|   | 
Details
   web
Records
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van Dijk, J.
Title The influence of impurities on the performance of the dielectric barrier discharge Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 9 Pages (up) 091501,1-091501,3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, we investigate the effect of various levels of nitrogen impurity on the electrical performance of an atmospheric pressure dielectric barrier discharge in helium. We illustrate the different current profiles that are obtained, which exhibit one or more discharge pulses per half cycle and evaluate their performance in ionizing the discharge and dissipating the power. It is shown that flat and broad current profiles perform the best in ionizing the discharge and use the least amount of power per generated charged particle.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000275246200008 Publication Date 2010-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 28 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:80944 Serial 1624
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D.
Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 9 Pages (up) 092502-092502,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000301183000002 Publication Date 2012-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97180 Serial 1243
Permanent link to this record
 

 
Author Iyikanat, F.; Sahin, H.; Senger, R.T.; Peeters, F.M.
Title Ag and Au atoms intercalated in bilayer heterostructures of transition metal dichalcogenides and graphene Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 9 Pages (up) 092801
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The diffusive motion of metal nanoparticles Au and Ag on monolayer and between bilayer heterostructures of transition metal dichalcogenides and graphene are investigated in the framework of density functional theory. We found that the minimum energy barriers for diffusion and the possibility of cluster formation depend strongly on both the type of nanoparticle and the type of monolayers and bilayers. Moreover, the tendency to form clusters of Ag and Au can be tuned by creating various bilayers. Tunability of the diffusion characteristics of adatoms in van der Waals heterostructures holds promise for controllable growth of nanostructures. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342568000020 Publication Date 2014-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. F.I. and R.T.S. acknowledge the support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:119950 Serial 82
Permanent link to this record
 

 
Author Clima, S.; Wouters, D.J.; Adelmann, C.; Schenk, T.; Schroeder, U.; Jurczak, M.; Pourtois, G.
Title Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2 : a first principles insight Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 9 Pages (up) 092906
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The origin of the ferroelectric polarization switching in orthorhombic HfO2 has been investigated by first principles calculations. The phenomenon can be regarded as being the coordinated displacement of four O ions in the orthorhombic unit cell, which can lead to a saturated polarization as high as 53 mu C/cm(2). We show the correlation between the computed polarization reversal barrier and the experimental coercive fields. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000332729200078 Publication Date 2014-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 79 Open Access
Notes Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:116873 Serial 1550
Permanent link to this record
 

 
Author Alexandrov, A.L.; Schweigert, I.V.; Peeters, F.M.
Title A non-Maxwellian kinetic approach for charging of dust particles in discharge plasmas Type A1 Journal article
Year 2008 Publication New journal of physics Abbreviated Journal New J Phys
Volume 10 Issue Pages (up) 093025,1-093025,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoparticle charging in a capacitively coupled radio frequency discharge in argon is studied using a particle in cell Monte Carlo collisions method. The plasma parameters and dust potential were calculated self-consistently for different unmovable dust profiles. A new method for definition of the dust floating potential is proposed, based on the information about electron and ion energy distribution functions, obtained during the kinetic simulations. This approach provides an accurate balance of the electron and ion currents on the dust particle surface and allows us to precisely calculate the dust floating potential. A comparison of the obtained floating potentials with the results of the traditional orbital motion limit (OML) theory shows that in the presence of the ion resonant charge exchange collisions, even when the OML approximation is valid, its results are correct only in the region of a weak electric field, where the ion drift velocity is much smaller than the thermal one. With increasing ion drift velocity, the absolute value of the calculated dust potential becomes significantly smaller than the theory predicts. This is explained by a non-Maxwellian shape of the ion energy distribution function for the case of fast ion drift.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000259615700004 Publication Date 2008-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 19 Open Access
Notes Approved Most recent IF: 3.786; 2008 IF: 3.440
Call Number UA @ lucian @ c:irua:76519 Serial 2348
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
Volume 14 Issue 9 Pages (up) 093043
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000309393400001 Publication Date 2012-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 47 Open Access
Notes Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:101014 Serial 189
Permanent link to this record
 

 
Author Chen, Q.; Guo, A.-M.; Liu, J.; Peeters, F.M.; Sun, Q.-F.
Title Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors Type A1 Journal article
Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys
Volume 23 Issue 9 Pages (up) 093047
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Topological properties of a double-stranded DNA (dsDNA) proximity-coupled by an s-wave superconductor are investigated, in which the energy spectra and the differential conductance are calculated within the framework of tight-binding approximation. Our results indicate that this dsDNA-superconductor system hosts Majorana zero modes (MZMs) when the Zeeman field is perpendicular to the helix axis, whereas no MZM could be observed when the Zeeman field is parallel to the helix axis, in sharp contrast to previous studies on nanowires including single-stranded DNA. In particular, two topological phase transitions could take place in the dsDNA-superconductor system by changing the Zeeman field, one from a topological trivial phase to a topological nontrivial phase with one pair of MZMs in small Zeeman field regime, and the other from a phase with one pair of MZMs to a phase with two pairs of MZMs by further increasing the Zeeman field. In the presence of a gate field normal to the helix axis, the topological nontrivial phase with two pairs of MZMs can transform into the phase with one pair of MZMs. The topological phase with one pair of MZMs is more stable and robust against Anderson disorder.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000702122000001 Publication Date 2021-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 7 Open Access OpenAccess
Notes Approved Most recent IF: 3.786
Call Number UA @ admin @ c:irua:182597 Serial 7033
Permanent link to this record
 

 
Author de Sousa, J.S.; Covaci, L.; Peeters, F.M.; Farias, G.A.
Title Time-dependent investigation of charge injection in a quantum dot containing one electron Type A1 Journal article
Year 2012 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 112 Issue 9 Pages (up) 093705-93709
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interaction of an injected electron towards a quantum dot (QD) containing a single confined electron is investigated using a flexible time-dependent quantum mechanics formalism, which allows both electrons to move and undergo quantum transitions. Different scenarios combining quantum dot dimensions, dielectric constant, injected wave packet energy, and width were explored, and our main results are: (i) due to the large characteristic transitions times between the confined state in the quantum dot and the delocalized state in the continuum, it is relatively difficult to ionize the occupied QD by Coulomb interaction solely and (ii) the charging state of the quantum dot can be sensed by direct injection of charges. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759292]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000311968400052 Publication Date 2012-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes ; This work was financially supported by the Brazilian National Research Council (CNPq), under Contract No. NanoBioEstruturas 555183/2005-0, Fundao Cearense de Apoio ao Desenvolvimento Cientfico e Tecnolgico (Funcap), CAPES, Pronex/CNPq/ Funcap, the Bilateral program between Flanders and Brazil, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068; 2012 IF: 2.210
Call Number UA @ lucian @ c:irua:106014 Serial 3664
Permanent link to this record
 

 
Author Frota, D.A.; Chaves, A.; Ferreira, W.P.; Farias, G.A.; Milošević, M.V.
Title Superconductor-ferromagnet bilayer under external drive : the role of vortex-antivortex matter Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 119 Issue 119 Pages (up) 093912
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using advanced Ginzburg-Landau simulations, we study the superconducting state of a thin superconducting film under a ferromagnetic layer, separated by an insulating oxide, in applied external magnetic field and electric current. The taken uniaxial ferromagnet is organized into a series of parallel domains with alternating polarization of out-of-plane magnetization, sufficiently strong to induce vortex-antivortex pairs in the underlying superconductor in absence of other magnetic field. We show the organization of such vortex-antivortex matter into rich configurations, some of which are not matching the periodicity of the ferromagnetic film. The variety of possible configurations is enhanced by applied homogeneous magnetic field, where additional vortices in the superconductor may lower the energy of the system by either annihilating the present antivortices under negative ferromagnetic domains or by lowering their own energy after positioning under positive ferromagnetic domains. As a consequence, both the vortex-antivortex reordering in increasing external field and the evolution of the energy of the system are highly nontrivial. Finally, we reveal the very interesting effects of applied dc electric current on the vortex-antivortex configurations, since resulting Lorentzian force has opposite direction for vortices and antivortices, while direction of the applied current with respect to ferromagnetic domains is of crucial importance for the interaction of the applied and the Meissner current, as well as the consequent vortex-antivortex dynamics-both of which are reflected in the anisotropic critical current of the system. (C) 2016 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000372351900018 Publication Date 2016-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq, PRONEX/FUNCAP, and CAPES, and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:133200 Serial 4255
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W.
Title Role of carbon and nitrogen in Fe2C and Fe2N from first-principles calculations Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 9 Pages (up) 094102-094102,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Although Fe2C and Fe2N are technologically important materials, the exact nature of the chemical bonding of C and N atoms and the related impact on the electronic properties are at present unclear. Here, results of first-principles electronic structure calculations for Fe2X (X = C, N) phases are presented. The electronic structure calculations show that the roles of N and C in iron nitrides and carbides are comparable, and that the X-X interactions have significant impact on electronic properties. Accurate analysis of the spatially resolved differences in electron densities reveals a subtle distinction between the chemical bonding and charge transfer of N and C ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294772800003 Publication Date 2011-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 24 Open Access
Notes Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92327 Serial 2912
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 9 Pages (up) 094109-094109,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000288119700001 Publication Date 2011-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:88779 Serial 3928
Permanent link to this record
 

 
Author Galvan-Moya, J.E.; Misko, V.R.; Peeters, F.M.
Title Generic ordering of structural transitions in quasi-one-dimensional Wigner crystals Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages (up) 094111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the dependence of the structural phase transitions in an infinite quasi-one-dimensional system of repulsively interacting particles on the profile of the confining channel. Three different functional expressions for the confinement potential related to real experimental systems are used that can be tuned continuously from a parabolic to a hard-wall potential in order to find a thorough understanding of the ordering of the chainlike structure transitions. We resolve the long-standing issue why the most theories predicted a 1-2-4-3-4 sequence of chain configurations with increasing density, while some experiments found the 1-2-3-4 sequence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342127000001 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 9 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119904 Serial 1326
Permanent link to this record
 

 
Author Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J.
Title Using electron vortex beams to determine chirality of crystals in transmission electron microscopy Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages (up) 094112
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We investigate electron vortex beams elastically scattered on chiral crystals. After deriving a general expression for the scattering amplitude of a vortex electron, we study its diffraction on point scatterers arranged on a helix. We derive a relation between the handedness of the helix and the topological charge of the electron vortex on one hand and the symmetry of the higher-order Laue zones in the diffraction pattern on the other for kinematically and dynamically scattered electrons. We then extend this to atoms arranged on a helix as found in crystals which belong to chiral space groups and propose a method to determine the handedness of such crystals by looking at the symmetry of the diffraction pattern. In contrast to alternative methods, our technique does not require multiple scattering, which makes it possible to also investigate extremely thin samples in which multiple scattering is suppressed. In order to verify the model, elastic scattering simulations are performed, and an experimental demonstration on Mn2Sb2O7 is given in which we find the sample to belong to the right-handed variant of its enantiomorphic pair. This demonstrates the usefulness of electron vortex beams to reveal the chirality of crystals in a transmission electron microscope and provides the required theoretical basis for further developments in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352017000002 Publication Date 2015-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra1; esteem2jra2 ECASJO_; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125512 c:irua:125512 Serial 3825
Permanent link to this record
 

 
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M.
Title Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages (up) 094302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000409246200003 Publication Date 2017-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145630 Serial 4751
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M.
Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages (up) 094420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411161700002 Publication Date 2017-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access OpenAccess
Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836
Call Number EMAT @ emat @c:irua:146748 Serial 4774
Permanent link to this record
 

 
Author van den Heuvel, W.; Tikhomirov, V.K.; Kirilenko, D.; Schildermans, N.; Chibotaru, L.F.; Vanacken, J.; Gredin, P.; Mortier, M.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Ultralow blocking temperature and breakdown of the giant spin model in Er3+-doped nanoparticles Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 9 Pages (up) 094421-094421,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The magnetization of luminescent Er3+-doped PbF2 nanoparticles (formula Er0.3Pb0.7F2.3) has been studied. Despite the high concentration of the doping Er3+ ions and relatively large size (8 nm) of these nanoparticles we have found no deviation between field-cooled and zero-field-cooled magnetization curves down to T=0.35 K, which points out an ultralow blocking temperature for the reversal of magnetization. We also have found strongly deviating magnetization curves M(H/T) for different temperatures T. These results altogether show that the investigated nanoparticles are not superparamagnetic, but rather each Er3+ ion in these nanoparticles is found in a paramagnetic state down to very low temperatures, which implies the breakdown of the Néel-Brown giant spin model in the case of these nanoparticles. Calculations of magnetization within a paramagnetic model of noninteracting Er3+ ions completely support this conclusion. Due to the ultralow blocking temperature, these nanoparticles have a potential for magnetic field-induced nanoscale refrigeration with an option of their optical localization and temperature control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000281773300005 Publication Date 2010-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85423 Serial 3796
Permanent link to this record
 

 
Author Shestakov, M.V.; Meledina, M.; Turner, S.; Baekelant, W.; Verellen, N.; Chen, X.; Hofkens, J.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Luminescence of fixed site Ag nanoclusters in a simple oxyfluoride glass host and plasmon absorption of amorphous Ag nanoparticles in a complex oxyfluoride glass host Type P1 Proceeding
Year 2015 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – 8th International Conference on Photonics, Devices, and System VI, AUG 27-29, 2014, Prague, CZECH REPUBLIC Abbreviated Journal
Volume Issue Pages (up) Unsp 94501n
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract Ag nanocluster-doped glasses have been prepared by a conventional melt-quenching method. The effect of melt temperature and dwell time on the formation of Ag nanoclusters and Ag nanoparticles in simple host oxyfluoride glasses has been studied. The increase of melt temperature and dwell time results in the dissolution of Ag nanoparticles and substantial red-shift of absorption and photoluminescence spectra of the prepared glasses. The quantum yield of the glasses is similar to 5% and does not depend on melt temperature and dwell time. The prepared glasses may be used as red phosphors or down-conversion layers for solar-cells.
Address
Corporate Author Thesis
Publisher Spie-int soc optical engineering Place of Publication Bellingham Editor
Language Wos 000349404500057 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume 9450 Series Issue Edition
ISSN 978-1-62841-566-7 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144783 Serial 4668
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abruptly switching on the supercritical current Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages (up) 094504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. We find that the temperature dependence of the finite delay time t(d) in the voltage response is model dependent and relatively large t(d) is connected with temporary cooling of quasiparticles during decay of superconducting order parameter vertical bar Delta vertical bar in time. It turns out that the presence of even small inhomogeneities in the bridge or finite length of the homogenous bridge favors a local suppression of vertical bar Delta vertical bar during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed vertical bar Delta vertical bar. In the case when the current density is maximal near the edge of a not very wide bridge the delay time is mainly connected with the time needed for the nucleation (entrance) of the first vortex and t(d) could be tuned by a weak external magnetic field. We also find that a short alternating current pulse (sinusoidlike) with zero time average may result in a nonzero time- averaged voltage response where its sign depends on the phase of the ac current.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342103600002 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was partially supported by the Russian Foundation for Basic Research (Project No. 12-02-00509), by the Ministry of Education and Science of the Russian Federation (the agreement of August 27, 2013, No. 02.B.49.21.0003, between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod) and by the European Science Foundation (ESF) within the framework of the activity entitled “Exploring the Physics of Small Devices (EPSD)” (Project No. 4327). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119908 Serial 3504
Permanent link to this record
 

 
Author Moura, V.N.; Chaves, A.; Peeters, F.M.; Milošević, M.V.
Title McMillan-Ginzburg-Landau theory of singularities and discommensurations in charge density wave states of transition metal dichalcogenides Type A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 9 Pages (up) 094507-94511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The McMillan-Ginzburg-Landau (MGL) model for charge density waves (CDW) is employed in a systematic phenomenological study of the different phases that have been probed in recent experiments involving transition metal dichalcogenides. We implemented an efficient imaginary time evolution method to solve the MGL equations, which enabled us to investigate the role of different coupling parameters on the CDW patterns and to perform calculations with different energy functionals that lead to several experimentally observed singularities in the CDW phase profiles. In particular, by choosing the appropriate energy functionals, we were able to obtain phases that go beyond the well-known periodic phase slips (discommensurations), exhibiting also topological defects (i.e., vortex-antivortex pairs), domain walls where the CDW order parameter is suppressed, and even CDW with broken rotational symmetry. Finally, we briefly discuss the effect of these different CDW phases on the profile and critical temperature of the competing superconducting state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001199651500001 Publication Date 2024-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:205491 Serial 9158
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Interaction between a superconducting vortex and an out-of-plane magnetized ferromagnetic disk: influence of the magnet geometry Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages (up) 094510,1-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000185717600091 Publication Date 2003-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44985 Serial 1681
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages (up) 094510
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000410166800008 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145623 Serial 4741
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R.
Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 9 Pages (up) 094510-94519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000917933500004 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194397 Serial 7304
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Origin of the hysteresis of the current voltage characteristics of superconducting microbridges near the critical temperature Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 9 Pages (up) 094511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The current voltage (IV) characteristics of short [with length L less than or similar to xi(T)] and long [L >> xi(T)] microbridges are theoretically investigated near the critical temperature of the superconductor. Calculations are made in the nonlocal (local) limit when the inelastic relaxation length due to electron-phonon interactions L(in) = (D tau(in))(1/2) is larger (smaller) than the temperature-dependent coherence length xi(T) (D is the diffusion coefficient, tau(in) is the inelastic relaxation time of the quasiparticle distribution function). We find that, in both limits, the origin of the hysteresis in the IV characteristics is mainly connected with the large time scale over which the magnitude of the order parameter varies in comparison with the time-scale variation of the superconducting phase difference across the microbridge in the resistive state. In the nonlocal limit, the time-averaged heating and cooling of quasiparticles are found in different areas of the microbridge, which are driven, respectively, by oscillations of the order parameter and the electric field. We show that, by introducing an additional term in the time-dependent Ginzburg-Landau equation, it is possible to take into account the cooling effect in the local limit too.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000294920900009 Publication Date 2011-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme“Scientific and educational personnel of innovative Russia in 2009-2013,” the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:105573 Serial 2527
Permanent link to this record
 

 
Author Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.; Vodolazov, D.Y.; Peeters, F.M.
Title Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages (up) 094512,1-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220812800111 Publication Date 2004-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 61 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69383 Serial 475
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Peeters, F.M.
Title Soft vortex matter in a type-I/type-II superconducting bilayer Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 9 Pages (up) 094515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic flux patterns are known to strongly differ in the intermediate state of type-I and type-II superconductors. Using a type-I/type-II bilayer we demonstrate hybridization of these flux phases into a plethora of unique new ones. Owing to a complicated multibody interaction between individual fluxoids, many different intriguing patterns are possible under applied magnetic field, such as few-vortex clusters, vortex chains, mazes, or labyrinthal structures resembling the phenomena readily encountered in soft-matter physics. However, in our system the patterns are tunable by sample parameters, magnetic field, current, and temperature, which reveals transitions from short-range clustering to long-range ordered phases such as parallel chains, gels, glasses, and crystalline vortex lattices, or phases where lamellar type-I flux domains in one layer serve as a bedding potential for type-II vortices in the other, configurations clearly beyond the soft-matter analogy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324689900008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Insightful discussions with Arkady Shanenko and Edith Cristina Euan Diaz are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111167 Serial 3050
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages (up) 094516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000362081000002 Publication Date 2015-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:132467 Serial 4203
Permanent link to this record
 

 
Author Vargas Paredes, A.A.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Perali, A.
Title Crossband versus intraband pairing in superconductors: signatures and consequences of the interplay Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 9 Pages (up) 094516-94517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in twoband superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless” state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature. The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000522074900002 Publication Date 2020-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 14 Open Access
Notes ; This collaborative work was fostered within the international Multi Super network on Multi-condensate Superconductivity and Superfluidity [70]. The authors thank Andrea Guidini for his help during the initial stage of this work and Laura Fanfarillo for useful discussions. This work was partially supported by the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001) and the Research Foundation -Flanders (FWO). A.A.V.-P. acknowledges support by the joint doctoral program and by the Erasmus+ exchange between the University of Antwerp and the University of Camerino. M.V.M. gratefully acknowledges support from a Visiting Professorship at the University of Camerino. A.S. and A.V. acknowledge support from the CAPES/Print Grant, Process No. 88887.333666/ 2019-00 (Brazil) and the Russian Science Foundation Project No. 18-12-00429, respectively. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:168605 Serial 6479
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
Title Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene Type A1 Journal article
Year 2009 Publication New journal of physics Abbreviated Journal New J Phys
Volume 11 Issue Pages (up) 095009,1-095009,21
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract he properties of Dirac electrons in a magnetic superlattice (SL) on graphene consisting of very high and thin (δ-function) barriers are investigated. We obtain the energy spectrum analytically and study the transmission through a finite number of barriers. The results are contrasted with those for electrons described by the Schrödinger equation. In addition, a collimation of an incident beam of electrons is obtained along the direction perpendicular to that of the SL. We also highlight an analogy with optical media in which the refractive index varies in space.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000270513500008 Publication Date 2009-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 89 Open Access
Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
Call Number UA @ lucian @ c:irua:79241 Serial 1884
Permanent link to this record
 

 
Author Tennyson, J.; Mohr, S.; Hanicinec, M.; Dzarasova, A.; Smith, C.; Waddington, S.; Liu, B.; Alves, L.L.; Bartschat, K.; Bogaerts, A.; Engelmann, S.U.; Gans, T.; Gibson, A.R.; Hamaguchi, S.; Hamilton, K.R.; Hill, C.; O’Connell, D.; Rauf, S.; van ’t Veer, K.; Zatsarinny, O.
Title The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 9 Pages (up) 095020
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The Quantemol database (QDB) provides cross sections and rates of processes important for plasma models; heavy particle collisions (chemical reactions) and electron collision processes are considered. The current version of QDB has data on 28 917 processes between 2485 distinct species plus data for surface processes. These data are available via a web interface or can be delivered directly to plasma models using an application program interface; data are available in formats suitable for direct input into a variety of popular plasma modeling codes including HPEM, COMSOL, ChemKIN, CFD-ACE+, and VisGlow. QDB provides ready assembled plasma chemistries plus the ability to build bespoke chemistries. The database also provides a Boltzmann solver for electron dynamics and a zero-dimensional model. Thesedevelopments, use cases involving O<sub>2</sub>, Ar/NF<sub>3</sub>, Ar/NF<sub>3</sub>/O<sub>2</sub>, and He/H<sub>2</sub>O/O<sub>2</sub>chemistries, and plans for the future are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000895762200001 Publication Date 2022-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Engineering and Physical Sciences Research Council, EP/N509577/1 ; Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Science and Technology Facilities Council, ST/K004069/1 ; National Science Foundation, OAC-1834740 ; Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:192845 Serial 7245
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M.
Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type A1 Journal article
Year 2005 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
Volume 46 Issue 9 Pages (up) 095105
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000232206700005 Publication Date 2005-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.077 Times cited 18 Open Access
Notes Approved Most recent IF: 1.077; 2005 IF: 1.192
Call Number UA @ lucian @ c:irua:103142 Serial 3393
Permanent link to this record