|   | 
Details
   web
Records
Author Zhang, H.; Jin, Q.; Hu, T.; Liu, X.; Zhang, Z.; Hu, C.; Zhou, Y.; Han, Y.; Wang, X.
Title Electron-irradiation-facilitated production of chemically homogenized nanotwins in nanolaminated carbides Type A1 Journal article
Year 2023 Publication Journal of Advanced Ceramics Abbreviated Journal
Volume 12 Issue 6 Pages (down) 1288-1297
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin boundaries have been exploited to stabilize ultrafine grains and improve mechanical properties of nanomaterials. The production of the twin boundaries and nanotwins is however prohibitively challenging in carbide ceramics. Using a scanning transmission electron microscope as a unique platform for atomic-scale structure engineering, we demonstrate that twin platelets could be produced in carbides by engineering antisite defects. The antisite defects at metal sites in various layered ternary carbides are collectively and controllably generated, and the metal elements are homogenized by electron irradiation, which transforms a twin-like lamellae into nanotwin platelets. Accompanying chemical homogenization, alpha-Ti3AlC2 transforms to unconventional beta-Ti3AlC2. The chemical homogeneity and the width of the twin platelets can be tuned by dose and energy of bombarding electrons. Chemically homogenized nanotwins can boost hardness by similar to 45%. Our results provide a new way to produce ultrathin (< 5 nm) nanotwin platelets in scientifically and technologically important carbide materials and showcase feasibility of defect engineering by an angstrom-sized electron probe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001004930200012 Publication Date 2023-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2226-4108; 2227-8508 ISBN Additional Links UA library record; WoS full record
Impact Factor 16.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.9; 2023 IF: 1.198
Call Number UA @ admin @ c:irua:197470 Serial 8860
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S.
Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 6 Issue 6 Pages (down) 1287-1297
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355908400001 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.127 Times cited 7 Open Access
Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670
Call Number c:irua:126431 Serial 1420
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title FIB/SEM applied to quantitative 3D analysis of precipitates in Ni-Ti Type A1 Journal article
Year 2011 Publication Diffusion and defect data : solid state data : part B : solid state phenomena Abbreviated Journal
Volume 172/174 Issue Pages (down) 1284-1289
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ni4Ti3 precipitates with a heterogeneous distribution growing in a polycrystalline Ni50.8Ti49.2 alloy have been investigated in a Dual-Beam FIB/SEM system. The volume ratio, mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured or calculated. The morphology of the precipitates was classified according to the Zingg scheme. The multistage martensitic transformation occurring in these kinds of samples is interpreted in view of the data of this heterogeneous microstructure of matrix and precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Vaduz Editor
Language Wos 000303359700199 Publication Date 2011-07-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9779; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:90152 Serial 1188
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D.; Vermeulen, W.; Richard, O.; Potapov, P.
Title Electron microscopy investigation of ternary \gamma-brass-type precipitation in a Ni39.6Mn47.5Ti12.9 alloy Type A1 Journal article
Year 1999 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 79 Issue 6 Pages (down) 1279-1294
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Homogenized Ni39.6Mn47.5T12.9 material was investigated by different electron microscopy techniques. Apart from the martensite precursor distortions typical for B2 phase alloys undergoing a thermoelastic martensitic transformation upon cooling, coherent dodecahedron-shaped precipitates with sizes between 20 and 100 nm and faceted by lozenge shapes of {110}-type planes are observed. Selected-area and microdiffraction patterns reveal an overall unit cell with a size of 3 x 3 x 3 units of the bcc lattice of the matrix and a body-centred symmetry without screw axes. Finally a ternary gamma-brass-type atomic structure of space group 14(3) over bar m is suggested for these precipitates in accordance with the obtained symmetry constraints, the energy-dispersive X-ray measurements and high-resolution transmission electron microscopy images. This is the first time this type of structure is found in an alloy completely consisting of transition-metal elements.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000080687900002 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104297 Serial 956
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D.; Vermeulen, W.; Richard, O.; Potapov, P.
Title EM investigation of precursors and precipitation in a Ni39.6Mn47.5Ti12.9 alloy Type A1 Journal article
Year 1999 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 79 Issue Pages (down) 1279-1294
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000080687900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610; 1364-2804 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29378 Serial 1029
Permanent link to this record
 

 
Author Felten, A.; Ghijsen, J.; Pireaux, J.-J.; Whelan, C.M.; Liang, D.; Van Tendeloo, G.; Bittencourt, C.
Title Photoemission study of CF4 rf-plasma treated multi-wall carbon nanotubes Type A1 Journal article
Year 2008 Publication Carbon Abbreviated Journal Carbon
Volume 46 Issue 10 Pages (down) 1271-1275
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 rf-plasma. X-ray photoelectron spectroscopy analysis shows that the treatment effectively grafts fluorine atoms onto the MWCNTs. The fluorine atomic concentration and the nature of the CF bond (semi-ionic or covalent) can be tuned by varying the exposure time. Ultraviolet photoelectron spectroscopy analysis confirms that the valence electronic states are altered by the grafting of fluorine atoms. Characterization with high-resolution transmission electron microscopy reveals that while the plasma treatment does not induce significant etching impact on the CNT-surface, it does increase the number of active sites for gold cluster formation.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000258987500001 Publication Date 2008-05-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 21 Open Access
Notes Approved Most recent IF: 6.337; 2008 IF: 4.373
Call Number UA @ lucian @ c:irua:76481 Serial 2612
Permanent link to this record
 

 
Author Vanhumbeeck, J.-F.; Tian, H.; Schryvers, D.; Proost, J.
Title Stress-assisted crystallisation in anodic titania Type A1 Journal article
Year 2011 Publication Corrosion science Abbreviated Journal Corros Sci
Volume 53 Issue 4 Pages (down) 1269-1277
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000288972000016 Publication Date 2010-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-938X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 5.245; 2011 IF: 3.734
Call Number UA @ lucian @ c:irua:88385 Serial 3177
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G.
Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 111 Issue 8 Pages (down) 1262-1267
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300461100039 Publication Date 2011-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 21 Open Access
Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471
Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151
Permanent link to this record
 

 
Author Gropp, C.; Canossa, S.; Wuttke, S.; Gándara, F.; Li, Q.; Gagliardi, L.; Yaghi, O.M.
Title Standard Practices of Reticular Chemistry Type A1 Journal article
Year 2020 Publication Acs Central Science Abbreviated Journal Acs Central Sci
Volume 6 Issue 8 Pages (down) 1255-1273
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Since 1995 when the first of metal−organic frameworks was crystallized with the strong bond approach, where metal ions are joined by charged organic linkers exemplified by carboxylates, followed by proof of their porosity in 1998 and ultrahigh porosity in 1999, a revolution in the development of their chemistry has ensued. This is being reinforced by the discovery of two- and three-dimensional covalent organic frameworks in 2005 and 2007. Currently, the chemistry of such porous, crystalline frameworks is collectively referred to as reticular chemistry, which is being practiced in over 100 countries. The involvement of researchers from various backgrounds and fields, and the vast scope of this chemistry and its societal applications, necessitate articulating the “Standard Practices of Reticular Chemistry”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566668400005 Publication Date 2020-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-7943 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 18.2 Times cited Open Access OpenAccess
Notes S.C. acknowledges the Research Foundation Flanders (FWO) for supporting his research (Project 12ZV120N). Approved Most recent IF: 18.2; 2020 IF: 7.481
Call Number EMAT @ emat @c:irua:172057 Serial 6423
Permanent link to this record
 

 
Author Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J.
Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol
Volume 25 Issue 4 Pages (down) 1254-1261
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Zeist Editor
Language Wos 000341871700015 Publication Date 2014-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.659 Times cited 10 Open Access
Notes Approved Most recent IF: 2.659; 2014 IF: 2.638
Call Number UA @ lucian @ c:irua:119896 Serial 1977
Permanent link to this record
 

 
Author Geuchies, J.J.; van Overbeek, C.; Evers, W.H.; Goris, B.; de Backer, A.; Gantapara, A.P.; Rabouw, F.T.; Hilhorst, J.; Peters, J.L.; Konovalov, O.; Petukhov, A.V.; Dijkstra, M.; Siebbeles, L.D.A.; van Aert, S.; Bals, S.; Vanmaekelbergh, D.
Title In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals Type A1 Journal article
Year 2016 Publication Nature materials Abbreviated Journal Nat Mater
Volume 15 Issue 15 Pages (down) 1248-1254
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.
Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000389104400011 Publication Date 2016-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited 182 Open Access OpenAccess
Notes This research is part of the programme ‘Designing Dirac Carriers in semiconductor honeycomb superlattices (DDC13),’ which is supported by the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Research Council (NWO). J.J.G. acknowledges funding from the Debye and ESRF Graduate Programs. The authors gratefully acknowledge funding from the Research Foundation Flanders (G.036915 G.037413 and funding of postdoctoral grants to B.G. and A.d.B). S.B. acknowledges the European Research Council, ERC grant No 335078—Colouratom. The authors gratefully acknowledge I. Swart and M. van Huis for fruitful discussions. We acknowledge funding from NWO-CW TOPPUNT ‘Superficial Superstructures’. The X-ray scattering measurements were performed at the ID10 beamline at ESRF under proposal numbers SC-4125 and SC-3786. The authors thank G. L. Destri and F. Zontone for their support during the experiments.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 39.737
Call Number EMAT @ emat @ c:irua:136165 Serial 4289
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V
Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages (down) 1248
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000549162600025 Publication Date 2020-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 5 Open Access OpenAccess
Notes ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124
Call Number UA @ admin @ c:irua:170797 Serial 6635
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Zhuo, X.; Albrecht, W.; Bals, S.; Liz-Marzán, L.M.
Title Tuning Size and Seed Position in Small Silver Nanorods Type A1 Journal article
Year 2020 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume 2 Issue 9 Pages (down) 1246-1250
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571390700022 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access OpenAccess
Notes Financial support is acknowledged from the European Commission under the Horizon 2020 Programme, by means of Grant Agreement No. 731019 (EUSMI), the ERC Consolidator Grant (No. 815128) (REALNANO), and the ERC Advanced Grant (No. 787510) (4DbioSERS). W.A. acknowledges an Individual Fellowship from the Marie Sklodowska-Curie actions (MSCA), under the EU’s Horizon 2020 program (Grant 797153, SOPMEN). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720).; sygma Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:171980 Serial 6439
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M.
Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 55 Issue 55 Pages (down) 1245-1257
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.
Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369356800031 Publication Date 2016-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access
Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857
Call Number c:irua:132247 Serial 4073
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G.
Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 10 Pages (down) 1236-1244
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000270015200004 Publication Date 2009-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 166 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748
Permanent link to this record
 

 
Author Schryvers, D.; Lahjouji, D.E.; Slootmaekers, B.; Potapov, P.L.
Title HREM investigation of martensite precursor effects and stacking sequences in Ni-Mn-Ti alloys Type A1 Journal article
Year 1996 Publication Scripta metallurgica et materialia Abbreviated Journal Scripta Mater
Volume 35 Issue Pages (down) 1235-1241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos A1996VL92800019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.224 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15427 Serial 1506
Permanent link to this record
 

 
Author Poelma, R.H.; Fan, X.; Hu, Z.-Y.; Van Tendeloo, G.; van Zeijl, H.W.; Zhang, G.Q.
Title Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages (down) 1233-1242
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoscale materials are one of the few engineering materials that can be grown from the bottom up in a controlled manner. Here, the effects of nanostructure and nanoscale conformal coating on the mechanical behavior of vertically aligned carbon nanotube (CNT) arrays through experiments and simulation are systematically investigated. A modeling approach is developed and used to quantify the compressive strength and modulus of the CNT array under large deformation. The model accounts for the porous

nanostructure, which contains multiple CNTs with random waviness, van der Waals interactions, fracture strain, contacts, and frictional forces. CNT array micropillars are grown and their porous nanostructure is controlled by the infi ltration and deposition of thin conformal coatings using chemical vapor deposition. Flat-punch nanoindentation experiments reveal signifi cant changes in material properties as a function of coating thickness. The simulations explain the experimental results and show the novel failure transition regime that changes from collective CNT buckling toward structural collapse due to fracture. The compressive strength and the elastic

modulus increase exponentially as a function of the coating thickness and demonstrate a unique dependency on the CNT waviness. More interestingly, a design rule is identifi ed that predicts the optimum coating thickness for porous materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000371078100010 Publication Date 2016-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 17 Open Access
Notes The research leading to the TEM/HAADF-STEM results received funding from the EC Framework 7 Program ESTEEM2 (Reference 312483). We wish to acknowledge the support of the Else Kooi Laboratory for their assistance during the clean room processing.; esteem2_ta Approved Most recent IF: 12.124
Call Number c:irua:130060 c:irua:130060 Serial 3996
Permanent link to this record
 

 
Author Gélard, J.; Jehanathan, N.; Roussel, H.; Gariglio, S.; Lebedev, O.I.; Van Tendeloo, G.; Dubourdieu, C.
Title Off-stoichiometry effects on the crystalline and defect structure of hexagonal manganite REMnO3 films (RE = Y, Er, Dy) Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 5 Pages (down) 1232-1238
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crystalline and defect structure of epitaxial hexagonal RExMnyO3 (RE = Er, Dy) films with varying cationic composition was investigated by X-ray diffraction and transmission electron microscopy. The films are composed of a strained layer at the interface with the substrate and of a relaxed layer on top of it. The critical thickness is of 10 to 25 nm. For Mn-rich films (or RE deficient), an off-stoichiometric composition maintaining the hexagonal LuMnO3-type structure is stabilized over a large range of the RE/Mn ratio (0.72−1.00), with no Mn-rich secondary phases observed. A linear dependence of the out-of-plane lattice parameter with RE/Mn is observed in this range. Out-of-phase boundary (OPB) extended defects are observed in all films and exhibit a local change in stoichiometry. Such a large solubility limit in the RE deficient region points toward the formation of vacancies on the RE site (RExMnO3−δ, with 0.72 ≤ x < 1), a phenomenon that is encountered in perovskite manganites such as LaxMnO3−δ (x < 1) and that may strongly impact the physical properties of hexagonal manganites.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000287767200022 Publication Date 2011-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 17 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:88649 Serial 2430
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B.
Title Quantum transport in a nanosize silicon-on-insulator metal-oxide-semiconductor field effect transistor Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages (down) 1230-1240
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000180134200069 Publication Date 2003-01-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 16 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:40874 Serial 2793
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A.
Title The notion of resolution Type H3 Book chapter
Year 2008 Publication Abbreviated Journal
Volume Issue Pages (down) 1228-1265
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Springer Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:68656 Serial 2370
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A.
Title The notion of resolution Type H3 Book chapter
Year 2007 Publication Abbreviated Journal
Volume Issue Pages (down) 1228-1265
Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Springer Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:68657 Serial 2371
Permanent link to this record
 

 
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 4 Pages (down) 1226-1233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000286110400042 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 158 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:88642 Serial 3145
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L.
Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
Year 2020 Publication Matter Abbreviated Journal
Volume 3 Issue 4 Pages (down) 1226-1245
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000581132600021 Publication Date 2020-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174329 Serial 6727
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D.
Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 22 Issue 22 Pages (down) 1222-1232
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393853100011 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 2 Open Access
Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891
Call Number EMAT @ emat @ c:irua:138980 Serial 4333
Permanent link to this record
 

 
Author Mordvinova, N.; Emelin, P.; Vinokurov, A.; Dorofeev, S.; Abakumov, A.; Kuznetsova, T.
Title Surface processes during purification of InP quantum dots Type A1 Journal article
Year 2014 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 5 Issue Pages (down) 1220-1225
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)(3) during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of post-synthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339912400002 Publication Date 2014-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.127 Times cited 5 Open Access
Notes Approved Most recent IF: 3.127; 2014 IF: 2.670
Call Number UA @ lucian @ c:irua:118748 Serial 3397
Permanent link to this record
 

 
Author Milat, O.; Krekels, T.; Van Tendeloo, G.; Amelinckx, S.
Title Ordering principles for tetrahedral chains in Ga- and Co-substituted YBCO intergrowths Type A1 Journal article
Year 1993 Publication Journal de physique: 1: physique générale, physique statistique, matière condensée, domaines interdisciplinaires Abbreviated Journal
Volume 3 Issue 5 Pages (down) 1219-1234
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A model for superstructure ordering in the <<chain>> layers of Ga (Co) substituted YBCO intergrowths with general formula (REO2)NSr2MCu2O5 (M = Co, Ga; n = 1, 2, ...) is proposed. By Ga or Co substitution for Cu, the structure of the <<chain>> layer changes : instead of the CuO4 planar squares, the chains consist of MO4 tetrahedra (M = Ga, Co) running along the [110] perovskite direction. The existing model for the Ga substituted <<123>> implies that all the chains are the same. Our new model is based on the results of Electron diffraction and High-resolution electron microscopy investigations. The model reveals the occurrence of two types of chains as a consequence of <<opposite>> ordering between neighbouring tetrahedra. The comer linked tetrahedra in each chain appear as alternatingly rotated in opposite sense, and a chain itself, as being displaced with respect to the underlying structure in one of two senses ; either forth (right) or back (left) along the chain direction. The regular alternation of chains of opposite type doubles the periodicity within a layer and induces the possibility for intrinsic disorder in the chain layer stacking sequence. The planar superstructure and a staggered stacking of the tetrahedral chain layers is found irrespective of the rest of the intergrowth structure. Superstructure ordering in the case of Co substitution is more perfect than for the Ga substitution.
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1993LC96100012 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4304 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 16 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:102980 Serial 2509
Permanent link to this record
 

 
Author Monico, L.; van der Snickt, G.; Janssens, K.; de Nolf, W.; Miliani, C.; Verbeeck, J.; Tian, H.; Tan, H.; Dik, J.; Radepont, M.; Cotte, M.
Title Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of synchrotron X-ray spectromicroscopy and related methods : 1 : artificially aged model samples Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 4 Pages (down) 1214-1223
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO4, PbCrO4·xPbSO4, or PbCrO4·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1−3 μm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (μ-XANES), X-ray fluorescence spectrometry (μ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR μ-XRD), μ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and μ-XANES spectra are consistent with the presence of Cr2O3·2H2O (viridian). Moreover, as demonstrated by μ-XANES, the presence of another Cr(III) compound, such as either Cr2(SO4)3·H2O or (CH3CO2)7Cr3(OH)2 [chromium(III) acetate hydroxide], is likely.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000287176900011 Publication Date 2011-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 113 Open Access
Notes Iuap; Fwo Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:88794UA @ admin @ c:irua:88794 Serial 632
Permanent link to this record
 

 
Author Idrissi, H.; Schryvers, D.
Title Investigation of the elementary mechanisms controlling dislocation/twin boundary interactions in fcc metals and alloys : from conventional to advanced TEM characterization Type H2 Book chapter
Year 2012 Publication Abbreviated Journal
Volume Issue Pages (down) 1213-1224
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Formatex Research Center Place of Publication S.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-939843-6-6 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104694 Serial 1737
Permanent link to this record
 

 
Author Mosquera, J.; Wang, D.; Bals, S.; Liz-Marzan, L.M.
Title Surfactant layers on gold nanorods Type A1 Journal article
Year 2023 Publication Accounts of chemical research Abbreviated Journal
Volume 56 Issue 10 Pages (down) 1204-1212
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold nanorods (Au NRs) are an exceptionally promising tool in nanotechnology due to three key factors: (i) their strong interaction with electromagnetic radiation, stemming from their plasmonic nature, (ii) the ease with which the resonance frequency of their longitudinal plasmon mode can be tuned from the visible to the near-infrared region of the electromagnetic spect r u m based on their aspect ratio, and (iii) their simple and cost-effective preparation through seed-mediated chemical growth. In this synthetic method, surfactants play a critical role in controlling the size, shape, and colloidal stabi l i t y of Au NRs. For example, surfactants can stabilize specific crystallographic facets during the formation of Au NRs, leading to t h e formation of NRs with specific morphologies. The process of surfactant adsorption onto the NR surface may result in various assemblies of surfactant molecules, such as spherical micelles, elongated micelles, or bilayers. Again, the assembly mode is critical toward determining the further availabi l i t y of the Au NR surface to the surrounding medium. Despite its importance and a great deal of research effort, the interaction between Au NPs and surfactants remains insufficiently understood, because the assembly process is influenced by numerous factors, including the chemical nature of the surfactant, the surface morphology of Au NPs, and solution parameters. Therefore, gaining a more comprehensive understanding of these interactions is essential to unlock the full potential of the seed-mediated growth method and the applications of plasmonic NPs. A plethora of characterization techniques have been applied to reach such an understanding , but many open questions remain. In this Account, we review the current knowledge on the interactions between surfactants and Au NRs. We briefly introduce the state-of-the-art methods for synthesizing Au NRs and highlight the crucial role of cationic surfactants during this process. The self-assembly and organization of surfactants on the Au NR surface is then discussed to better understand their role in seed-mediated growth. Subsequently, we provide examples and elucidate how chemical additives can be used to modulate micellar assemblies, in turn allowing for a finer control over the growth of Au NRs, including chiral NRs. Next, we review the main experimental characterization and computational modeling techniques that have been applied to shed light on the arrangement of surfactants on Au NRs and summarize the advantages and disadvantages for each technique. The Account ends with a “Conclusions and Outlook” section, outlining promising future research directions and developments that we consider are sti l l required, mostly related to the application of electron microscopy in liquid and in 3D. Finally, we remark on the potential of exploiting machine learning techniques to predict synthetic routes for NPs with predefined structures and properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986447000001 Publication Date 2023-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 18.3 Times cited 8 Open Access OpenAccess
Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) , from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M. and Grants RYC2019-027842-I , PID2020-117885GA-I00 to J.M.) , and by Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (No. 2017B030301007) , National Center for International Research on Green Optoelectronics (No. 2016B01018) , MOE Interna-tional Laboratory for Optical Information Technologies, and the 111 projects. Approved Most recent IF: 18.3; 2023 IF: 20.268
Call Number UA @ admin @ c:irua:196768 Serial 8940
Permanent link to this record
 

 
Author Vanhellemont, J.; Romano Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A.
Title Point defect reactions in silicon studied in situ by high flux electron irradiation in high voltage transmission electron microscope Type A1 Journal article
Year 1995 Publication Materials science and technology Abbreviated Journal Mater Sci Tech-Lond
Volume 11 Issue 11 Pages (down) 1194-1202
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Results are presented of in situ studies of 1 MeV electron irradiation induced (113) defect generation in silicon containing different types and concentrations of extrinsic point defects. A semiquantitative model is developed describing the influence of interfaces and stress fields and of extrinsic point defects on the (113) defect generation in silicon during irradiation. The theoretical results obtained are correlated with experimental data obtained on silicon uniformly doped with boron and phosphorus and with observations obtained by irradiating cross-sectional samples of wafers with highly doped surface layers. It is shown that in situ irradiation in a high voltage election microscope is a powerful tool for studying local point defect reactions in silicon. (C) 1995 The Institute of Materials.
Address
Corporate Author Thesis
Publisher Inst Materials Place of Publication London Editor
Language Wos A1995TQ95100016 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-0836;1743-2847; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.995 Times cited 7 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95911 Serial 2654
Permanent link to this record