toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al. openurl 
  Title Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links (down) UA library record  
  Impact Factor 12.124 Times cited Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:134842 Serial 4176  
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V. doi  openurl
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 38 Pages 6554-6559  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343763200004 Publication Date 2014-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links (down)  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: NA  
  Call Number EMAT @ emat @ Serial 4541  
Permanent link to this record
 

 
Author Shuhui Sun, Gaixia Zhang, Nicolas Gauquelin, Ning Chen, Jigang Zhou, Songlan Yang, Weifeng Chen, Xiangbo Meng, Dongsheng Geng, Mohammad N. Banis, Ruying Li, Siyu Ye, Shanna Knights, Gianluigi A. Botton, Tsun-Kong Sham & Xueliang Sun url  doi
openurl 
  Title Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition Type A1 Journal Article
  Year 2013 Publication Scientific Reports Abbreviated Journal  
  Volume 3 Issue Pages 1775  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and

automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize

their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt

atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the

capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle.

The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the

state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the

low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the

excellent performance. This work is anticipated to form the basis for the exploration of a next generation of

highly efficient single-atom catalysts for various applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318334300004 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down)  
  Impact Factor Times cited 345 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4543  
Permanent link to this record
 

 
Author van der Torren, A.J.H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S.J. url  doi
openurl 
  Title Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth Type A1 Journal Article
  Year 2017 Publication Physical Review Materials Abbreviated Journal Phys. Rev. Materials  
  Volume 1 Issue 7 Pages 075001  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The two-dimensional electron gas occurring between the band insulators SrTiO 3 and LaAlO 3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO 3 layer at the growth temperature (around 800 ◦ C) in oxygen (pressure around 5 × 10 −5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO 2 -rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418770200003 Publication Date 2017-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links (down)  
  Impact Factor Times cited 2 Open Access Not_Open_Access  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; European Cooperation in Science and Technology, MP 1308 ; We want to acknowledge Ruud Tromp, Daniel Gee- len, Johannes Jobst, Regina Dittmann, Gert Jan Koster, Guus Rijnders and Jo Verbeek for discussions and ad- vice and Ruud van Egmond and Marcel Hesselberth for technical assistance. This work was supported by the Netherlands Organization for Scientific Research (NWO) by means of an ”NWO Groot” grant and by the Leiden- Delft Consortium NanoFront. The work is part of the re- search programmes NWOnano and DESCO, which are fi- nanced by NWO. N.G. acknowledges funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge order- ing). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. We would also like to acknowledge networking support by the COST Action MP 1308 (COST TO-BE). Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4903  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. url  doi
openurl 
  Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
  Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume 13 Issue 7 Pages 1970028  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links (down)  
  Impact Factor 3.032 Times cited Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032  
  Call Number EMAT @ emat @ Serial 5358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: