|   | 
Details
   web
Records
Author Sieger, M.; Pahlke, P.; Lao, M.; Meledin, A.; Eisterer, M.; Van Tendeloo, G.; Schultz, L.; Nielsch, K.; Huehne, R.
Title Thick secondary phase pinning-enhanced YBCO films on technical templates Type A1 Journal article
Year 2018 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 28 Issue 4 Pages (up) 8000505
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The critical current I-c(B) of YBa2Cu3O7-delta (YBCO) coated conductors can be increased by growing thicker superconductor layers as well as improving the critical current density J(c)(B) by the incorporation of artificial pinning centers. We studied the properties of pulsed laser deposited BaHfO3 (BHO)-doped YBCO films with thicknesses of up to 5 mu m on buffered rolling-assisted biaxially textured Ni-5 at % W tape and alternating beam assisted deposition textured Yttrium-stabilized ZrO2 layers on stainless steel. X-Ray diffraction confirms the epitaxial growth of the superconductor on the buffered metallic template. BHO additions reduce the film porosity and lower the probability to grow misoriented grains, hence preventing the J(c) decrease observed in undoped YBCO films with thicknesses > 2 mu m. Thereby, a continuous increase in I-c at 77 K is achieved. A mixed structure of secondary phase nanorods and platelets with different orientations increases J(c)(B) in the full angular range and simultaneously lowers the J(c) anisotropy compared to pristine YBCO.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000427623700001 Publication Date 2018-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.288 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement no. 280432. Max Sieger acknowledges funding by the Graduate Academy of the Technical University Dresden, funded by means of the Excellence Initiative by the German Federal and State Governments. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150712 Serial 4986
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Caratelli, D.; Chiapperino, M.A.; Stukach, O.; Gielis, J.
Title Electromagnetic mathematical modeling of 3D supershaped dielectric lens antennas Type A1 Journal article
Year 2016 Publication Mathematical problems in engineering: theory, methods, and applications Abbreviated Journal
Volume Issue Pages (up) 8130160-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372246600001 Publication Date 2016-02-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1024-123x; 1563-5147 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:131516 Serial 7866
Permanent link to this record
 

 
Author de Jong, M.; Sleegers, N.; Schram, J.; Daems, D.; Florea, A.; De Wael, K.
Title A Benzocaine‐Induced Local Near‐Surface pH Effect: Influence on the Accuracy of Voltammetric Cocaine Detection Type A1 Journal article
Year 2020 Publication Analysis & Sensing Abbreviated Journal Anal. Sens.
Volume Issue Pages (up) anse.202000012
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract This work reports on a local induced near-surface pH effect (pHS), due to the presence of one analyte, leading to an influence or even suppression of redox signals of a second analyte present in solution. This concept and its impact on voltammetric sensing is illustrated by focusing on the detection of cocaine in the presence of the common adulterant benzocaine. An in-depth study on the occurring interference mechanism and why it occurs for benzocaine specifically and not for other adulterants was performed through the use of multiple electrochemical strategies. It was concluded that the potential shift and loss of intensity of the squarewave voltammetric cocaine signal in the presence of benzocaine was caused by a local pHS effect. A cathodic pretreatment strategy was developed to nonetheless allow accurate cocaine detection. The gathered insights are useful to explain unidentified phenomena involving compounds with properties similar to benzocaine in voltammetric electroanalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2020-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2629-2742 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes The authors acknowledge financial support from IOF-SBO/POC (UAntwerp), the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N and Grant 1SB 8120N, and VLAIO IM [HBC.2019.2181]. Approved Most recent IF: NA
Call Number AXES @ axes @c:irua:173031 Serial 6427
Permanent link to this record
 

 
Author Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W.
Title Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage Type A1 Journal article
Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 26 Issue 4 Pages (up) Pii S1431927620001713-666
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000555537900004 Publication Date 2020-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 4 Open Access OpenAccess
Notes ; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891
Call Number UA @ admin @ c:irua:171185 Serial 6518
Permanent link to this record
 

 
Author Freund, R.; Canossa, S.; Cohen, S.M.; Yan, W.; Deng, H.; Guillerm, V.; Eddaoudi, M.; Madden, D.G.; Fairen-Jimenez, D.; Lyu, H.; Macreadie, L.K.; Ji, Z.; Zhang, Y.; Wang, B.; Haase, F.; Wöll, C.; Zaremba, O.; Andreo, J.; Wuttke, S.; Diercks, C.S.
Title 25 years of Reticular Chemistry Type A1 Journal article
Year 2021 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume Issue Pages (up) anie.202101644
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract At its core, reticular chemistry has translated the precision and expertise of organic and inorganic synthesis to the solid state. While initial excitement over metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs) was undoubtedly fueled by their unprecedented porosity and surface areas, the most profound scientific innovation of the field has been the elaboration of design strategies for the synthesis of extended crystalline solids through strong directional bonds. In this contribution we highlight the different classes of reticular materials that have been developed, how these frameworks can be functionalized and how complexity can be introduced into their backbones. Finally, we show how the structural control over these materials is being extended from the molecular scale to their crystal morphology and shape on the nanoscale, all the way to their shaping on the bulk scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000672037800001 Publication Date 2021-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.994
Call Number EMAT @ emat @c:irua:177778 Serial 6743
Permanent link to this record
 

 
Author Otero-Martinez, C.; Imran, M.; Schrenker, N.J.; Ye, J.; Ji, K.; Rao, A.; Stranks, S.D.; Hoye, R.L.Z.; Bals, S.; Manna, L.; Perez-Juste, J.; Polavarapu, L.
Title Fast A-site cation cross-exchange at room temperature : single-to double- and triple-cation halide perovskite nanocrystals Type A1 Journal article
Year 2022 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 61 Issue 34 Pages (up) e202205617-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report here fast A-site cation cross-exchange between APbX(3) perovskite nanocrystals (NCs) made of different A-cations (Cs (cesium), FA (formamidinium), and MA (methylammonium)) at room temperature. Surprisingly, the A-cation cross-exchange proceeds as fast as the halide (X=Cl, Br, or I) exchange with the help of free A-oleate complexes present in the freshly prepared colloidal perovskite NC solutions. This enabled the preparation of double (MACs, MAFA, CsFA)- and triple (MACsFA)-cation perovskite NCs with an optical band gap that is finely tunable by their A-site composition. The optical spectroscopy together with structural analysis using XRD and atomically resolved high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and integrated differential phase contrast (iDPC) STEM indicates the homogeneous distribution of different cations in the mixed perovskite NC lattice. Unlike halide ions, the A-cations do not phase-segregate under light illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823857300001 Publication Date 2022-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 28 Open Access OpenAccess
Notes L.P. acknowledges the support from the Spanish Ministerio de Ciencia e Innovacion through Ramon y Cajal grant (RYC2018-026103-I) and the Spanish State Research Agency (Grant No. PID2020-117371RA-I00), the grant from the Xunta de Galicia (ED431F2021/05). N.J.S. acknowledges financial support from the Research Foundation-Flanders via a postdoctoral fellowship (FWO Grant No. 1238622N). S.B. thanks the financial support of the European Research Council (ERC-CoG-2019815128) and of the European Commission (EUSMI, Grant 731019). R.L.Z.H. thanks the Royal Academy of Engineering through the Research Fellowships scheme (No.: RF\201718\1701). S.D.S. and K.J. acknowledge the Royal Society for funding. S.D.S. acknowledges the Royal Society and Tata Group (UF150033). The work has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (HYPERION -grant agreement no. 756962). The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding (EP/R023980/1). M.I. and L.M. acknowledge financial support from the Italian Ministry of University and Research (MIUR) through the Flag-Era JTC2019 project “Solution-Processed Perovskite/Graphene Nanocomposites for Self-Powered Gas Sensors” (PeroGaS). The authors acknowledge the Universidade de Vigo/CISUG for open access funding. Approved Most recent IF: 16.6
Call Number UA @ admin @ c:irua:189675 Serial 7083
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M.
Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem
Volume 14 Issue 18 Pages (up) e202200754-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000853941300001 Publication Date 2022-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 7 Open Access OpenAccess
Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved Most recent IF: 4.5
Call Number UA @ admin @ c:irua:190703 Serial 7226
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume Issue Pages (up) e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Pelmuş, M.; Gorun, S.M.; De Wael, K.
Title The role of singlet oxygen, superoxide, hydroxide, and hydrogen peroxide in the photoelectrochemical response of phenols at a supported highly fluorinated zinc phthalocyanine Type A1 Journal article
Year 2022 Publication ChemElectroChem Abbreviated Journal
Volume 9 Issue 6 Pages (up) e202200108-10
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Photoelectrochemical (PEC) sensing of phenolic compounds using singlet oxygen (1O2)-generating photocatalysts has emerged as a powerful detection tool. However, it is currently not known how experimental parameters, such as pH and applied potential, influence the generation of reactive oxygen species (ROS) and their photocurrents. In this article, the PEC response was studied over the 6 to 10 pH range using a rotating (ring) disk (R(R)DE) set-up in combination with quenchers, to identify the ROS formed upon illumination of a supported photosensitizer, F64PcZn. The photocurrents magnitude depended on the applied potential and the pH of the buffer solution. The anodic responses were caused by the oxidation of O2.−, generated due to the quenching of 1O2 with −OH and the reaction of 3O2 with [F64Pc(3-)Zn]. The cathodic responses were assigned to the reduction of 1O2 and O2.−, yielding H2O2. These insights may benefit 1O2 – based PEC sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000773947300003 Publication Date 2022-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:187524 Serial 8926
Permanent link to this record
 

 
Author Liang, Z.; Batuk, M.; Orlandi, F.; Manuel, P.; Hadermann, J.; Hayward, M.A.
Title Disproportionation of Co2+ in the topochemically reduced oxide LaSrCoRuO₅ Type A1 Journal article
Year 2024 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume 63 Issue 6 Pages (up) e202313067-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6, using Zr, yields LaSrCoRuO5. This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+O5, square-planar Co1+O4 and octahedral Co3+O6 units, consistent with the coordination-geometry driven disproportionation of Co2+. Coordination-geometry driven disproportionation of d(7) transition-metal cations (e.g. Rh2+, Pd3+, Pt3+) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d(7+) Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+O4 and Co3+O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=(1)/(2) Ru3+ and S=1 Co1+.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001136579700001 Publication Date 2023-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record
Impact Factor 16.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 16.6; 2024 IF: 11.994
Call Number UA @ admin @ c:irua:202801 Serial 9023
Permanent link to this record