|   | 
Details
   web
Records
Author Moro, G.; Foumthuim, C.J.D.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; De Wael, K.; Moretto, L.M.
Title How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures : an electrochemical and computational study Type A1 Journal article
Year 2022 Publication Analytica chimica acta Abbreviated Journal
Volume 1204 Issue Pages 339740-12
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltam-metric techniques. The experimental data interpretation was supported by molecular dynamics simu-lations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000789493000010 Publication Date 2022-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; 1873-4324 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved no
Call Number UA @ admin @ c:irua:188658 Serial 8880
Permanent link to this record
 

 
Author Thomassen, G.; Van Passel, S.; Alaerts, L.; Dewulf, J.
Title Retrospective and prospective material flow analysis of the post-consumer plastic packaging waste management system in Flanders Type A1 Journal article
Year 2022 Publication Waste Management Abbreviated Journal Waste Manage
Volume 147 Issue Pages 10-21
Keywords A1 Journal article; Engineering Management (ENM)
Abstract The post-consumer plastic packaging waste management in Flanders was analyzed by performing a retrospective material flow analysis, covering an extensive period from 1985 to 2019. In addition, a prospective material flow analysis of 32 improvement scenarios was performed, based on expected changes in the waste management system. Mass recovery rates were calculated based on different interpretations of the calculation rules. Moreover, various cascading levels were identified to differentiate between the quality level of the secondary applications. The mass recovery rate including only recycling evolved from a value of 0% in 1985 to 31% in 2019 and could be increased to 36-62% depending on the improvement scenario selected. However, the different interpretations of the calculation rules led to a variation of up to 20 and 41% on this mass recovery rates for the retrospective and prospective analysis, respectively. The introduction of monostream recycling for additional post-consumer plastic packaging flows, such as low-density polyethylene, did not lead to increasing mass recovery rates, if no differentiation for the cascading levels was made. The Belgian recycling target of 65% for 2023 will be challenging if the strictest calculation method needs to be followed or if the improvements in the Flemish postconsumer plastic packaging waste system do not follow the best-case collection scenarios under the given assumptions. To harmonize the calculation and monitoring of these targets, clear calculation rules need to be accompanied with a harmonized monitoring system over the entire waste management system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802961100002 Publication Date 2022-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 8.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.1
Call Number UA @ admin @ c:irua:188651 Serial 7367
Permanent link to this record
 

 
Author Ding, L.; Sapanathan, T.; Schryvers, D.; Simar, A.; Idrissi, H.
Title On the formation of antiphase boundaries in Fe₄Al₁₃ intermetallics during a high temperature treatment Type A1 Journal article
Year 2022 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 215 Issue Pages 114726-6
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this paper, we report atomic scale observations and formation mechanisms of a high-density of antiphase boundaries (APBs) within an ultra-fine-grained Fe4Al13 intermetallic layer at an Al/steel interface after a heat treatment at 596 degrees C. The results reveal that the APBs are formed by nucleation and the glide of partial dislocations with Burgers vector of b/3[010] (b = 12.47 angstrom). The intensive activation of APBs locally transforms the Fe4Al13 structure from the quasicrystal approximant structure to a quasicrystal. Very few stacking faults and nanotwins are observed indicating that the formation of planar defects is mainly driven by this transformation. This new insight on the formation of high density of APBs could possibly lead to an improvement in toughness by increasing the strength/ductility balance of this intermetallic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000800016600003 Publication Date 2022-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:188644 Serial 7088
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Nuyts, G.; Borondics, F.; De Meyer, S.; Van Bos, M.; Jaroszewicz, J.; Otten, E.; Debulpaep, M.; De Wael, K.
Title Novel optical photothermal infrared (O-PTIR) spectroscopy for the noninvasive characterization of heritage glass-metal objects Type A1 Journal article
Year 2022 Publication Science Advances Abbreviated Journal
Volume 8 Issue 9 Pages eabl6769-9
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Optical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (approximate to 450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements. These small and challenging samples, typically encountering limitations with existing noninvasive methods such as macroscopic x-ray powder diffraction and mu Raman, were successfully characterized by O-PTIR, ultimately identifying the markers of glass-induced metal corrosion processes. The results clearly demonstrate how O-PTIR can be easily implemented in a noninvasive multianalytical strategy for the study of heritage materials, making it a fundamental tool for cultural heritage analyses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000790020300013 Publication Date 2022-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 13.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 13.6
Call Number UA @ admin @ c:irua:188642 Serial 7184
Permanent link to this record
 

 
Author Savina, A.A.; Saiutina, V.V.; Morozov, A.V.; Boev, A.O.; Aksyonov, D.A.; Dejoie, C.; Batuk, M.; Bals, S.; Hadermann, J.; Abakumov, A.M.
Title Chemistry, local molybdenum clustering, and electrochemistry in the Li2+xMo1-xO3 solid solutions Type A1 Journal article
Year 2022 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 61 Issue 14 Pages 5637-5652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A broad range of cationic nonstoichiometry has been demonstratedfor the Li-rich layered rock-salt-type oxide Li2MoO3, which has generally been considered as a phase with a well-defined chemical composition. Li2+xMo1-xO3(-0.037 <= x <= 0.124) solid solutions were synthesized via hydrogen reduction ofLi2MoO4in the temperature range of 650-1100 degrees C, withxdecreasing with theincrease of the reduction temperature. The solid solutions adopt a monoclinicallydistorted O3-type layered average structure and demonstrate a robust localordering of the Li cations and Mo3triangular clusters within the mixed Li/Mocationic layers. The local structure was scrutinized in detail by electron diffractionand aberration-corrected scanning transmission electron microcopy (STEM),resulting in an ordering model comprising a uniform distribution of the Mo3clusters compatible with local electroneutrality and chemical composition. The geometry of the triangular clusters with their oxygenenvironment (Mo3O13groups) has been directly visualized using differential phase contrast STEM imaging. The established localstructure was used as input for density functional theory (DFT)-based calculations; they support the proposed atomic arrangementand provide a plausible explanation for the staircase galvanostatic charge profiles upon electrochemical Li+extraction fromLi2+xMo1-xO3in Li cells. According to DFT, all electrochemical capacity in Li2+xMo1-xO3solely originates from the cationic Moredox process, which proceeds via oxidation of the Mo3triangular clusters into bent Mo3chains where the electronic capacity of the clusters depends on the initial chemical composition and Mo oxidation state defining the width of the first charge low-voltageplateau. Further oxidation at the high-voltage plateau proceeds through decomposition of the Mo3chains into Mo2dimers and further into individual Mo6+cations
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000789034200023 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited 3 Open Access Not_Open_Access
Notes The authors acknowledge Russian Science Foundation (grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, project number G0F1320N) for financial support. The authors are grateful to AICF of Skoltech for providing access to electron microscopy equipment. The authors are grateful to Prof. G. Van Tendeloo for discussing the results. Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188631 Serial 7079
Permanent link to this record
 

 
Author Cunha, S.M.; da Costa, D.R.; Pereira, J.M., Jr.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M.
Title Tunneling properties in α-T₃ lattices : effects of symmetry-breaking terms Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 16 Pages 165402-165414
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The alpha-T3 lattice model interpolates a honeycomb (graphene-like) lattice and a T3 (also known as dice) lattice via the parameter alpha. These lattices are made up of three atoms per unit cell. This gives rise to an additional dispersionless flat band touching the conduction and valence bands. Electrons in this model are analogous to Dirac fermions with an enlarged pseudospin, which provides unusual tunneling features like omnidirectional Klein tunneling, also called super-Klein tunneling (SKT). However, it is unknown how small deviations in the equivalence between the atomic sites, i.e., variations in the alpha parameter, and the number of tunnel barriers changes the transmission properties. Moreover, it is interesting to learn how tunneling occurs through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion. In this paper we investigate these properties, its dependence on the number of square barriers and the alpha parameter for either gapped and gapless cases. Furthermore, we compare these results to the case where electrons tunnel from a region with linear dispersion to a region with a bandgap. In the latter case, contrary to tunneling through a potential barrier, the SKT is no longer observed. Finally, we find specific cases where transmission is allowed due to a symmetry breaking of sublattice equivalence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000805195200001 Publication Date 2022-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188614 Serial 7222
Permanent link to this record
 

 
Author Penders, A.G.; Konstantinovic, M.J.; Yang, T.; Bosch, R.-w.; Schryvers, D.; Somville, F.
Title Microstructural investigation of IASCC crack tips extracted from thimble tube O-ring specimens Type A1 Journal article
Year 2022 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 565 Issue Pages 153727-16
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The microstructural features of intergranular irradiation-assisted stress corrosion crack tips from a redeemed neutron-irradiated flux thimble tube (60 dpa) have been investigated using focused-ion beam analysis and (scanning) transmission electron microscopy. The current work presents a close examination of the deformation field and oxide assembly associated with intergranular cracking, in addition to the analysis of radiation-induced segregation at leading grain boundaries. Evidence of stress induced martensitic transformation extending from the crack tips is presented. Intergranular crack arrest is demonstrated on the account of the external tensile stress orientation, and as a consequence of MnS inclusion particles segregating close to the fractured grain boundary. Exclusive observations of grain boundary oxidation prior to the cracking are presented, which is in full-agreement with the internal oxidation model.(c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000799256300004 Publication Date 2022-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.1
Call Number UA @ admin @ c:irua:188609 Serial 7086
Permanent link to this record
 

 
Author Pedrazo-Tardajos, A.; Arslan Irmak, E.; Kumar, V.; Sánchez-Iglesias, A.; Chen, Q.; Wirix, M.; Freitag, B.; Albrecht, W.; Van Aert, S.; Liz-Marzán, L.M.; Bals, S.
Title Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods Type A1 Journal article
Year 2022 Publication ACS nano Abbreviated Journal Acs Nano
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core–shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000819246800001 Publication Date 2022-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 17.1 Times cited 8 Open Access OpenAccess
Notes S.B., S.V.A., L.M.L.-M. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant nos. 731019 (EUSMI) and 823717 (ESTEEM3) and ERC Consolidator grant nos. 815128 (REALNANO) and 770887 (PICOMETRICS). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 through grants no. PID2020-117779RB-I00 and Maria de Maeztu Unit of Excellence no. MDM-2017-0720. The authors acknowledge the resources and services used for the simulations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government.; esteem3reported; esteem3JRA Approved Most recent IF: 17.1
Call Number EMAT @ emat @c:irua:188540 Serial 7072
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B.
Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804396200001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 7 Open Access OpenAccess
Notes Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A.
Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 5 Pages 055014
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797660000001 Publication Date 2022-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069
Permanent link to this record
 

 
Author Jannis, D.; Velazco, A.; Béché, A.; Verbeeck, J.
Title Reducing electron beam damage through alternative STEM scanning strategies, Part II: Attempt towards an empirical model describing the damage process Type A1 Journal article
Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume Issue Pages 113568
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this second part of a series we attempt to construct an empirical model that can mimick all experimental observations made regarding the role of an alternative interleaved scan pattern in STEM imaging on the beam damage in a specific zeolite sample. We make use of a 2D diffusion model that describes the dissipation of the deposited beam energy in the sequence of probe positions that are visited during the scan pattern. The diffusion process allows for the concept of trying to ‘outrun’ the beam damage by carefully tuning the dwell time and distance between consecutively visited probe positions. We add a non linear function to include a threshold effect and evaluate the accumulated damage in each part of the image as a function of scan pattern details. Together, these ingredients are able to describe qualitatively all aspects of the experimental data and provide us with a model that could guide a further optimisation towards even lower beam damage without lowering the applied electron dose. We deliberately remain vague on what is diffusing here which avoids introducing too many sample specific details. This provides hope that the model can be applied also in sample classes that were not yet studied in such great detail by adjusting higher level parameters: a sample dependent diffusion constant and damage threshold.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000832788000003 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited 4 Open Access OpenAccess
Notes D.J., A.V, A.B. and J.V. acknowledge funding from FWO project G093417N (’Compressed sensing enabling low dose imaging in transmission electron microscopy’) and G042920N (’Coincident event detection for advanced spectroscopy in transmission electron microscopy’). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 ESTEEM3. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from GOA project “Solarpaint” of the University of Antwerp .; esteem3reported; esteem3jra; Approved Most recent IF: 2.2
Call Number EMAT @ emat @c:irua:188535 Serial 7071
Permanent link to this record
 

 
Author Jiang, J.
Title Ginzburg-Landau dynamical simulations on the nonreciprocal transport properties of two-dimensional superconductors Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages XII, 79 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract The nonreciprocal charge transport property which depends on the polarity of the applied current, such as the diode effect and the rectification effect, is of great importance for both theoretical research and engineering application. The nonreciprocal transport property in superconductors generally requires to break both the spatial inversion symmetry and the time-reversal symmetry, and therefore becomes one of the fundamental issues in superconductivity. Of particular interest, the superconducting diode effect, which exhibits one-way superconductivity, can potentially be applied to dissipationless diode devices, as a consequence has received extensive attention in recent years. In this Ph. D thesis, we simulate vortex dynamics with heat dissipation by numerically solving time-dependent Ginzburg-Landau equations and heat transfer equation. The nonreciprocal transport properties of the following three superconducting systems are studied. We study a superconducting film patterned with a conformal pinning array and find a giant rectification effect which is consistent with the experimental observation. In presence of the funneling effect due to the geometry of the conformal pinning array, Joule heating of the accumulating vortices creates hot spots and drives the sample to the normal state. Meanwhile, the density gradient of vortex does not match the gradient of pinning. The two mechanisms together lead to the giant rectification effect. We study the nonreciprocal charge transport property in a pinning-free superconducting nano-ring. We systematically calculate the response of the ratchet signal to various parameters in both D.C. and A.C. currents. By analyzing the vortex potential, we find that the nonreciprocal transport property is caused by the asymmetry potential barriers for vortex entry and exit. We study a superconductor/nanoscale-magnetic-dot hybrid structure. It takes advantage of the external current to control the nucleation of vortex-antivortex pairs, and can produce superconducting diode effect without applied magnetic fields. Our vortex dynamics simulation details the progress of the superconducting-normal phase transition due to motion of vortex pairs and heat dissipation. The nonreciprocal transport properties of the above three systems are all based on the broken symmetry of spatial inversion, which is caused by the anisotropic pinning array, the asymmetric geometry, and the nonuniform distribution of the magnetic field, respectively. The mechanisms we discuss in this thesis do not require special property of the materials and thus can be applied to any kinds of conventional superconductors. The present studies would provide solid theoretical basis for the future design and application of the dissipationless superconducting devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188525 Serial 7168
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K.
Title Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
Year 2022 Publication Sensors & Diagnostics Abbreviated Journal
Volume 1 Issue 1 Pages 793-802
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188521 Serial 8856
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J.
Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 235 Issue Pages 118088-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814729300005 Publication Date 2022-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:188505 Serial 7096
Permanent link to this record
 

 
Author Nicolau, F.; Gielis, J.; Simeone, A.L.; Simoes Lopes, D.
Title Exploring and selecting supershapes in virtual reality with line, quad, and cube shaped widgets Type P1 Proceeding
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 21-28
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Supershapes are used in Parametric Design to model, literally, thou-sands of natural and man-made shapes with a single 6 parameter formula. However, users are left to probe such a rich yet dense collection of supershapes using a set of independent 1-D sliders. Some of the formula’s parameters are non-linear in nature, making them particularly difficult to grasp with conventional 1-D sliders alone. VR appears as a promising setting for Parametric Design with supershapes since it empowers users with more natural visual inspection and shape browsing techniques, with multiple solutions being displayed at once and the possibility to design more interesting forms of slider interaction. In this work, we propose VR shape widgets that allow users to probe and select supershapes from a multitude of solutions. Our designs take leverage on thumbnails, mini-maps, haptic feedback and spatial interaction, while supporting 1-D, 2-D and 3-D supershape parameter spaces. We conducted a user study (N = 18) and found that VR shape widgets are effective, more efficient, and natural than conventional VR 1-D sliders while also usable for users without prior knowledge on supershapes. We also found that the proposed VR widgets provide a quick overview of the main supershapes, and users can easily reach the desired solution without having to perform fine-grain handle manipulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000828657500003 Publication Date 2022-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-6654-9617-9 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188471 Serial 7161
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Niklas, K.J.
Title Comparison of a universal (but complex) model for avian egg shape with a simpler model Type Editorial
Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci
Volume 1514 Issue 1 Pages 34-42
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Recently, a universal equation by Narushin, Romanov, and Griffin (hereafter, the NRGE) was proposed to describe the shape of avian eggs. While NRGE can simulate the shape of spherical, ellipsoidal, ovoidal, and pyriform eggs, its predictions were not tested against actual data. Here, we tested the validity of the NRGE by fitting actual data of egg shapes and compared this with the predictions of our simpler model for egg shape (hereafter, the SGE). The eggs of nine bird species were sampled for this purpose. NRGE was found to fit the empirical data of egg shape well, but it did not define the egg length axis (i.e., the rotational symmetric axis), which significantly affected the prediction accuracy. The egg length axis under the NRGE is defined as the maximum distance between two points on the scanned perimeter of the egg's shape. In contrast, the SGE fitted the empirical data better, and had a smaller root-mean-square error than the NRGE for each of the nine eggs. Based on its mathematical simplicity and goodness-of-fit, the SGE appears to be a reliable and useful model for describing egg shape.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000803394100001 Publication Date 2022-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0077-8923; 1749-6632 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.2
Call Number UA @ admin @ c:irua:188470 Serial 7139
Permanent link to this record
 

 
Author Li, Y.; Quinn, B.K.; Niinemets, Ü.; Schrader, J.; Gielis, J.; Liu, M.; Shi, P.
Title Ellipticalness index : a simple measure of the complexity of oval leaf shape Type A1 Journal article
Year 2022 Publication Pakistan journal of botany : An official publication of pakistan botanical society Abbreviated Journal Pak J Bot
Volume 54 Issue 6 Pages 1-8
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Plants have diverse leaf shapes that have evolved to adapt to the environments they have experienced over their evolutionary history. Leaf shape and leaf size can greatly influence the growth rate, competitive ability, and productivity of plants. However, researchers have long struggled to decide how to properly quantify the complexity of leaf shape. Prior studies recommended the leaf roundness index (RI = 4πA/P2) or dissection index (DI = ), where P is leaf perimeter and A is leaf area. However, these two indices merely measure the extent of the deviation of leaf shape from a circle, which is usually invalid as leaves are seldom circular. In this study, we proposed a simple measure, named the ellipticalness index (EI), for quantifying the complexity of leaf shape based on the hypothesis that the shape of any oval leaf can be regarded as a variation from a standard ellipse. 2220 leaves from nine species of Magnoliaceae were sampled to check the validity of the EI. We also tested the validity of the Montgomery equation (ME), which assumes a proportional relationship between leaf area and the product of leaf length and width, because the EI actually comes from the proportionality coefficient of the ME. We also compared the ME with five other models of leaf area. The ME was found to be the best model for calculating leaf area based on consideration of the trade-off between model fit vs. complexity, which strongly supported the robustness of the EI for describing oval leaf shape. The new index can account for both leaf shape and size, and we conclude that it is a promising method for quantifying and comparing oval leaf shapes across species in future studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814279700028 Publication Date 2022-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-3321 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.2 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.2
Call Number UA @ admin @ c:irua:188469 Serial 7153
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K.
Title Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples Type A1 Journal article
Year 2022 Publication Microchemical journal Abbreviated Journal
Volume 179 Issue Pages 107518-107519
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The increasing illicit production, distribution and abuse of amphetamine (AMP) poses a challenge for law enforcement worldwide. To effectively combat this issue, fast and portable tools for the on-site screening of suspicious samples are required. Electrochemical profile (EP)-based sensing of illicit drugs has proven to be a viable option for this purpose as it allows rapid voltammetric measurements via the use of disposable and low-cost graphite screen-printed electrodes (SPEs). In this work, a highly practical paraformaldehyde (PFA)-coated sensor, which unlocks the detectability of primary amines through derivatization, is developed for the on-site detection of AMP in seized drug samples. A potential interval was defined at the sole AMP peak (which is used for identification of the target analyte) to account for potential shifts due to fluctuations in concentration and temperature, which are relevant factors for on-site use. Importantly, it was found that AMP detection was not hindered by the presence of common diluents and adulterants such as caffeine, even when present in high amounts. When inter-drug differentiation is desired, a simultaneous second test with the same solution on an unmodified electrode is introduced to provide the required additional electrochemical information. Finally, the concept was validated by analyzing 30 seized AMP samples (reaching a sensitivity of 96.7 %) and comparing its performance to that of commercially available Raman and Fourier Transform Infrared (FTIR) devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000809675500010 Publication Date 2022-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-265x; 0026-265x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved no
Call Number UA @ admin @ c:irua:188454 Serial 8910
Permanent link to this record
 

 
Author Li, S.; Liu, C.; Bogaerts, A.; Gallucci, F.
Title Editorial: Special issue on CO2 utilization with plasma technology Type Editorial
Year 2022 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 61 Issue Pages 102017
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology has advanced significantly in recent years, with application ranging from chemical conversion, to surface treatment, material development and several other fields. Special attention has been paid to the development of possible novel approaches for the conversion of chemicals in a more sustainable way. Plasma technology offers advantages over thermochemical routes such as high process versatility, mild reaction condition, one-step synthesis, fast reaction and instant control. More importantly, it can be easily combined with elec­tricity generated from various renewable sources and is suitable for energy storage via the conversion of intermittent renewable energy into carbon-neutral fuels or other chemicals. In recent years, there has been a growing interest in the development of plasma technology for CO2 uti­lization. Investigation on different reactions such as CO2 splitting, dry reforming of methane (DRM) and CO2 hydrogenation with different types of plasma reactors and catalysts have been reported by researchers worldwide. Although technological maturity still needs to be increased, the potential of plasma has been well-recognized by the scientific community and industry. More research output in the future is expected as a result of intensive research activities and various kinds of invest­ment. In this context, we present this special issue on CO2 utilization with plasma technology, which collects 22 articles, covering topics in related areas such as plasma reactor design, plasma catalysis, plasmamaterial interaction, modeling and new ideas for possible applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000798071200005 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 7.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.7
Call Number PLASMANT @ plasmant @c:irua:188287 Serial 7058
Permanent link to this record
 

 
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A.
Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 442 Issue Pages 136268
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797716700002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7052
Permanent link to this record
 

 
Author Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A.
Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 442 Issue Pages 136268
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797716700002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Govern­ment (department EWI) and the UAntwerpen. We also thank R. De Meyer, K. Leyssens and S. Defossé for performing the charcoal characterizations. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7053
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A.
Title Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 443 Issue Pages 136529
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000800010600003 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057
Permanent link to this record
 

 
Author van 't Veer, K.C.
Title Plasma kinetics modelling of nitrogen fixation : ammonia synthesis in dielectric barrier discharges with catalysts Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages 241 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia (NH3) synthesis is crucial for the production of artificial fertilizer and is carried out through the Haber-Bosch process. With an energy consumption of 30 GJ/t-NH3 and the emission of 2 kg-CO2/kg-NH3, ammonia is the chemical with the largest environmental footprint. Haber-Bosch operates under high pressure and high temperature conditions. Plasma technology potentially allows greener ammonia production. Dielectric barrier discharges are a popular plasma source in which a catalyst is easily incorporated. The combination of plasma and catalyst can circumvent the harsh reaction conditions of the Haber-Bosch process. Plasma kinetics modelling is used to gain insight into the mechanisms of such plasma-catalytic systems. Special attention is given to the instantaneous power absorbed by the electrons, the relevant fraction of the microdischarges and the discharge volumes. The importance of vibrational excitation is investigated. Depending on the exact discharge conditions, it was found that both the strong microdischarges and vibrational excitation can be simultaneously important for the ammonia yield. The temporal behavior of filamentary dielectric barrier discharges was explicitly taken into account. Ammonia was found to decompose during the microdischarges due to electron impact dissociation. At the same time atomic nitrogen and other excited species are created. Those reactive species recombine to ammonia in the afterglow through various elementary Eley-Rideal and Langmuir-Hinshelwood surface reaction steps with a net ammonia gain. Finally, the concept of the fraction of microdischarges was generalized. It directly represents the efficiency with which the applied electric power is transferred to each individual particle in the plasma reactor. It is argued that any type of spatial or temporal non-uniformity of the plasma will cause unequal treatment of the gas molecules in the reactor, corresponding to a lower efficiency at which the power is transferred to the gas molecules. All of those insights aid in an increased understanding of plasma-catalytic ammonia synthesis as a potential green chemistry solution to the synthesis of ammonia on small scale.  
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188246 Serial 7193
Permanent link to this record
 

 
Author Spanoghe, J.
Title Purple bacteria cultivation on light, carbon dioxide and hydrogen gas : exploring and tuning the potential for microbial food production Type Doctoral thesis
Year 2022 Publication Abbreviated Journal
Volume Issue Pages vi, 207 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The human population is projected to grow to 9.7 billion by 2050, resulting in an estimated increase in protein demand of 50%. From an environmental perspective, the current and future demand of protein cannot be sustainably met as the conventional food production chain is severely altering biogeochemical cycles of nitrogen and phosphorus, biodiversity and land-use, with flows towards the biosphere and oceans that are exceeding the planetary boundaries. Microbial protein (protein derived from microorganisms) has been suggested as an excellent sustainable protein source, a fortiori when produced in a land- and fossil free manner. The photoautohydrogenotrophic cultivation (i.e. with light, CO2 and H2) of purple bacteria links up perfectly with the upcoming green electrification of industry (green H2) and the need for carbon capture and utilization. However, this metabolism represented a gap in literature, and thus this thesis aimed to establish a basic knowledge platform on its kinetic, stoichiometric and nutritional performance. At first, three originally photoheterotrophically enriched purple bacteria were studied of which Rhodobacter capsulatus reached the highest protein productivity of 0.16 g protein/L/d, which aligned well with the commonly-known photoautotrophic microalgae. Moreover, a full dietary essential amino acid match was found for human food, while the fatty acid content was dominated by the health-stimulating vaccenic acid (82-86%). Lastly, the achieved protein yield in photoautohydrogenotrophic purple bacteria was 2.3 times higher compared to hydrogen oxidizing bacteria, indicating a resource-efficient use of H2. Next, a photoautohydrogenotrophic enrichment of wastewater treatment microbiomes was performed in search for specialist species. While the isolates of this enrichment showed improvements in their performance during acclimation, the kinetic and nutritional performance of Rhodobacter capsulatus still excelled. Subsequently, the influence of nutrient limitations (C or N) and nitrogen gas fixation was studied on the nutritional tuning potential. Both the limitations as well as the N2 fixation resulted in the shift of the essential amino acid profiles. Additionally, the limitations significantly decreased the pigment content, while an increase in the storage of poly-P was seen in case of carbon limitations. The next major challenge was the production intensification in a photobioreactor of which the design was linked to minimizing both H2 and light limitations. The chosen bubble-column photobioreactor already resulted in a doubled biomass productivity. Finally, the remaining technological and non-technological challenges ahead for the production of a high-value, cost-efficient, environment-friendly microbial protein that complies with legislative requirements and appeals to future consumers were discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-741-1 Additional Links (down) UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:188233 Serial 7198
Permanent link to this record
 

 
Author Cotte, M.; Gonzalez, V.; Vanmeert, F.; Monico, L.; Dejoie, C.; Burghammer, M.; Huder, L.; de Nolf, W.; Fisher, S.; Fazlic, I.; Chauffeton, C.; Wallez, G.; Jimenez, N.; Albert-Tortosa, F.; Salvado, N.; Possenti, E.; Colombo, C.; Ghirardello, M.; Comelli, D.; Avranovich Clerici, E.; Vivani, R.; Romani, A.; Costantino, C.; Janssens, K.; Taniguchi, Y.; McCarthy, J.; Reichert, H.; Susini, J.
Title The “Historical Materials BAG” : a new facilitated access to synchrotron X-ray diffraction analyses for cultural heritage materials at the European Synchrotron Radiation Facility Type A1 Journal article
Year 2022 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal Molecules
Volume 27 Issue 6 Pages 1997-21
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the “block allocation group” (BAG) mode. Here, we present the recently implemented “historical materials BAG”: a community proposal giving to 10 European institutes the opportunity for guaranteed beamtime at two X-ray powder diffraction (XRPD) beamlines-ID13, for 2D high lateral resolution XRPD mapping, and ID22 for high angular resolution XRPD bulk analyses-with a particular focus on applications to cultural heritage. The capabilities offered by these instruments, the specific hardware and software developments to facilitate and speed-up data acquisition and data processing are detailed, and the first results from this new access are illustrated with recent applications to pigments, paintings, ceramics and wood.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776369800001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1420-3049 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.6
Call Number UA @ admin @ c:irua:188053 Serial 7218
Permanent link to this record
 

 
Author Tessema, G.A.; van der Borg, J.; Van Rompaey, A.; Van Passel, S.; Adgo, E.; Minale, A.S.; Asrese, K.; Frankl, A.; Poesen, J.
Title Benefit segmentation of tourists to geosites and its implications for sustainable development of geotourism in the Southern Lake Tana Region, Ethiopia Type A1 Journal article
Year 2022 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume 14 Issue 6 Pages 3411-3425
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Geotourism is a sustainable type of tourism that focuses on the geological and geomorphological heritages of an area, and the associated cultural and biodiversity features. Though the popularity of geotourism is rapidly growing, research on the demand side, particularly on segmenting tourists to geosites and understanding their profiles, is limited. This obviously makes the designing of effective tourism policies that aim at developing geotourism sustainably very difficult. Hence, the main objectives of this study were to segment and profile tourists to geosites based on the benefits sought, and to show its implications for sustainable development of geotourism. With a survey of 415 tourists, this study clustered tourists to geosites in the southern Lake Tana region in Ethiopia based on the benefits sought. A factor-cluster method was applied to segment the tourists. The study identified four distinct segments: Activity-Nature Lovers, Culture Lovers, Nature-Culture Lovers, and Want-It-Alls. These segments differed in their demographic, trip, and behavioral characteristics. The findings implied that for sustainable development, destination managers and marketers need to customize their geotourism product development and marketing strategies based on the needs and characteristics of each market segment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000774527600001 Publication Date 2022-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9
Call Number UA @ admin @ c:irua:188043 Serial 7353
Permanent link to this record
 

 
Author Idrissi, H.; Carrez, P.; Cordier, P.
Title On amorphization as a deformation mechanism under high stresses Type A1 Journal article
Year 2022 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M
Volume 26 Issue 1 Pages 100976-17
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we review the work related to amorphization under mechanical stress. Beyond pressure, we highlight the role of deviatoric or shear stresses. We show that the most recent works make amorphization appear as a deformation mechanism in its own right, in particular under extreme conditions (shocks, deformations under high stresses, high strain-rates).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000779433300002 Publication Date 2022-01-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-0286 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 11 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11
Call Number UA @ admin @ c:irua:188014 Serial 7064
Permanent link to this record
 

 
Author Rogolino, A.; Claes, N.; Cizaurre, J.; Marauri, A.; Jumbo-Nogales, A.; Lawera, Z.; Kruse, J.; Sanroman-Iglesias, M.; Zarketa, I.; Calvo, U.; Jimenez-Izal, E.; Rakovich, Y.P.; Bals, S.; Matxain, J.M.; Grzelczak, M.
Title Metal-polymer heterojunction in colloidal-phase plasmonic catalysis Type A1 Journal article
Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 13 Issue 10 Pages 2264-2272
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD(+) reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776518000001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited 1 Open Access OpenAccess
Notes This work was supported by grant PID2019-111772RB-I00 funded by MCIN/AEI/10.13039/501100011033 and grant IT 1254-19 funded by Basque Government. The authors acknowledge the financial support of the European Commission (EUSMI, Grant 731019). S.B. is grateful to the European Research Council (ERC-CoG-2019 815128). The authors acknowledge the contributions by Dr. Adrian Pedrazo Tardajos related to sample support and electron microscopy experiments.; realnano;sygmaSB Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:188008 Serial 7062
Permanent link to this record
 

 
Author Zillner, J.; Boyen, H.-G.; Schulz, P.; Hanisch, J.; Gauquelin, N.; Verbeeck, J.; Kueffner, J.; Desta, D.; Eisele, L.; Ahlswede, E.; Powalla, M.
Title The role of SnF₂ additive on interface formation in all lead-free FASnI₃ perovskite solar cells Type A1 Journal article
Year 2022 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume Issue Pages 2109649-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Tin-based perovskites are promising alternative absorber materials for leadfree perovskite solar cells but need strategies to avoid fast tin (Sn) oxidation. Generally, this reaction can be slowed down by the addition of tin fluoride (SnF2) to the perovskite precursor solution, which also improves the perovskite layer morphology. Here, this work analyzes the spatial distribution of the additive within formamidinium tin triiodide (FASnI(3)) films deposited on top of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layers. Employing time-of-flight secondary ion mass spectrometry and a combination of hard and soft X-ray photoelectron spectroscopy, it is found that Sn F2 preferably accumulates at the PEDOT:PSS/perovskite interface, accompanied by the formation of an ultrathin SnS interlayer with an effective thickness of approximate to 1.2 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000779891000001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 19 Times cited 22 Open Access OpenAccess
Notes J.Z. and H.-G.B. contributed equally to this work. This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 850937 (PERCISTAND). H.-G.B. and D.D. are very grateful to the Research Foundation Flanders (FWO) for funding the HAXPES-lab instrument within the HERCULES program for Large Research Infrastructure of the Flemish government. P.S. thanks the French Agence Nationale de la Recherche for funding under the contract number ANR-17-MPGA-0012. This work was supported by the Federal Ministry for Economic Affairs and Energy (BMWi) Germany under the contract number 03EE1038A (CAPITANO) and financed by the Ministry of Science, Research and the Arts of Baden-Württemberg as part of the sustainability financing of the projects of the Excellence Initiative II (KSOP). Approved Most recent IF: 19
Call Number UA @ admin @ c:irua:187969 Serial 7067
Permanent link to this record