the SFI AMBER Centre for support. A.V. and P.D.N. acknowledge the UK Engineering and Physical Sciences Council (EPSRC) for support (EP/K040375/1 and 1772738). A.V. also acknowledges Johnson-Matthey for support. We would like to thank Brian Theobald and Jonathan Sharman from JMTC Sonning for provision of the Pt sample. Approved Most recent IF: 8.6; 2020 IF: 8.462
  Call Number EMAT @ emat @c:irua:167148 Serial 6347
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Van Aert, S.
  Title Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 219 Issue Pages (up) 113131
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000594770500003 Publication Date 2020-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited Open Access OpenAccess
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. Approved Most recent IF: 2.2; 2020 IF: 2.843
  Call Number EMAT @ emat @c:irua:172449 Serial 6417
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S.
  Title Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume Issue Pages (up) 113391
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000704334200001 Publication Date 2021-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited Open Access OpenAccess
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported Approved Most recent IF: 2.843
  Call Number EMAT @ emat @c:irua:181462 Serial 6810
Permanent link to this record
 

 
Author Sentürk, D.G.; De Backer, A.; Friedrich, T.; Van Aert, S.
  Title Optimal experiment design for element specific atom counting using multiple annular dark field scanning transmission electron microscopy detectors Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 242 Issue Pages (up) 113626
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract This paper investigates the possible benefits for counting atoms of different chemical nature when analysing multiple 2D scanning transmission electron microscopy (STEM) images resulting from independent annular dark field (ADF) detector regimes. To reach this goal, the principles of statistical detection theory are used to quantify the probability of error when determining the number of atoms in atomic columns consisting of multiple types of elements. In order to apply this theory, atom-counting is formulated as a statistical hypothesis test, where each hypothesis corresponds to a specific number of atoms of each atom type in an atomic column. The probability of error, which is limited by the unavoidable presence of electron counting noise, can then be computed from scattering-cross sections extracted from multiple ADF STEM images. Minimisation of the probability of error as a function of the inner and outer angles of a specified number of independent ADF collection regimes results in optimal experimental designs. Based on simulations of spherical Au@Ag and Au@Pt core–shell nanoparticles, we investigate how the combination of two non-overlapping detector regimes helps to improve the probability of error when unscrambling two types of atoms. In particular, the combination of a narrow low angle ADF detector with a detector formed by the remaining annular collection regime is found to be optimal. The benefit is more significant if the atomic number Z difference becomes larger. In

addition, we show the benefit of subdividing the detector regime into three collection areas for heterogeneous nanostructures based on a structure consisting of three types of elements, e.g., a mixture of Au, Ag and Al atoms. Finally, these results are compared with the probability of error resulting when one would ultimately use a pixelated 4D STEM detector and how this could help to further reduce the incident electron dose.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000873778100001 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited Open Access OpenAccess
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF).; esteem3reported; esteem3jra Approved Most recent IF: 2.2
  Call Number EMAT @ emat @c:irua:190925 Serial 7118
Permanent link to this record
 

 
Author Zhang, Z.; Lobato, I.; De Backer, A.; Van Aert, S.; Nellist, P.
  Title Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal
  Volume 246 Issue Pages (up) 113671
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.
  Address
  Corporate Author Zezhong Zhang Thesis
  Publisher Place of Publication Editor
  Language Wos 000995063900001 Publication Date 2022-12-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited Open Access OpenAccess
  Notes European Research Council 770887 PICOMETRICS; Fonds Wetenschappelijk Onderzoek No.G.0502.18N; Horizon 2020, 770887 ; Horizon 2020 Framework Programme; European Research Council, 823717 ESTEEM3 ; esteem3reported; esteem3JRa Approved Most recent IF: 2.2; 2023 IF: 2.843
  Call Number EMAT @ emat @c:irua:195890 Serial 7251
Permanent link to this record
 

 
Author De Backer, A.; Bals, S.; Van Aert, S.
  Title A decade of atom-counting in STEM: From the first results toward reliable 3D atomic models from a single projection Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal
  Volume Issue Pages (up) 113702
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Quantitative structure determination is needed in order to study and understand nanomaterials at the atomic scale. Materials characterisation resulting in precise structural information is a crucial point to understand the structure–property relation of materials. Counting the number of atoms and retrieving the 3D atomic structure of nanoparticles plays an important role here. In this paper, an overview will be given of the atom-counting methodology and its applications over the past decade. The procedure to count the number of atoms will be discussed in detail and it will be shown how the performance of the method can be further improved. Furthermore, advances toward mixed element nanostructures, 3D atomic modelling based on the atom-counting results, and quantifying the nanoparticle dynamics will be highlighted.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000953765800001 Publication Date 2023-02-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited 3 Open Access OpenAccess
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert, Grant 815128 REALNANO to S. Bals, and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N, and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF) . The authors also thank the colleagues who have contributed to this work over the years, including T. Altantzis, E. Arslan Irmak, K.J. Batenburg, E. Bladt, A. De wael, R. Erni, C. Faes, B. Goris, L. Jones, L.M. Liz-Marzán, I. Lobato, G.T. Martinez, P.D. Nellist, M.D. Rosell, A. Rosenauer, K.H.W. van den Bos, A. Varambhia, and Z. Zhang.; esteem3reported; esteem3JRA Approved Most recent IF: 2.2; 2023 IF: 2.843
  Call Number EMAT @ emat @c:irua:195896 Serial 7236
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: