toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Yagmurcukardes, M.; Senger, R.T.; Peeters, F.M.; Sahin, H.
  Title Mechanical properties of monolayer GaS and GaSe crystals Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 94 Issue 94 Pages (down) 245407
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The mechanical properties of monolayer GaS and GaSe crystals are investigated in terms of their elastic constants: in-plane stiffness (C), Poisson ratio (nu), and ultimate strength (sigma(U)) by means of first-principles calculations. The calculated elastic constants are compared with those of graphene and monolayer MoS2. Our results indicate that monolayer GaS is a stiffer material than monolayer GaSe crystals due to the more ionic character of the Ga-S bonds than the Ga-Se bonds. Although their Poisson ratio values are very close to each other, 0.26 and 0.25 for GaS and GaSe, respectively, monolayer GaS is a stronger material than monolayer GaSe due to its slightly higher sU value. However, GaS and GaSe crystals are found to be more ductile and flexible materials than graphene and MoS2. We have also analyzed the band-gap response of GaS and GaSe monolayers to biaxial tensile strain and predicted a semiconductor-metal crossover after 17% and 14% applied strain, respectively, for monolayer GaS and GaSe. In addition, we investigated how the mechanical properties are affected by charging. We found that the flexibility of single layer GaS and GaSe displays a sharp increase under 0.1e/cell charging due to the repulsive interactions between extra charges located on chalcogen atoms. These charging-controllable mechanical properties of single layers of GaS and GaSe can be of potential use for electromechanical applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000389503400008 Publication Date 2016-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 108 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. R.T.S. acknowledges the support from TUBITAK through project 114F397. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:139229 Serial 4356
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Peeters, F.M.
  Title Geometry and magnetic-field-induced vortices and antivortices in mesoscopic two-dimensional systems Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 71 Issue Pages (down) 245405,1-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000230276900095 Publication Date 2005-06-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
  Call Number UA @ lucian @ c:irua:62438 Serial 1330
Permanent link to this record
 

 
Author Çakir, D.; Otalvaro, D.M.; Brocks, G.
  Title Magnetoresistance in multilayer fullerene spin valves: A first-principles study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 90 Issue 24 Pages (down) 245404
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Carbon-based molecular semiconductors are explored for application in spintronics because their small spinorbit coupling promises long spin lifetimes. We calculate the electronic transport from first principles through spin valves comprising bi-and tri-layers of the fullerene molecules C-60 and C-70, sandwiched between two Fe electrodes. The spin polarization of the current, and the magnetoresistance depend sensitively on the interactions at the interfaces between the molecules and the metal surfaces. They are much less affected by the thickness of the molecular layers. A high current polarization (CP > 90%) and magnetoresistance (MR > 100%) at small bias can be attained using C-70 layers. In contrast, the current polarization and the magnetoresistance at small bias are vanishingly small for C-60 layers. Exploiting a generalized Julliere model we can trace the differences in spin-dependent transport between C-60 and C-70 layers to differences between the molecule-metal interface states. These states also allow one to interpret the current polarization and the magnetoresistance as a function of the applied bias voltage.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000345875200005 Publication Date 2014-12-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 13 Open Access
  Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:122177 Serial 1928
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
  Title Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 24 Pages (down) 245403
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Transition metal dichalcogenides (TMDs) are considered as promising candidates for next generation of electronic and optoelectronic devices. To make use of these materials, for instance in field effect transistor applications, it is mandatory to know the detailed properties of contacts of such TMDs with metal electrodes. Here, we investigate the role of the contact structure on the electronic and transport properties of metal-MoSe2 interfaces. Two different contact types, namely face and edge contacts, are studied. We consider both low (Sc) and high (Au) work function metals in order to thoroughly elucidate the role of the metal work function and the type of metal. First principles plane wave calculations and transport calculations based on nonequilibrium Green's function formalism reveal that the contact type has a large impact on the electronic and transport properties of metal-MoSe2 interfaces. For the Sc electrode, the Schottky barrier heights are around 0.25 eV for face contact and bigger than 0.6 eV for edge contact. For the Au case, we calculate very similar barrier heights for both contact types with an average value of 0.5 eV. Furthermore, while the face contact is found to be highly advantageous as compared to the edge contact for the Sc electrode, the latter contact becomes a better choice for the Au electrode. Our findings provide guidelines for the fabrication of TMD-based devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336917700004 Publication Date 2014-06-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 39 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:117750 Serial 644
Permanent link to this record
 

 
Author Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M.
  Title Energy levels of triangular and hexagonal graphene quantum dots : a comparative study between the tight-binding and Dirac equation approach Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 84 Issue 24 Pages (down) 245403-245403,12
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Dirac equation is solved for triangular and hexagonal graphene quantum dots for different boundary conditions in the presence of a perpendicular magnetic field. We analyze the influence of the dot size and its geometry on their energy spectrum. A comparison between the results obtained for graphene dots with zigzag and armchair edges, as well as for infinite-mass boundary condition, is presented and our results show that the type of graphene dot edge and the choice of the appropriate boundary conditions have a very important influence on the energy spectrum. The single-particle energy levels are calculated as a function of an external perpendicular magnetic field that lifts degeneracies. Comparing the energy spectra obtained from the tight-binding approximation to those obtained from the continuum Dirac equation approach, we verify that the behavior of the energies as a function of the dot size or the applied magnetic field are qualitatively similar, but in some cases quantitative differences can exist.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000297767800008 Publication Date 2011-12-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 145 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE (project CONGRAN), the Bilateral program between Flanders and Brazil, CAPES and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:93961 Serial 1040
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J.
  Title Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 24 Pages (down) 245324-245324,12
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000292254000005 Publication Date 2011-06-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:90923 Serial 3755
Permanent link to this record
 

 
Author Reijniers, J.; Peeters, F.M.; Matulis, A.
  Title Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages (down) 245314
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000173082500066 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 29 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:37277 Serial 985
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.
  Title Three electrons in laterally coupled quantum dots: tunnel vs electrostatic coupling, ground-state symmetry, and interdot correlations Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 71 Issue Pages (down) 245314,1-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000230276900069 Publication Date 2005-06-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 7 Open Access
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
  Call Number UA @ lucian @ c:irua:69411 Serial 3657
Permanent link to this record
 

 
Author Nguyen, N.T.T.; Peeters, F.M.
  Title Cyclotron resonance of a magnetic quantum dot Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
  Volume 78 Issue 24 Pages (down) 245311,1-245311,10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The energy spectrum of a one-electron quantum dot doped with a single magnetic ion is studied in the presence of an external magnetic field. The allowed cyclotron resonance (CR) transitions are obtained together with their oscillator strength as a function of the magnetic field, the position of the magnetic ion, and the quantum dot confinement strength. With increasing magnetic field a ferromagnetic-antiferromagnetic transition is found, which results in clear signatures in the CR absorption. It leads to discontinuities in the transition energies and the oscillator strengths and to an increase in the number of allowed transitions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000262246400055 Publication Date 2008-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 11 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:76011 Serial 602
Permanent link to this record
 

 
Author Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S.
  Title Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 81 Issue 24 Pages (down) 245310,1-245310,15
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000278606100003 Publication Date 2010-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:83095 Serial 379
Permanent link to this record
 

 
Author Riva, C.; Escorcia, R.A.; Govorov, A.O.; Peeters, F.M.
  Title Charged donors in quantum dots: finite difference and fractional dimensions results Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 69 Issue Pages (down) 245306,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000222531800051 Publication Date 2004-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 23 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:69387 Serial 339
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.
  Title Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 49 Issue 49 Pages (down) 245204
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck–Condon heating through HBr(vib) dissociation,

at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000377427100020 Publication Date 2016-05-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited Open Access
  Notes The Fund for Scientific Research Flanders (FWO) is acknowledged for financial support of this work (Grant no. 0880.212.840). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Prof. Mark Kushner is also gratefully acknowledged for the useful discussions and for providing the HPEM code. Approved Most recent IF: 2.588
  Call Number c:irua:133457 Serial 4072
Permanent link to this record
 

 
Author Mijin, S.D.; Baum, A.; Bekaert, J.; Solajic, A.; Pesic, J.; Liu, Y.; He, G.; Milošević, M.V.; Petrovic, C.; Popovic, Z., V; Hackl, R.; Lazarevic, N.
  Title Probing charge density wave phases and the Mott transition in 1T-TaS₂I by inelastic light scattering Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 103 Issue 24 Pages (down) 245133
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS2 single crystals, supported by ab initio calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows P (3) over bar symmetry of the system, thus excluding the previously proposed triclinic stacking of the “star-of-David” structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be Omega(gap) approximate to 170-190 meV, and track its temperature dependence.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664450500002 Publication Date 2021-06-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:179664 Serial 7015
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Zarenia, M.; Vazifehshenas, T.; Peeters, F.M.
  Title Anisotropic charge density wave in electron-hole double monolayers : applied to phosphorene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 98 Issue 24 Pages (down) 245115
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The possibility of an inhomogeneous charge density wave phase is investigated in a system of two coupled electron and hole monolayers separated by a hexagonal boron nitride insulating layer. The charge-density-wave state is induced through the assumption of negative compressibility of electron/hole gases in a Coulomb drag configuration between the electron and hole sheets. Under equilibrium conditions, we derive analytical expressions for the density oscillation along the zigzag and armchair directions. We find that the density modulation not only depends on the sign of the compressibility but also on the anisotropy of the low-energy bands. Our results are applicable to any two-dimensional system with anisotropic parabolic bands, characterized by different effective masses. For equal effective masses, i.e., isotropic energy bands, our results agree with Hroblak et al. [Phys. Rev. B 96, 075422 (2017)]. Our numerical results are applied to phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000452995600001 Publication Date 2018-12-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.836 Times cited Open Access
  Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government and Iran Science Elites Federation. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:156233 Serial 5195
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M.
  Title Inner and outer ring states of MoS2 quantum rings : energy spectrum, charge and spin currents Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 125 Issue 24 Pages (down) 244303
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the energy levels and persistent currents of MoS2 quantum rings having different shapes and edge types in the presence of a perpendicular magnetic field by means of the tight-binding approach. We find states localized at the inner and outer boundaries of the ring. These energy levels exhibit different magnetic field dependences for the inner and outer ring states due to their different localization properties. They both exhibit the usual Aharanov-Bohm oscillations but with different oscillation periods. In the presence of spin-orbit coupling, we show distinct spin and charge persistent currents for inner and outer ring states. We find well-defined spin currents with negligibly small charge currents. This is because the local currents of spin-up and -down states flow in opposite directions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000474439600026 Publication Date 2019-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 11 Open Access
  Notes ; This work was supported by the Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2080, and 2018JJ4047), the National Natural Science Foundation of China (NNSFC) (No. 51502087), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A042, 15B056, and 17B060), and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.068
  Call Number UA @ admin @ c:irua:161309 Serial 5417
Permanent link to this record
 

 
Author Piorra, A.; Hrkac, V.; Wolff, N.; Zamponi, C.; Duppel, V.; Hadermann, J.; Kienle, L.; Quandt, E.
  Title (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD : relaxor properties and complex microstructure Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 125 Issue 24 Pages (down) 244103
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Ferroelectric lead-free thin films of the composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O-3 (BCZT) were deposited by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates using a ceramic BCZT target prepared by a conventional solid state reaction. The target material itself shows a piezoelectric coefficient of d(33)=640pm/V. The (111) textured thin films possess a thickness of up to 1.1 mu m and exhibit a clamped piezoelectric response f of up to 190pm/V, a dielectric coefficient of (r)=2000 at room temperature, and a pronounced relaxor behavior. As indicated by transmission electron microscopy, the thin films are composed of longitudinal micrometersized columns with similar to 100nm lateral dimension that are separated at twin- and antiphase boundaries. The superposition phenomena according to this columnar growth were simulated based on suitable supercells. The major structural component is described as a tetragonal distorted variant of the perovskite parent type; however, frequently coherently intergrown nanodomains were observed indicating a much more complex structure that is characterized by a 7-layer modulation along the growth direction of the films.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000474439600002 Publication Date 2019-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited Open Access
  Notes ; The authors want to thank Dr. Martina Luysberg and Dr. Lothar Houben from the Ernst Ruska Centre in Julich for discussion and CS-corrected microscopy. Funding of this work via the DFG (No. CRC1261) “Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics” and the PAK902 is gratefully acknowledged. ; Approved Most recent IF: 2.068
  Call Number UA @ admin @ c:irua:161310 Serial 5399
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G.
  Title Improved source design for p-type tunnel field-effect transistors : towards truly complementary logic Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 105 Issue 24 Pages (down) 243506
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In0.53Ga0.47As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000346643600076 Publication Date 2014-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 10 Open Access
  Notes ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:122798 Serial 1568
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J.
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 24 Pages (down) 243501
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472599100019 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 17 Open Access OpenAccess
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181
Permanent link to this record
 

 
Author Zhao, S.-X.; Zhang, Y.-R.; Gao, F.; Wang, Y.-N.; Bogaerts, A.
  Title Bulk plasma fragmentation in a C4F8 inductively coupled plasma : a hybrid modelling study Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages (down) 243303
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000357613900009 Publication Date 2015-06-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 11 Open Access
  Notes Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:126477 Serial 261
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title Paramagnetic adsorbates on graphene: a charge transfer analysis Type A1 Journal article
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 92 Issue 24 Pages (down) 243125,1-3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes. © 2008 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000256934900099 Publication Date 2008-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 79 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the NOI-BOF of the University of Antwerp, and the Belgian Science Policy (IAP). Discussions with C. Van Alsenoy are gratefully acknowledged. Approved Most recent IF: 3.411; 2008 IF: 3.726
  Call Number UA @ lucian @ c:irua:69619 Serial 2552
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M.
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 114 Issue 24 Pages (down) 243102
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472599100029 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411
  Call Number UA @ admin @ c:irua:161327 Serial 5428
Permanent link to this record
 

 
Author Du, G.H.; Xu, F.; Yuan, Z.Y.; Van Tendeloo, G.
  Title Flowerlike ZnO nanocones and nanowires: preparation, structure, and luminescence Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 88 Issue 24 Pages (down) 243101,1-3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000238314800074 Publication Date 2006-06-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 76 Open Access
  Notes Iap-V Approved Most recent IF: 3.411; 2006 IF: 3.977
  Call Number UA @ lucian @ c:irua:60057 Serial 1225
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
  Title The interband optical absorption in silicon quantum wells : application of the 30-band k . p model Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 104 Issue 24 Pages (down) 242103
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The interband optical absorption in Si/SiO2 quantum wells is calculated as function of the well width (W) and the evolution from an indirect to a direct gap material as function of the well width is investigated. In order to compute the electron states in the conduction band, the 30-band k . p model is employed, whereas the 6-band Luttinger-Kohn model is used for the hole states. We found that the effective direct band gap in the quantum well agrees very well with the W-2 scaling result of the single-band model. The interband matrix elements for linear polarized light oscillate with the quantum well width, which agrees qualitatively with a single band calculation. Our theoretical results indicate that the absorption can be maximized by a proper choice of the well width. However, the obtained absorption coefficients are at least an order of magnitude smaller than for a typical direct semiconductor even for a well width of 2 nm. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000337915000033 Publication Date 2014-06-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 1 Open Access
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:118448 Serial 1689
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M.
  Title Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures Type A1 Journal article
  Year 2008 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 93 Issue 24 Pages (down) 242103,1-242103,3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structures efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000261896400032 Publication Date 2008-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 91 Open Access
  Notes Approved Most recent IF: 3.411; 2008 IF: 3.726
  Call Number UA @ lucian @ c:irua:75931 Serial 3910
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D.
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 103 Issue Pages (down) 241913
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000328706500031 Publication Date 2013-12-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 53 Open Access
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:136442 Serial 4502
Permanent link to this record
 

 
Author van Dyck, D.; Croitoru, M.D.
  Title Statistical method for thickness measurement of amorphous objects Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 90 Issue 24 Pages (down) 241911-241913
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT); Vision lab
  Abstract The authors propose a nondestructive method for the determination of the thickness of an amorphous sample. This method is based on the statistics of the phase of the electron exit wave function, which depend on the number of atoms traversed by the incident electron which itself is a function of the thickness of the object. The accuracy of this method has been checked numerically by the multislice method and compared with that based on the mean inner potential. (c) 2007 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000247305400033 Publication Date 2007-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 4 Open Access
  Notes Fwo Approved Most recent IF: 3.411; 2007 IF: 3.596
  Call Number UA @ lucian @ c:irua:102671 Serial 3158
Permanent link to this record
 

 
Author Turner, S.; Egoavil, R.; Batuk, M.; Abakumov, A.A.; Hadermann, J.; Verbeeck, J.; Van Tendeloo, G.
  Title Site-specific mapping of transition metal oxygen coordination in complex oxides Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 101 Issue 24 Pages (down) 241910
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We demonstrate site-specific mapping of the oxygen coordination number for transition metals in complex oxides using atomically resolved electron energy-loss spectroscopy in an aberration-corrected scanning transmission electron microscope. Pb2Sr2Bi2Fe6O16 contains iron with a constant Fe3+ valency in both octahedral and tetragonal pyramidal coordination and is selected to demonstrate the principle of site-specific coordination mapping. Analysis of the site-specific Fe-L2,3 data reveals distinct variations in the fine structure that are attributed to Fe in a six-fold (octahedron) or five-fold (distorted tetragonal pyramid) oxygen coordination. Using these variations, atomic resolution coordination maps are generated that are in excellent agreement with simulations.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000312490000035 Publication Date 2012-12-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes Fwo; Countatoms; Vortex; Esteem 312483; esteem2jra3 ECASJO; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:105302UA @ admin @ c:irua:105302 Serial 3030
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.
  Title Superconducting proximity effect in graphene under inhomogeneous strain Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 84 Issue 24 Pages (down) 241401-241401,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The interplay between quantum Hall states and Cooper pairs is usually hindered by the suppression of the superconducting state due to the strong magnetic fields needed to observe the quantum Hall effect. From this point of view, graphene is special since it allows the creation of strong pseudomagnetic fields due to strain. We show that in a Josephson junction made of strained graphene, Cooper pairs will diffuse into the strained region. The pair correlation function will be sublattice polarized due to the polarization of the local density of states in the zero pseudo-Landau level. We uncover two regimes: (1) one in which the cyclotron radius is larger than the junction length, in which case the supercurrent will be enhanced, and (2) the long junction regime where the supercurrent is strongly suppressed because the junction becomes an insulator. In the latter case quantized Hall states form and Andreev scattering at the normal/superconducting interface will induce edge states. Our numerical calculation has become possible due to an extension of the Chebyshev-Bogoliubovde Gennes method to computations on video cards (GPUs).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000297766600003 Publication Date 2011-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Euro GRAPHENE project CONGRAN. Discussions with Andrey Chaves are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:93962 Serial 3364
Permanent link to this record
 

 
Author Stankovski, M.; Antonius, G.; Waroquiers, D.; Miglio, A.; Dixit, H.; Sankaran, K.; Giantomassi, M.; Gonze, X.; Côté, M.; Rignanese, G.-M.
  Title G0W0 band gap of ZnO : effects of plasmon-pole models Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 84 Issue 24 Pages (down) 241201-241201,5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Carefully converged calculations are performed for the band gap of ZnO within many-body perturbation theory (G0W0 approximation). The results obtained using four different well-established plasmon-pole models are compared with those of explicit calculations without such models (the contour-deformation approach). This comparison shows that, surprisingly, plasmon-pole models depending on the f-sum rule gives less precise results. In particular, it confirms that the band gap of ZnO is underestimated in the G0W0 approach as compared to experiment, contrary to the recent claim of Shih et al. [ Phys. Rev. Lett. 105 146401 (2010)].
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000297766600001 Publication Date 2011-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 81 Open Access
  Notes ; The authors would like to thank P. Zhang, S. Louie, J. Deslippe, P. Rinke, H. Jiang, C. Friedrich, and F. Bruneval for many helpful discussions. We are also very grateful to Y. Pouillon, A. Jacques, and J.-M. Beuken for their technical aid and expertise. M.C. and G.A. would like to acknowledge the support of NSERC and FQRNT. This work was supported by the Interuniversity Attraction Poles program (P6/42)-Belgian State-Belgian Science Policy, the Flemish Science Foundation (FWO-Vl) ISIMADE project, the EU's 7th Framework programme through the ETSF I3 e-Infrastructure project (Grant Agreement No. 211956), the Communaute francaise de Belgique, through the Action de Recherche Concertee 07/ 12-003 “Nanosystemes hybrides metal-organiques”, and the FNRS through FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:93963 Serial 3533
Permanent link to this record
 

 
Author Grigorieva, I.V.; Geim, A.K.; Dubonos, S.V.; Novoselov, K.S.; Vodolazov, D.Y.; Peeters, F.M.; Kes, P.H.; Hesselberth, M.
  Title Long-range nonlocal flow of vortices in narrow superconducting channels Type A1 Journal article
  Year 2004 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 92 Issue 23 Pages (down) 237001,1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000221961900045 Publication Date 2004-06-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 28 Open Access
  Notes Approved Most recent IF: 8.462; 2004 IF: 7.218
  Call Number UA @ lucian @ c:irua:69419 Serial 1838
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: