|   | 
Details
   web
Records
Author Titantah, J.T.; Lamoen, D.; Neyts, E.; Bogaerts, A.
Title The effect of hydrogen on the electronic and bonding properties of amorphous carbon Type A1 Journal article
Year 2006 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 18 Issue 48 Pages 10803-10815
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000242650600008 Publication Date 2006-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes Approved Most recent IF: 2.649; 2006 IF: 2.038
Call Number UA @ lucian @ c:irua:60468 Serial 816
Permanent link to this record
 

 
Author Neyts, E.; Tacq, M.; Bogaerts, A.
Title Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 15 Issue 10 Pages 1663-1676
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000026 Publication Date 2006-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 18 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59634 Serial 2819
Permanent link to this record
 

 
Author Liu, Y.H.; Neyts, E.; Bogaerts, A.
Title Monte Carlo method for simulations of adsorbed atom diffusion on a surface Type A1 Journal article
Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 15 Issue 10 Pages 1629-1635
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000241224000021 Publication Date 2006-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 5 Open Access
Notes Approved Most recent IF: 2.561; 2006 IF: 1.935
Call Number UA @ lucian @ c:irua:59633 Serial 2196
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals Type A1 Journal article
Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 88 Issue Pages 141922
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000236612000037 Publication Date 2006-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 35 Open Access
Notes Approved Most recent IF: 3.411; 2006 IF: 3.977
Call Number UA @ lucian @ c:irua:57642 Serial 817
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.
Title Influence of internal energy and impact angle on the sticking behaviour of reactive radicals in thin a-C:H film growth: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 8 Issue 17 Pages 2066-2071
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000236970300011 Publication Date 2006-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123; 2006 IF: 2.892
Call Number UA @ lucian @ c:irua:57353 Serial 1625
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Densification of thin a-C: H films grown from low-kinetic energy hydrocarbon radicals under the influence of H and C particle fluxes: a molecular dynamics study Type A1 Journal article
Year 2006 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 39 Issue 9 Pages 1948-1953
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000238233900035 Publication Date 2006-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 3 Open Access
Notes Approved Most recent IF: 2.588; 2006 IF: 2.077
Call Number UA @ lucian @ c:irua:57254 Serial 634
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E.
Title Computer simulations for processing plasmas Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 110-119
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000235628300003 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 8 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56076 Serial 465
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Herrebout, D.; Kolev, I.; Madani, M.; Neyts, E.
Title Numerical modeling for a better understanding of gas discharge plasmas Type A1 Journal article
Year 2005 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us
Volume 9 Issue 3 Pages 321-344
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000231634100001 Publication Date 2005-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1093-3611; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:55832 Serial 2398
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
Title Unraveling the deposition mechanism in a-C:H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces Type A1 Journal article
Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 99 Issue 1 Pages 014902,1-8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000234607200071 Publication Date 2006-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 25 Open Access
Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
Call Number UA @ lucian @ c:irua:55831 Serial 3815
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van de Sanden, M.C.M.
Title Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC Type A1 Journal article
Year 2005 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
Volume 228 Issue Pages 315-318
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000226669800052 Publication Date 2004-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 19 Open Access
Notes Approved Most recent IF: 1.109; 2005 IF: 1.181
Call Number UA @ lucian @ c:irua:49873 Serial 2172
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van den Sanden, M.C.M.
Title Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species Type A1 Journal article
Year 2004 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 13 Issue Pages 1873-1881
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000223883400021 Publication Date 2004-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 53 Open Access
Notes Approved Most recent IF: 2.561; 2004 IF: 1.670
Call Number UA @ lucian @ c:irua:48276 Serial 2173
Permanent link to this record
 

 
Author Neyts, E.; Yan, M.; Bogaerts, A.; Gijbels, R.
Title PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge Type A1 Journal article
Year 2003 Publication Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B
Volume 202 Issue Pages 300-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000182122500048 Publication Date 2003-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 8 Open Access
Notes Approved Most recent IF: 1.109; 2003 IF: 1.041
Call Number UA @ lucian @ c:irua:44015 Serial 2620
Permanent link to this record
 

 
Author Neyts, E.; Yan, M.; Bogaerts, A.; Gijbels, R.
Title Particle-in-cell/Monte Carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: effect of adding H2 to an Ar discharge Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages 5025-5033
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000182296700010 Publication Date 2003-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44012 Serial 2562
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.; Gijbels, R.; van der Mullen, J.
Title Gas discharge plasmas and their applications Type A1 Journal article
Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B
Volume 57 Issue Pages 609-658
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000175779700001 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547; ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.241 Times cited 462 Open Access
Notes Approved Most recent IF: 3.241; 2002 IF: 2.695
Call Number UA @ lucian @ c:irua:40181 Serial 1317
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M.
Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
Volume 26 Issue 13 Pages 10265-10272
Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)
Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186465400001 Publication Date 2024-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
Call Number UA @ admin @ c:irua:204792 Serial 9168
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P.
Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication Waste and biomass valorization Abbreviated Journal
Volume Issue Pages 1-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117290800003 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-2641; 1877-265x ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 1.337
Call Number UA @ admin @ c:irua:202709 Serial 9005
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C.
Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
Year 2024 Publication International journal of hydrogen energy Abbreviated Journal
Volume 55 Issue Pages 640-610
Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142427400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 7.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 7.2; 2024 IF: 3.582
Call Number UA @ admin @ c:irua:202315 Serial 9006
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P.
Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication European journal of organic chemistry Abbreviated Journal
Volume 27 Issue 5 Pages e202300934-10
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-193x; 1099-0690 ISBN Additional Links (down) UA library record
Impact Factor 2.8 Times cited Open Access
Notes Approved Most recent IF: 2.8; 2023 IF: 2.834
Call Number UA @ admin @ c:irua:201382 Serial 9017
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
Year 2023 Publication ACS Omega Abbreviated Journal
Volume 8 Issue 30 Pages 27519-27533
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031269000001 Publication Date 2023-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2023 IF: NA
Call Number UA @ admin @ c:irua:198313 Serial 9011
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 107 Issue 3 Pages 034501-34510
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955986000006 Publication Date 2023-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0053 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 2.4 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 2.4; 2023 IF: 2.366
Call Number UA @ admin @ c:irua:196089 Serial 7586
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 13 Issue 49 Pages 11454-11463
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000893147700001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
Volume 157 Issue 18 Pages 184113-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000885260600002 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Kovács, A.; Yusupov, M.; Cornet, I.; Billen, P.; Neyts, E.C.
Title Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability Type A1 Journal article
Year 2022 Publication Journal Of Molecular Liquids Abbreviated Journal J Mol Liq
Volume 366 Issue Pages 120180-17
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Natural deep eutectic solvents (NADES) represent a green alternative to common organic solvents in the biochemical industry due to their benign behavior and tailorable properties, in particular as media for enzymatic reactions. However, to fully exploit their potential in enzymatic reactions, there is a need for a more fundamental understanding of how these neoteric solvents influence the course of these reac-tions. Thus, the aim of this study is to investigate the influence of NADES with various molar composi-tions on the stability and structure of enzymes, applying molecular dynamics simulations. This can help to better understand the effect of individual compounds of NADES, in addition to eutectic mixtures. More specifically, we simulate the behavior of Candida antarctica lipase B (CALB) enzyme in NADES com-posed of choline chloride with either urea, ethylene glycol or glycerol. Hereto, we monitor the NADES microstructure, the general stability of the enzyme and changes in the structure of its active sites and sur-face residues. Our simulations show that none of the studied NADES systems significantly disrupt the microstructure of the solvent or the stability of the CALB enzyme within the time scales of the simula-tions. The enzyme preserves its initial structure, size and intra-chain hydrogen bonds in all investigated compositions and, for the first time reported, also in NADES with increased hydrogen bond donating com-pound ratios. As the main novelty, our results indicate that, in addition to the composition, the molar ratio can be an additional variable to fine-tune the physicochemical properties of NADES without altering the enzyme characteristics. These findings could facilitate the development and application of task -tailored NADES media for biocatalytic processes. (c) 2022 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865431800010 Publication Date 2022-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-7322 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6
Call Number UA @ admin @ c:irua:191538 Serial 7265
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Identification of a unique pyridinic FeN4Cx electrocatalyst for N₂ reduction : tailoring the coordination and carbon topologies Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
Volume 126 Issue 34 Pages 14460-14469
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although the heterogeneity of pyrolyzed Fe???N???C materials is known and has been reported previously, the atomic structure of the active sites and their detailed reaction mechanisms are still unknown. Here, we identified two pyridinic Fe???N4-like centers with different local C coordinates, i.e., FeN4C8 and FeN4C10, and studied their electrocatalytic activity for the nitrogen reduction reaction (NRR) based on density functional theory (DFT) calculations. We also discovered the influence of the adsorption of NH2 as a functional ligand on catalyst performance on the NRR. We confirmed that the NRR selectivity of the studied catalysts is essentially governed either by the local C coordination or by the dynamic structure associated with the FeII/FeIII. Our investigations indicate that the proposed traditional pyridinic FeN4C10 has higher catalytic activity and selectivity for the NRR than the robust FeN4C8 catalyst, while it may have outstanding activity for promoting other (electro)catalytic reactions. <comment>Superscript/Subscript Available</comment
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000859545200001 Publication Date 2022-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:191469 Serial 7268
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 14 Issue 30 Pages 34946-34954
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000835946500001 Publication Date 2022-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 9 Open Access OpenAccess
Notes Approved Most recent IF: 9.5
Call Number UA @ admin @ c:irua:189467 Serial 7127
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C.
Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A
Volume 126 Issue 20 Pages 3080-3089
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804119800003 Publication Date 2022-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1089-5639; 1520-5215 ISBN Additional Links (down) UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.9
Call Number UA @ admin @ c:irua:189023 Serial 7146
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C.
Title Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume Issue Pages 7541-7549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823193100001 Publication Date 2022-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links (down) UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9
Call Number EMAT @ emat @c:irua:189000 Serial 7073
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.; Guaitella, O.; Murphy, A.B.
Title Foundations of plasma catalysis for environmental applications Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume Issue Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various applications, but the underlying mechanisms are still far from understood. Hence, more fundamental research is needed to understand these mechanisms. This can be obtained by both modelling and experiments. This foundations paper describes the fundamental insights in plasma catalysis, as well as efforts to gain more insights by modelling and experiments. Furthermore, it discusses the state-of-the-art of the major plasma catalysis applications, as well as successes and challenges of technology transfer of these applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000804396200001 Publication Date 2022-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes H2020 Marie Skłodowska-Curie Actions, 823745 ; H2020 European Research Council, 810182 ; We acknowldege financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:188539 Serial 7070
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
Title Indentation of graphene nano-bubbles Type A1 Journal article
Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 14 Issue 15 Pages 5876-5883
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations are used to investigate the effect of an AFM tip when indenting graphene nano bubbles filled by a noble gas (i.e. He, Ne and Ar) up to the breaking point. The failure points resemble those of viral shells as described by the Foppl-von Karman (FvK) dimensionless number defined in the context of elasticity theory of thin shells. At room temperature, He gas inside the bubbles is found to be in the liquid state while Ne and Ar atoms are in the solid state although the pressure inside the nano bubble is below the melting pressure of the bulk. The trapped gases are under higher hydrostatic pressure at low temperatures than at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776763000001 Publication Date 2022-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364; 2040-3372 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.7
Call Number UA @ admin @ c:irua:187924 Serial 7171
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A.
Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 12 Issue 2 Pages 1326-1337
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000742735600001 Publication Date 2022-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.9
Call Number UA @ admin @ c:irua:186416 Serial 7192
Permanent link to this record